pipeline.py 等更新
This commit is contained in:
Binary file not shown.
@ -169,9 +169,6 @@ def calc_simil(event, stdfeat):
|
||||
Similar = None # 在event.front_feats和event.back_feats同时为空时
|
||||
|
||||
return Similar
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
def simi_matrix():
|
||||
|
Binary file not shown.
Binary file not shown.
@ -61,8 +61,9 @@ class Config:
|
||||
test_val = "D:/比对/cl"
|
||||
# test_val = "./data/test_data_100"
|
||||
|
||||
test_model = "checkpoints/best_resnet18_v12.pth"
|
||||
# test_model = "checkpoints/best_resnet18_v12.pth"
|
||||
# test_model = "checkpoints/zhanting_res_801.pth"
|
||||
test_model = "checkpoints/zhanting_res_abroad_8021.pth"
|
||||
|
||||
|
||||
|
||||
|
@ -61,8 +61,17 @@ class FeatsInterface:
|
||||
batch_patches = []
|
||||
patches = []
|
||||
for i, img in enumerate(images):
|
||||
img = img.copy()
|
||||
patch = self.transform(img)
|
||||
img = img.copy()
|
||||
|
||||
## 对 img 进行补黑边,生成新的图像new_img
|
||||
width, height = img.size
|
||||
new_size = max(width, height)
|
||||
new_img = Image.new("RGB", (new_size, new_size), (0, 0, 0))
|
||||
paste_x = (new_size - width) // 2
|
||||
paste_y = (new_size - height) // 2
|
||||
new_img.paste(img, (paste_x, paste_y))
|
||||
|
||||
patch = self.transform(new_img)
|
||||
if str(self.device) != "cpu":
|
||||
patch = patch.to(device=self.device).half()
|
||||
else:
|
||||
@ -107,10 +116,12 @@ class FeatsInterface:
|
||||
patch = self.transform(img1)
|
||||
|
||||
# patch = patch.to(device=self.device).half()
|
||||
if str(self.device) != "cpu":
|
||||
patch = patch.to(device=self.device).half()
|
||||
else:
|
||||
patch = patch.to(device=self.device)
|
||||
# if str(self.device) != "cpu":
|
||||
# patch = patch.to(device=self.device).half()
|
||||
# patch = patch.to(device=self.device)
|
||||
# else:
|
||||
# patch = patch.to(device=self.device)
|
||||
patch = patch.to(device=self.device)
|
||||
|
||||
patches.append(patch)
|
||||
if (d + 1) % self.batch_size == 0:
|
||||
|
@ -158,6 +158,8 @@ def stdfeat_infer(imgPath, featPath, bcdSet=None):
|
||||
|
||||
feature /= np.linalg.norm(feature, axis=1)[:, None]
|
||||
|
||||
feature_ft32 = feature.astype(np.float32)
|
||||
|
||||
# float16
|
||||
feature_ft16 = feature.astype(np.float16)
|
||||
feature_ft16 /= np.linalg.norm(feature_ft16, axis=1)[:, None]
|
||||
@ -173,7 +175,7 @@ def stdfeat_infer(imgPath, featPath, bcdSet=None):
|
||||
##================== float32
|
||||
stdbDict["barcode"] = barcode
|
||||
stdbDict["imgpaths"] = imgpaths
|
||||
stdbDict["feats_ft32"] = feature
|
||||
stdbDict["feats_ft32"] = feature_ft32
|
||||
stdbDict["feats_ft16"] = feature_ft16
|
||||
stdbDict["feats_uint8"] = feature_uint8
|
||||
|
||||
@ -202,9 +204,13 @@ def gen_bcd_features(imgpath, bcdpath, featpath, bcdSet=None):
|
||||
stdfeat_infer(bcdpath, featpath, bcdSet)
|
||||
|
||||
def main():
|
||||
imgpath = r"\\192.168.1.28\share\数据\已完成数据\展厅数据\v1.0\比对数据\整理\zhantingBase"
|
||||
bcdpath = r"D:\exhibition\dataset\bcdpath"
|
||||
featpath = r"D:\exhibition\dataset\feats"
|
||||
imgpath = r"\\192.168.1.28\share\数据\已完成数据\展厅数据\v2.0_abroad\比对数据\all_base_二筛"
|
||||
bcdpath = r"D:\exhibition\dataset\bcdpath_abroad"
|
||||
featpath = r"D:\exhibition\dataset\feats_abroad"
|
||||
if not os.path.exists(bcdpath):
|
||||
os.makedirs(bcdpath)
|
||||
if not os.path.exists(featpath):
|
||||
os.makedirs(featpath)
|
||||
|
||||
|
||||
gen_bcd_features(imgpath, bcdpath, featpath)
|
||||
|
@ -92,9 +92,9 @@ def simi_calc(event, o2nevt, typee=None):
|
||||
feat2 = o2nevt.front_feats
|
||||
|
||||
'''自定义事件特征选择'''
|
||||
if typee==3:
|
||||
feat1 = event.feats_compose
|
||||
feat2 = o2nevt.feats_compose
|
||||
if typee==3 and len(event.feats_compose) and len(o2nevt.feats_compose):
|
||||
feat1 = [event.feats_compose]
|
||||
feat2 = [o2nevt.feats_compose]
|
||||
|
||||
|
||||
if len(feat1) and len(feat2):
|
||||
@ -109,15 +109,18 @@ def one2n_pr(evtDicts, pattern=1):
|
||||
'''
|
||||
pattern:
|
||||
1: process.data 中记录的相似度
|
||||
2: 根据 process.data 中标记的 type 选择特征计算
|
||||
3: 以其它方式选择特征计算
|
||||
2: 根据 process.data 中标记的 type 选择特征计算相似度
|
||||
3: 以其它方式选择特征计算相似度
|
||||
'''
|
||||
|
||||
tpevents, fnevents, fpevents, tnevents = [], [], [], []
|
||||
tpsimi, fnsimi, tnsimi, fpsimi = [], [], [], []
|
||||
errorFile_one2n = []
|
||||
one2nFile, errorFile_one2n = [], []
|
||||
for evtname, event in evtDicts.items():
|
||||
evt_names, evt_barcodes, evt_similars, evt_types = [], [], [], []
|
||||
|
||||
if len(event.barcode)==0:
|
||||
continue
|
||||
|
||||
for ndict in event.one2n:
|
||||
nname = ndict["event"]
|
||||
@ -149,6 +152,13 @@ def one2n_pr(evtDicts, pattern=1):
|
||||
continue
|
||||
evt_similars.append(simival)
|
||||
|
||||
## process.data的oneTon的各项中,均不包括当前事件的barcode
|
||||
if event.barcode not in evt_barcodes:
|
||||
errorFile_one2n.append(evtname)
|
||||
continue
|
||||
else:
|
||||
one2nFile.append(evtname)
|
||||
|
||||
if len(evt_names)==len(evt_barcodes) and len(evt_barcodes)==len(evt_similars) \
|
||||
and len(evt_similars)==len(evt_types) and len(evt_names)>0:
|
||||
|
||||
@ -166,7 +176,7 @@ def one2n_pr(evtDicts, pattern=1):
|
||||
elif bcd!=event.barcode and simi!=maxsim:
|
||||
tnsimi.append(simi)
|
||||
tnevents.append(evtname)
|
||||
elif bcd!=event.barcode and simi==maxsim and event.barcode in evt_barcodes:
|
||||
elif bcd!=event.barcode and simi==maxsim:
|
||||
fpsimi.append(simi)
|
||||
fpevents.append(evtname)
|
||||
else:
|
||||
@ -187,7 +197,7 @@ def one2n_pr(evtDicts, pattern=1):
|
||||
TN = sum(np.array(tnsimi) < th)
|
||||
|
||||
PPrecise.append(TP/(TP+FP+1e-6))
|
||||
PRecall.append(TP/(len(tpsimi)+len(fnsimi)+1e-6))
|
||||
PRecall.append(TP/(len(one2nFile)+1e-6))
|
||||
NPrecise.append(TN/(TN+FN+1e-6))
|
||||
NRecall.append(TN/(len(tnsimi)+len(fpsimi)+1e-6))
|
||||
|
||||
@ -202,23 +212,23 @@ def one2n_pr(evtDicts, pattern=1):
|
||||
ax.set_ylim([0, 1])
|
||||
ax.grid(True)
|
||||
ax.set_title('1:n Precise & Recall')
|
||||
ax.set_xlabel(f"Event Num: {len(tpsimi)+len(fnsimi)}")
|
||||
ax.set_xlabel(f"Event Num: {len(one2nFile)}")
|
||||
ax.legend()
|
||||
plt.show()
|
||||
## ============================= 1:n 直方图'''
|
||||
fig, axes = plt.subplots(2, 2)
|
||||
axes[0, 0].hist(tpsimi, bins=60, range=(-0.2, 1), edgecolor='black')
|
||||
axes[0, 0].set_xlim([-0.2, 1])
|
||||
axes[0, 0].set_title('TP')
|
||||
axes[0, 0].set_title(f'TP: {len(tpsimi)}')
|
||||
axes[0, 1].hist(fpsimi, bins=60, range=(-0.2, 1), edgecolor='black')
|
||||
axes[0, 1].set_xlim([-0.2, 1])
|
||||
axes[0, 1].set_title('FP')
|
||||
axes[0, 1].set_title(f'FP: {len(fpsimi)}')
|
||||
axes[1, 0].hist(tnsimi, bins=60, range=(-0.2, 1), edgecolor='black')
|
||||
axes[1, 0].set_xlim([-0.2, 1])
|
||||
axes[1, 0].set_title('TN')
|
||||
axes[1, 0].set_title(f'TN: {len(tnsimi)}')
|
||||
axes[1, 1].hist(fnsimi, bins=60, range=(-0.2, 1), edgecolor='black')
|
||||
axes[1, 1].set_xlim([-0.2, 1])
|
||||
axes[1, 1].set_title('FN')
|
||||
axes[1, 1].set_title(f'FN: {len(fnsimi)}')
|
||||
plt.show()
|
||||
|
||||
return fpevents
|
||||
@ -226,14 +236,14 @@ def one2n_pr(evtDicts, pattern=1):
|
||||
def main():
|
||||
|
||||
'''1. 生成事件字典并保存至 eventDataPath, 只需运行一次 '''
|
||||
init_eventdict(eventSourcePath, stype="source")
|
||||
init_eventdict(eventSourcePath, stype="data")
|
||||
|
||||
'''2. 读取事件字典 '''
|
||||
evtDicts = read_eventdict(eventDataPath)
|
||||
|
||||
|
||||
'''3. 1:n 比对事件评估 '''
|
||||
fpevents = one2n_pr(evtDicts, pattern=3)
|
||||
fpevents = one2n_pr(evtDicts, pattern=1)
|
||||
|
||||
fpErrFile = str(Path(resultPath).joinpath("one2n_fp_Error.txt"))
|
||||
with open(fpErrFile, "w") as file:
|
||||
@ -243,15 +253,16 @@ def main():
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
eventSourcePath = r"\\192.168.1.28\share\测试视频数据以及日志\算法全流程测试\202412\result\ShoppingDict_pkfile"
|
||||
resultPath = r"\\192.168.1.28\share\测试视频数据以及日志\算法全流程测试\202412\result\contrast"
|
||||
eventSourcePath = r"\\192.168.1.28\share\测试视频数据以及日志\海外展厅测试数据\比对数据"
|
||||
resultPath = r"\\192.168.1.28\share\测试视频数据以及日志\海外展厅测试数据\testing"
|
||||
|
||||
eventDataPath = os.path.join(resultPath, "evtobjs")
|
||||
similPath = os.path.join(resultPath, "simidata")
|
||||
if not os.path.exists(eventDataPath):
|
||||
os.makedirs(eventDataPath)
|
||||
if not os.path.exists(similPath):
|
||||
os.makedirs(similPath)
|
||||
|
||||
# similPath = os.path.join(resultPath, "simidata")
|
||||
# if not os.path.exists(similPath):
|
||||
# os.makedirs(similPath)
|
||||
|
||||
main()
|
||||
|
||||
|
@ -626,12 +626,13 @@ if __name__ == '__main__':
|
||||
# eventSourcePath = [r"\\192.168.1.28\share\测试视频数据以及日志\各模块测试记录\展厅测试\1129_展厅模型v801测试组测试"]
|
||||
|
||||
|
||||
stdSamplePath = r"\\192.168.1.28\share\数据\已完成数据\比对数据\barcode\all_totalBarocde\totalBarcode"
|
||||
stdBarcodePath = r"D:\全实时\source_data\bcdpath"
|
||||
stdFeaturePath = r"D:\全实时\source_data\stdfeats"
|
||||
stdSamplePath = r"\\192.168.1.28\share\数据\已完成数据\展厅数据\v2.0_abroad\比对数据\all_base_二筛"
|
||||
stdBarcodePath = r"\\192.168.1.28\share\测试视频数据以及日志\海外展厅测试数据\testing\bcdpath"
|
||||
stdFeaturePath = r"\\192.168.1.28\share\测试视频数据以及日志\海外展厅测试数据\testing\stdfeats"
|
||||
|
||||
eventSourcePath = [r"\\192.168.1.28\share\测试视频数据以及日志\算法全流程测试\202412\result\ShoppingDict_pkfile"]
|
||||
resultPath = r"\\192.168.1.28\share\测试视频数据以及日志\算法全流程测试\202412\result\contrast"
|
||||
eventSourcePath = [r"\\192.168.1.28\share\测试视频数据以及日志\海外展厅测试数据\比对数据"]
|
||||
|
||||
resultPath = r"\\192.168.1.28\share\测试视频数据以及日志\海外展厅测试数据\testing\evtobjs"
|
||||
eventDataPath = os.path.join(resultPath, "evtobjs")
|
||||
similPath = os.path.join(resultPath, "simidata")
|
||||
if not os.path.exists(eventDataPath):
|
||||
@ -639,7 +640,7 @@ if __name__ == '__main__':
|
||||
if not os.path.exists(similPath):
|
||||
os.makedirs(similPath)
|
||||
|
||||
# test_one2one()
|
||||
test_one2one()
|
||||
|
||||
test_one2SN()
|
||||
|
||||
|
@ -495,7 +495,7 @@ def contrast_pr(paths):
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
evtpaths = r"D:\全实时\source_data\2024122416"
|
||||
evtpaths = r"\\192.168.1.28\share\测试视频数据以及日志\算法全流程测试\202412\images"
|
||||
contrast_pr(evtpaths)
|
||||
|
||||
|
||||
|
Binary file not shown.
@ -202,10 +202,10 @@ class ShoppingEvent:
|
||||
self.front_trackingfeats = frontdata[5]
|
||||
|
||||
'''===========对应于 0/1_tracking_output.data ============================='''
|
||||
self.back_boxes = back_outdata[0]
|
||||
self.back_feats = back_outdata[1]
|
||||
self.front_boxes = front_outdata[0]
|
||||
self.front_feats = front_outdata[1]
|
||||
self.back_boxes = back_outdata
|
||||
self.back_feats = back_outdata
|
||||
self.front_boxes = front_outdata
|
||||
self.front_feats = front_outdata
|
||||
|
||||
|
||||
def from_datafile(self, eventpath):
|
||||
|
59
pipeline.py
59
pipeline.py
@ -103,14 +103,16 @@ def pipeline(
|
||||
|
||||
# if pf_path.exists():
|
||||
# return
|
||||
|
||||
|
||||
|
||||
'''====================== 构造 ShoppingDict 模块 ======================='''
|
||||
ShoppingDict = {"eventPath": eventpath,
|
||||
"eventName": evtname,
|
||||
"barcode": barcode,
|
||||
"eventType": '', # "input", "output", "other"
|
||||
"frontCamera": {},
|
||||
"backCamera": {},
|
||||
"one2n": []
|
||||
"one2n": [] #
|
||||
}
|
||||
|
||||
|
||||
@ -121,7 +123,7 @@ def pipeline(
|
||||
|
||||
|
||||
for vpath in vpaths:
|
||||
'''相机事件字典构造'''
|
||||
'''================= 1. 构造相机事件字典 ================='''
|
||||
CameraEvent = {"cameraType": '', # "front", "back"
|
||||
"videoPath": '',
|
||||
"imagePaths": [],
|
||||
@ -140,21 +142,21 @@ def pipeline(
|
||||
if bname.split('_')[0] == "1" or bname.find('front')>=0:
|
||||
CameraEvent["cameraType"] = "front"
|
||||
|
||||
'''事件结果存储文件夹'''
|
||||
|
||||
'''================= 2. 事件结果存储文件夹 ================='''
|
||||
if isinstance(vpath, list):
|
||||
savepath_pipeline_imgs = savepath_pipeline / Path("images")
|
||||
else:
|
||||
savepath_pipeline_imgs = savepath_pipeline / Path(str(Path(vpath).stem))
|
||||
|
||||
if not savepath_pipeline_imgs.exists():
|
||||
savepath_pipeline_imgs.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
savepath_pipeline_imgs.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
savepath_pipeline_subimgs = savepath_pipeline / Path("subimgs")
|
||||
if not savepath_pipeline_subimgs.exists():
|
||||
savepath_pipeline_subimgs.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
|
||||
'''Yolo + Resnet + Tracker'''
|
||||
'''================= 3. Yolo + Resnet + Tracker ================='''
|
||||
optdict["source"] = vpath
|
||||
optdict["save_dir"] = savepath_pipeline_imgs
|
||||
|
||||
@ -162,11 +164,8 @@ def pipeline(
|
||||
|
||||
CameraEvent["yoloResnetTracker"] = yrtOut
|
||||
|
||||
|
||||
# bboxes = np.empty((0, 9), dtype = np.float32)
|
||||
# for frameDict in yrtOut:
|
||||
# bboxes = np.concatenate([bboxes, frameDict["tboxes"]], axis=0)
|
||||
|
||||
'''================= 4. tracking ================='''
|
||||
'''(1) 生成用于 tracking 模块的 boxes、feats'''
|
||||
trackerboxes = np.empty((0, 9), dtype=np.float64)
|
||||
trackefeats = {}
|
||||
for frameDict in yrtOut:
|
||||
@ -179,7 +178,7 @@ def pipeline(
|
||||
trackefeats.update({f"{fid}_{bid}": ffeats[f"{fid}_{bid}"]})
|
||||
|
||||
|
||||
'''tracking'''
|
||||
'''(2) tracking, 后摄'''
|
||||
if CameraEvent["cameraType"] == "back":
|
||||
vts = doBackTracks(trackerboxes, trackefeats)
|
||||
vts.classify()
|
||||
@ -187,7 +186,8 @@ def pipeline(
|
||||
|
||||
CameraEvent["tracking"] = vts
|
||||
ShoppingDict["backCamera"] = CameraEvent
|
||||
|
||||
|
||||
'''(2) tracking, 前摄'''
|
||||
if CameraEvent["cameraType"] == "front":
|
||||
vts = doFrontTracks(trackerboxes, trackefeats)
|
||||
vts.classify()
|
||||
@ -196,11 +196,12 @@ def pipeline(
|
||||
CameraEvent["tracking"] = vts
|
||||
ShoppingDict["frontCamera"] = CameraEvent
|
||||
|
||||
|
||||
'''========================== 保存模块 ================================='''
|
||||
'''(1) 保存 ShoppingDict 事件'''
|
||||
with open(str(pf_path), 'wb') as f:
|
||||
pickle.dump(ShoppingDict, f)
|
||||
|
||||
|
||||
|
||||
'''(2) 保存 Tracking 输出的运动轨迹子图,并记录相似度'''
|
||||
for CamerType, vts in event_tracks:
|
||||
if len(vts.tracks)==0: continue
|
||||
if CamerType == 'front':
|
||||
@ -215,16 +216,14 @@ def pipeline(
|
||||
imgdict.update(y["imgs"])
|
||||
featdict.update(y["feats"])
|
||||
simidict.update(y["featsimi"])
|
||||
|
||||
|
||||
|
||||
for track in vts.Residual:
|
||||
if isinstance(track, np.ndarray):
|
||||
save_subimgs(imgdict, track, savepath_pipeline_subimgs, ctype, featdict)
|
||||
else:
|
||||
save_subimgs(imgdict, track.slt_boxes, savepath_pipeline_subimgs, ctype, featdict)
|
||||
|
||||
|
||||
'''轨迹显示模块'''
|
||||
'''(3) 轨迹显示与保存'''
|
||||
illus = [None, None]
|
||||
for CamerType, vts in event_tracks:
|
||||
if len(vts.tracks)==0: continue
|
||||
@ -279,15 +278,15 @@ def main():
|
||||
if item.is_dir():
|
||||
# item = evtdir/Path("20241209-160201-b97f7a0e-7322-4375-9f17-c475500097e9_6926265317292")
|
||||
parmDict["eventpath"] = item
|
||||
pipeline(**parmDict)
|
||||
# pipeline(**parmDict)
|
||||
|
||||
# try:
|
||||
# pipeline(**parmDict)
|
||||
# except Exception as e:
|
||||
# errEvents.append(str(item))
|
||||
k+=1
|
||||
if k==2:
|
||||
break
|
||||
try:
|
||||
pipeline(**parmDict)
|
||||
except Exception as e:
|
||||
errEvents.append(str(item))
|
||||
# k+=1
|
||||
# if k==100:
|
||||
# break
|
||||
|
||||
errfile = os.path.join(parmDict["savepath"], f'error_events.txt')
|
||||
with open(errfile, 'w', encoding='utf-8') as f:
|
||||
|
@ -216,7 +216,7 @@ def yolo_resnet_tracker(
|
||||
# Rescale boxes from img_size to im0 size
|
||||
det[:, :4] = scale_boxes(im.shape[2:], det[:, :4], im0.shape).round()
|
||||
|
||||
# det = det.cpu().numpy()
|
||||
det = det.cpu().numpy()
|
||||
## ================================================================ writed by WQG
|
||||
'''tracks: [x1, y1, x2, y2, track_id, score, cls, frame_index, box_index]
|
||||
0 1 2 3 4 5 6 7 8
|
||||
|
@ -2,7 +2,10 @@
|
||||
"""
|
||||
Created on Thu May 30 14:03:03 2024
|
||||
|
||||
现场测试性能分析
|
||||
轨迹分析现场测试性能分析:
|
||||
(1) 读取 data 文件中的轨迹数据,绘制轨迹图
|
||||
(2) 读取本地运行 Yolo+Rsenet+Tracker+Tracking 的数据,绘制轨迹图
|
||||
|
||||
|
||||
@author: ym
|
||||
"""
|
||||
|
Reference in New Issue
Block a user