288 lines
8.9 KiB
Python
288 lines
8.9 KiB
Python
# -*- coding: utf-8 -*-
|
||
"""
|
||
Created on Wed Dec 18 11:49:01 2024
|
||
|
||
@author: ym
|
||
"""
|
||
import os
|
||
import pickle
|
||
import numpy as np
|
||
from pathlib import Path
|
||
import matplotlib.pyplot as plt
|
||
from scipy.spatial.distance import cdist
|
||
from utils.event import ShoppingEvent
|
||
|
||
|
||
def init_eventdict(sourcePath, stype="data"):
|
||
'''stype: str,
|
||
'source': 由 videos 或 images 生成的 pickle 文件
|
||
'data': 从 data 文件中读取的现场运行数据
|
||
'''
|
||
|
||
k, errEvents = 0, []
|
||
for bname in os.listdir(sourcePath):
|
||
# bname = r"20241126-135911-bdf91cf9-3e9a-426d-94e8-ddf92238e175_6923555210479"
|
||
|
||
source_path = os.path.join(sourcePath, bname)
|
||
if stype=="data":
|
||
pickpath = os.path.join(eventDataPath, f"{bname}.pickle")
|
||
if not os.path.isdir(source_path) or os.path.isfile(pickpath):
|
||
continue
|
||
if stype=="source":
|
||
pickpath = os.path.join(eventDataPath, bname)
|
||
if not os.path.isfile(source_path) or os.path.isfile(pickpath):
|
||
continue
|
||
|
||
try:
|
||
event = ShoppingEvent(source_path, stype)
|
||
|
||
with open(pickpath, 'wb') as f:
|
||
pickle.dump(event, f)
|
||
print(bname)
|
||
except Exception as e:
|
||
errEvents.append(source_path)
|
||
print(e)
|
||
# k += 1
|
||
# if k==1:
|
||
# break
|
||
|
||
errfile = os.path.join(resultPath, 'error_events.txt')
|
||
with open(errfile, 'a', encoding='utf-8') as f:
|
||
for line in errEvents:
|
||
f.write(line + '\n')
|
||
|
||
def read_eventdict(eventDataPath):
|
||
evtDict = {}
|
||
for filename in os.listdir(eventDataPath):
|
||
evtname, ext = os.path.splitext(filename)
|
||
if ext != ".pickle": continue
|
||
|
||
evtpath = os.path.join(eventDataPath, filename)
|
||
with open(evtpath, 'rb') as f:
|
||
evtdata = pickle.load(f)
|
||
evtDict[evtname] = evtdata
|
||
|
||
|
||
return evtDict
|
||
|
||
def simi_calc(event, o2nevt, typee=None):
|
||
if typee == "11":
|
||
boxes1 = event.front_boxes
|
||
boxes2 = o2nevt.front_boxes
|
||
|
||
feat1 = event.front_feats
|
||
feat2 = o2nevt.front_feats
|
||
if typee == "10":
|
||
boxes1 = event.front_boxes
|
||
boxes2 = o2nevt.back_boxes
|
||
|
||
feat1 = event.front_feats
|
||
feat2 = o2nevt.back_feats
|
||
if typee == "00":
|
||
boxes1 = event.back_boxes
|
||
boxes2 = o2nevt.back_boxes
|
||
|
||
feat1 = event.back_feats
|
||
feat2 = o2nevt.back_feats
|
||
if typee == "01":
|
||
boxes1 = event.back_boxes
|
||
boxes2 = o2nevt.front_boxes
|
||
|
||
feat1 = event.back_feats
|
||
feat2 = o2nevt.front_feats
|
||
|
||
'''自定义事件特征选择'''
|
||
if typee==3 and len(event.feats_compose) and len(o2nevt.feats_compose):
|
||
feat1 = [event.feats_compose]
|
||
feat2 = [o2nevt.feats_compose]
|
||
|
||
|
||
if len(feat1) and len(feat2):
|
||
matrix = 1 - cdist(feat1[0], feat2[0], 'cosine')
|
||
simi = np.mean(matrix)
|
||
else:
|
||
simi = None
|
||
return simi
|
||
|
||
|
||
def one2n_pr(evtDicts, pattern=1):
|
||
'''
|
||
pattern:
|
||
1: process.data 中记录的相似度
|
||
2: 根据 process.data 中标记的 type 选择特征计算相似度
|
||
3: 以其它方式选择特征计算相似度
|
||
'''
|
||
|
||
tpevents, fnevents, fpevents, tnevents = [], [], [], []
|
||
tpsimi, fnsimi, tnsimi, fpsimi = [], [], [], []
|
||
one2nFile, errorFile_one2n = [], []
|
||
for evtname, event in evtDicts.items():
|
||
evt_names, evt_barcodes, evt_similars, evt_types = [], [], [], []
|
||
|
||
if len(event.barcode)==0:
|
||
continue
|
||
|
||
for ndict in event.one2n:
|
||
nname = ndict["event"]
|
||
barcode = ndict["barcode"]
|
||
similar = ndict["similar"]
|
||
typee = ndict["type"].strip()
|
||
|
||
evt_names.append(nname)
|
||
evt_barcodes.append(barcode)
|
||
evt_types.append(typee)
|
||
|
||
if pattern==1:
|
||
evt_similars.append(similar)
|
||
|
||
if pattern==2 or pattern==3:
|
||
o2n_evt = [evt for name, evt in evtDicts.items() if name.find(nname[:15])==0]
|
||
if len(o2n_evt)==1:
|
||
o2nevt = o2n_evt[0]
|
||
else:
|
||
continue
|
||
|
||
if pattern==2:
|
||
simival = simi_calc(event, o2nevt, typee)
|
||
|
||
if pattern==3:
|
||
simival = simi_calc(event, o2nevt, typee=pattern)
|
||
|
||
if simival==None:
|
||
continue
|
||
evt_similars.append(simival)
|
||
|
||
## process.data的oneTon的各项中,均不包括当前事件的barcode
|
||
if event.barcode not in evt_barcodes:
|
||
errorFile_one2n.append(evtname)
|
||
continue
|
||
else:
|
||
one2nFile.append(evtname)
|
||
|
||
if len(evt_names)==len(evt_barcodes) and len(evt_barcodes)==len(evt_similars) \
|
||
and len(evt_similars)==len(evt_types) and len(evt_names)>0:
|
||
|
||
# maxsim = evt_similars[evt_similars.index(max(evt_similars))]
|
||
maxsim = max(evt_similars)
|
||
for i in range(len(evt_names)):
|
||
bcd, simi = evt_barcodes[i], evt_similars[i]
|
||
|
||
if bcd==event.barcode and simi==maxsim:
|
||
tpsimi.append(simi)
|
||
tpevents.append(evtname)
|
||
elif bcd==event.barcode and simi!=maxsim:
|
||
fnsimi.append(simi)
|
||
fnevents.append(evtname)
|
||
elif bcd!=event.barcode and simi!=maxsim:
|
||
tnsimi.append(simi)
|
||
tnevents.append(evtname)
|
||
elif bcd!=event.barcode and simi==maxsim:
|
||
fpsimi.append(simi)
|
||
fpevents.append(evtname)
|
||
else:
|
||
errorFile_one2n.append(evtname)
|
||
|
||
|
||
|
||
''' 1:n 数据存储,需根据相似度排序'''
|
||
PPrecise, PRecall = [], []
|
||
NPrecise, NRecall = [], []
|
||
|
||
Thresh = np.linspace(-0.2, 1, 100)
|
||
for th in Thresh:
|
||
'''============================= 1:n 计算'''
|
||
TP = sum(np.array(tpsimi) >= th)
|
||
FP = sum(np.array(fpsimi) >= th)
|
||
FN = sum(np.array(fnsimi) < th)
|
||
TN = sum(np.array(tnsimi) < th)
|
||
|
||
PPrecise.append(TP/(TP+FP+1e-6))
|
||
PRecall.append(TP/(len(one2nFile)+1e-6))
|
||
NPrecise.append(TN/(TN+FN+1e-6))
|
||
NRecall.append(TN/(len(tnsimi)+len(fpsimi)+1e-6))
|
||
|
||
|
||
'''4. ============================= 1:n 曲线,'''
|
||
fig, ax = plt.subplots()
|
||
ax.plot(Thresh, PPrecise, 'r', label='Precise_Pos: TP/TPFP')
|
||
ax.plot(Thresh, PRecall, 'b', label='Recall_Pos: TP/TPFN')
|
||
ax.plot(Thresh, NPrecise, 'g', label='Precise_Neg: TN/TNFP')
|
||
ax.plot(Thresh, NRecall, 'c', label='Recall_Neg: TN/TNFN')
|
||
ax.set_xlim([0, 1])
|
||
ax.set_ylim([0, 1])
|
||
ax.grid(True)
|
||
ax.set_title('1:n Precise & Recall')
|
||
ax.set_xlabel(f"Event Num: {len(one2nFile)}")
|
||
ax.legend()
|
||
plt.show()
|
||
## ============================= 1:n 直方图'''
|
||
fig, axes = plt.subplots(2, 2)
|
||
axes[0, 0].hist(tpsimi, bins=60, range=(-0.2, 1), edgecolor='black')
|
||
axes[0, 0].set_xlim([-0.2, 1])
|
||
axes[0, 0].set_title(f'TP: {len(tpsimi)}')
|
||
axes[0, 1].hist(fpsimi, bins=60, range=(-0.2, 1), edgecolor='black')
|
||
axes[0, 1].set_xlim([-0.2, 1])
|
||
axes[0, 1].set_title(f'FP: {len(fpsimi)}')
|
||
axes[1, 0].hist(tnsimi, bins=60, range=(-0.2, 1), edgecolor='black')
|
||
axes[1, 0].set_xlim([-0.2, 1])
|
||
axes[1, 0].set_title(f'TN: {len(tnsimi)}')
|
||
axes[1, 1].hist(fnsimi, bins=60, range=(-0.2, 1), edgecolor='black')
|
||
axes[1, 1].set_xlim([-0.2, 1])
|
||
axes[1, 1].set_title(f'FN: {len(fnsimi)}')
|
||
plt.show()
|
||
|
||
return fpevents
|
||
|
||
def main():
|
||
|
||
'''1. 生成事件字典并保存至 eventDataPath, 只需运行一次 '''
|
||
init_eventdict(eventSourcePath, stype="data")
|
||
|
||
'''2. 读取事件字典 '''
|
||
evtDicts = read_eventdict(eventDataPath)
|
||
|
||
|
||
'''3. 1:n 比对事件评估 '''
|
||
fpevents = one2n_pr(evtDicts, pattern=1)
|
||
|
||
fpErrFile = str(Path(resultPath).joinpath("one2n_fp_Error.txt"))
|
||
with open(fpErrFile, "w") as file:
|
||
for item in fpevents:
|
||
file.write(item + "\n")
|
||
|
||
|
||
|
||
if __name__ == '__main__':
|
||
eventSourcePath = r"\\192.168.1.28\share\测试视频数据以及日志\海外展厅测试数据\比对数据"
|
||
resultPath = r"\\192.168.1.28\share\测试视频数据以及日志\海外展厅测试数据\testing"
|
||
|
||
eventDataPath = os.path.join(resultPath, "evtobjs")
|
||
if not os.path.exists(eventDataPath):
|
||
os.makedirs(eventDataPath)
|
||
|
||
# similPath = os.path.join(resultPath, "simidata")
|
||
# if not os.path.exists(similPath):
|
||
# os.makedirs(similPath)
|
||
|
||
main()
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|