bakeup
This commit is contained in:
131
contrast/feat_similar.py
Normal file
131
contrast/feat_similar.py
Normal file
@ -0,0 +1,131 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
"""
|
||||
Created on Fri Aug 9 10:36:45 2024
|
||||
|
||||
@author: ym
|
||||
"""
|
||||
import os
|
||||
import cv2
|
||||
import numpy as np
|
||||
import torch
|
||||
import sys
|
||||
from scipy.spatial.distance import cdist
|
||||
sys.path.append(r"D:\DetectTracking")
|
||||
from tracking.trackers.reid.reid_interface import ReIDInterface
|
||||
from tracking.trackers.reid.config import config as ReIDConfig
|
||||
ReIDEncoder = ReIDInterface(ReIDConfig)
|
||||
|
||||
|
||||
def inference_image(images):
|
||||
batch_patches = []
|
||||
patches = []
|
||||
for d, img1 in enumerate(images):
|
||||
|
||||
|
||||
img = img1[:, :, ::-1].copy() # the model expects RGB inputs
|
||||
patch = ReIDEncoder.transform(img)
|
||||
|
||||
# patch = patch.to(device=self.device).half()
|
||||
if str(ReIDEncoder.device) != "cpu":
|
||||
patch = patch.to(device=ReIDEncoder.device).half()
|
||||
else:
|
||||
patch = patch.to(device=ReIDEncoder.device)
|
||||
|
||||
patches.append(patch)
|
||||
if (d + 1) % ReIDEncoder.batch_size == 0:
|
||||
patches = torch.stack(patches, dim=0)
|
||||
batch_patches.append(patches)
|
||||
patches = []
|
||||
|
||||
if len(patches):
|
||||
patches = torch.stack(patches, dim=0)
|
||||
batch_patches.append(patches)
|
||||
|
||||
features = np.zeros((0, ReIDEncoder.embedding_size))
|
||||
for patches in batch_patches:
|
||||
pred = ReIDEncoder.model(patches)
|
||||
pred[torch.isinf(pred)] = 1.0
|
||||
feat = pred.cpu().data.numpy()
|
||||
features = np.vstack((features, feat))
|
||||
|
||||
return features
|
||||
|
||||
|
||||
def similarity_compare(root_dir):
|
||||
'''
|
||||
root_dir:包含 "subimgs"字段的文件夹中图像为 subimg子图
|
||||
功能:相邻帧子图间相似度比较
|
||||
'''
|
||||
|
||||
all_files = []
|
||||
extensions = ['.png', '.jpg']
|
||||
for dirpath, dirnames, filenames in os.walk(root_dir):
|
||||
filepaths = []
|
||||
for filename in filenames:
|
||||
if os.path.basename(dirpath).find('subimgs') < 0:
|
||||
continue
|
||||
file, ext = os.path.splitext(filename)
|
||||
if ext in extensions:
|
||||
imgpath = os.path.join(dirpath, filename)
|
||||
filepaths.append(imgpath)
|
||||
nf = len(filepaths)
|
||||
if nf==0:
|
||||
continue
|
||||
|
||||
fnma = os.path.basename(filepaths[0]).split('.')[0]
|
||||
imga = cv2.imread(filepaths[0])
|
||||
ha, wa = imga.shape[:2]
|
||||
|
||||
for i in range(1, nf):
|
||||
fnmb = os.path.basename(filepaths[i]).split('.')[0]
|
||||
|
||||
imgb = cv2.imread(filepaths[i])
|
||||
hb, wb = imgb.shape[:2]
|
||||
|
||||
|
||||
feats = inference_image(((imga, imgb)))
|
||||
|
||||
similar = 1 - np.maximum(0.0, cdist(feats, feats, metric='cosine'))
|
||||
|
||||
|
||||
h, w = max((ha, hb)), max((wa, wb))
|
||||
img = np.zeros(((h, 2*w, 3)), np.uint8)
|
||||
img[0:ha, 0:wa], img[0:hb, w:(w+wb)] = imga, imgb
|
||||
|
||||
linewidth = max(round(((h+2*w))/2 * 0.001), 2)
|
||||
cv2.putText(img,
|
||||
text=f'{similar[0,1]:.2f}', # Text string to be drawn
|
||||
org=(max(w-20, 10), h-10), # Bottom-left corner of the text string
|
||||
fontFace=0, # Font type
|
||||
fontScale=linewidth/3, # Font scale factor
|
||||
color=(0, 0, 255), # Text color
|
||||
thickness=linewidth, # Thickness of the lines used to draw a text
|
||||
lineType=cv2.LINE_AA, # Line type
|
||||
)
|
||||
spath = os.path.join(dirpath, 's'+fnma+'-vs-'+fnmb+'.png')
|
||||
cv2.imwrite(spath, img)
|
||||
|
||||
|
||||
fnma = os.path.basename(filepaths[i]).split('.')[0]
|
||||
imga = imgb.copy()
|
||||
ha, wa = imga.shape[:2]
|
||||
|
||||
|
||||
|
||||
return
|
||||
|
||||
|
||||
def main():
|
||||
root_dir = r"D:\contrast\dataset\result\20240723-112242_6923790709882"
|
||||
|
||||
try:
|
||||
similarity_compare(root_dir)
|
||||
except Exception as e:
|
||||
print(f'Error: {e}')
|
||||
|
||||
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
||||
|
Binary file not shown.
@ -172,7 +172,10 @@ def run(
|
||||
if is_url and is_file:
|
||||
source = check_file(source) # download
|
||||
|
||||
save_dir = Path(project) / Path(source).stem
|
||||
|
||||
# spth = source.split('\\')[-2] + "_" + Path(source).stem
|
||||
save_dir = Path(project) / Path(source.split('\\')[-2] + "_" + str(Path(source).stem))
|
||||
# save_dir = Path(project) / Path(source).stem
|
||||
if save_dir.exists():
|
||||
print(Path(source).stem)
|
||||
# return
|
||||
@ -387,6 +390,8 @@ def run(
|
||||
# Print time (inference-only)
|
||||
LOGGER.info(f"{s}{'' if len(det) else '(no detections), '}{dt[1].dt * 1E3:.1f}ms")
|
||||
|
||||
if track_boxes.size == 0:
|
||||
return
|
||||
|
||||
## ======================================================================== written by WQG
|
||||
## track_boxes: Array, [x1, y1, x2, y2, track_id, score, cls, frame_index, box_id]
|
||||
@ -397,7 +402,7 @@ def run(
|
||||
filename = os.path.split(save_path_img)[-1]
|
||||
|
||||
'''======================== 1. save in './run/detect/' ===================='''
|
||||
if source.find("front") >= 0:
|
||||
if source.find("front") >= 0 or Path(source).stem.split('_')[0] == '1':
|
||||
carttemp = cv2.imread("./tracking/shopcart/cart_tempt/board_ftmp_line.png")
|
||||
else:
|
||||
carttemp = cv2.imread("./tracking/shopcart/cart_tempt/edgeline.png")
|
||||
@ -516,10 +521,11 @@ def main_loop(opt):
|
||||
optdict = vars(opt)
|
||||
|
||||
# p = r"D:\datasets\ym\永辉测试数据_比对"
|
||||
p = r"D:\datasets\ym\广告板遮挡测试\8"
|
||||
# p = r"D:\datasets\ym\广告板遮挡测试\8"
|
||||
# p = r"D:\datasets\ym\videos\标记视频"
|
||||
# p = r"D:\datasets\ym\实验室测试"
|
||||
# p = r"D:\datasets\ym\永辉双摄视频\新建文件夹"
|
||||
p = r"\\192.168.1.28\share\测试_202406\0723\0723_2\20240723-112522_"
|
||||
|
||||
k = 0
|
||||
if os.path.isdir(p):
|
||||
@ -531,16 +537,16 @@ def main_loop(opt):
|
||||
# r"D:\datasets\ym\广告板遮挡测试\8\2500441577966_20240508-175946_front_addGood_70f75407b7ae_155_17788571404.mp4"
|
||||
# ]
|
||||
|
||||
files = [r"D:\datasets\ym\广告板遮挡测试\8\6907149227609_20240508-174733_back_returnGood_70f754088050_425_17327712807.mp4"]
|
||||
# files = [r"\\192.168.1.28\share\测试_202406\0723\0723_2\20240723-095838_\1_seek_193.mp4"]
|
||||
|
||||
|
||||
for file in files:
|
||||
optdict["source"] = file
|
||||
run(**optdict)
|
||||
|
||||
k += 1
|
||||
if k == 1:
|
||||
break
|
||||
# k += 1
|
||||
# if k == 10:
|
||||
# break
|
||||
elif os.path.isfile(p):
|
||||
optdict["source"] = p
|
||||
run(**vars(opt))
|
||||
|
Binary file not shown.
@ -346,14 +346,6 @@ def performance_evaluate(all_list, isshow=False):
|
||||
|
||||
return errpairs, corrpairs, err_similarity, correct_similarity
|
||||
|
||||
|
||||
|
||||
return errpairs, corrpairs, err_similarity, correct_similarity
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
def contrast_analysis(del_barcode_file, basepath, savepath, saveimgs=False):
|
||||
@ -417,21 +409,20 @@ def contrast_loop(fpath):
|
||||
# plt2.savefig(os.path.join(savepath, file+'_hist.png'))
|
||||
# plt.close()
|
||||
|
||||
|
||||
def main():
|
||||
fpath = r'\\192.168.1.28\share\测试_202406\deletedBarcode\other'
|
||||
|
||||
fpath = r'\\192.168.1.28\share\测试_202406\deletedBarcode\other'
|
||||
contrast_loop(fpath)
|
||||
|
||||
def main1():
|
||||
del_barcode_file = 'D:/contrast/dataset/compairsonResult/deletedBarcode_20240709_pm.txt'
|
||||
basepath = r'D:\contrast\dataset\1_to_n\709'
|
||||
del_barcode_file = r'\\192.168.1.28\share\测试_202406\709\deletedBarcode.txt'
|
||||
basepath = r'\\192.168.1.28\share\测试_202406\709'
|
||||
savepath = r'D:\contrast\dataset\result'
|
||||
|
||||
try:
|
||||
relative_path = contrast_analysis(del_barcode_file, basepath, savepath)
|
||||
except Exception as e:
|
||||
print(f'Error Type: {e}')
|
||||
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
332
tracking/contrast_one2one.py
Normal file
332
tracking/contrast_one2one.py
Normal file
@ -0,0 +1,332 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
"""
|
||||
Created on Fri Aug 30 17:53:03 2024
|
||||
|
||||
1. 确认在相同CamerType下,track.data 中 CamerID 项数量 = 图像数 = 帧ID数 = 最大帧ID
|
||||
|
||||
2. 读取0/1_tracking_output.data 中数据,boxes、feats,len(boxes)=len(feats)
|
||||
帧ID约束
|
||||
|
||||
3. 优先选择前摄
|
||||
|
||||
4. 保存图像数据
|
||||
|
||||
5. 一次购物事件类型
|
||||
shopEvent: {barcode:
|
||||
type: getout, input
|
||||
front_traj:[{imgpath: str,
|
||||
box: arrar(1, 9),
|
||||
feat: array(1, 256)
|
||||
}]
|
||||
back_traj: [{imgpath: str,
|
||||
box: arrar(1, 9),
|
||||
feat: array(1, 256)
|
||||
}]
|
||||
}
|
||||
|
||||
|
||||
|
||||
@author: ym
|
||||
|
||||
"""
|
||||
import numpy as np
|
||||
import cv2
|
||||
import os
|
||||
import sys
|
||||
import json
|
||||
sys.path.append(r"D:\DetectTracking")
|
||||
from tracking.utils.read_data import extract_data, read_tracking_output, read_deletedBarcode_file
|
||||
|
||||
IMG_FORMAT = ['.bmp', '.jpg', '.jpeg', '.png']
|
||||
|
||||
def creat_shopping_event(basepath):
|
||||
eventList = []
|
||||
|
||||
'''一、构造放入商品事件列表'''
|
||||
k = 0
|
||||
for filename in os.listdir(basepath):
|
||||
# filename = "20240723-155413_6904406215720"
|
||||
|
||||
'''filename下为一次购物事件'''
|
||||
filepath = os.path.join(basepath, filename)
|
||||
|
||||
'''================ 0. 检查 filename 及 filepath 正确性和有效性 ================'''
|
||||
nmlist = filename.split('_')
|
||||
if filename.find('2024')<0 or len(nmlist)!=2 or len(nmlist[0])!=15 or len(nmlist[1])<11:
|
||||
continue
|
||||
if not os.path.isdir(filepath): continue
|
||||
print(f"Event name: {filename}")
|
||||
|
||||
'''================ 1. 构造事件描述字典,暂定 9 items ==============='''
|
||||
event = {}
|
||||
event['barcode'] = nmlist[1]
|
||||
event['type'] = 'input'
|
||||
event['filepath'] = filepath
|
||||
event['back_imgpaths'] = []
|
||||
event['front_imgpaths'] = []
|
||||
event['back_boxes'] = np.empty((0, 9), dtype=np.float64)
|
||||
event['front_boxes'] = np.empty((0, 9), dtype=np.float64)
|
||||
event['back_feats'] = np.empty((0, 256), dtype=np.float64)
|
||||
event['front_feats'] = np.empty((0, 256), dtype=np.float64)
|
||||
# event['feats_compose'] = np.empty((0, 256), dtype=np.float64)
|
||||
# event['feats_select'] = np.empty((0, 256), dtype=np.float64)
|
||||
|
||||
|
||||
'''================= 1. 读取 data 文件 ============================='''
|
||||
for dataname in os.listdir(filepath):
|
||||
# filename = '1_track.data'
|
||||
datapath = os.path.join(filepath, dataname)
|
||||
if not os.path.isfile(datapath): continue
|
||||
|
||||
CamerType = dataname.split('_')[0]
|
||||
''' 3.1 读取 0/1_track.data 中数据,暂不考虑'''
|
||||
# if dataname.find("_track.data")>0:
|
||||
# bboxes, ffeats, trackerboxes, tracker_feat_dict, trackingboxes, tracking_feat_dict = extract_data(datapath)
|
||||
|
||||
''' 3.2 读取 0/1_tracking_output.data 中数据'''
|
||||
if dataname.find("_tracking_output.data")>0:
|
||||
tracking_output_boxes, tracking_output_feats = read_tracking_output(datapath)
|
||||
if len(tracking_output_boxes) != len(tracking_output_feats): continue
|
||||
if CamerType == '0':
|
||||
event['back_boxes'] = tracking_output_boxes
|
||||
event['back_feats'] = tracking_output_feats
|
||||
elif CamerType == '1':
|
||||
event['front_boxes'] = tracking_output_boxes
|
||||
event['front_feats'] = tracking_output_feats
|
||||
|
||||
# '''1.1 事件的特征表征方式选择'''
|
||||
# bk_feats = event['back_feats']
|
||||
# ft_feats = event['front_feats']
|
||||
|
||||
# feats_compose = np.empty((0, 256), dtype=np.float64)
|
||||
# if len(ft_feats):
|
||||
# feats_compose = np.concatenate((feats_compose, ft_feats), axis=0)
|
||||
# if len(bk_feats):
|
||||
# feats_compose = np.concatenate((feats_compose, bk_feats), axis=0)
|
||||
# event['feats_compose'] = feats_compose
|
||||
|
||||
# '''3. 构造前摄特征'''
|
||||
# if len(ft_feats):
|
||||
# event['feats_select'] = ft_feats
|
||||
|
||||
|
||||
|
||||
'''================ 2. 读取图像文件地址,并按照帧ID排序 ============='''
|
||||
frontImgs, frontFid = [], []
|
||||
backImgs, backFid = [], []
|
||||
for imgname in os.listdir(filepath):
|
||||
name, ext = os.path.splitext(imgname)
|
||||
if ext not in IMG_FORMAT or name.find('frameId')<0: continue
|
||||
|
||||
CamerType = name.split('_')[0]
|
||||
frameId = int(name.split('_')[3])
|
||||
imgpath = os.path.join(filepath, imgname)
|
||||
if CamerType == '0':
|
||||
backImgs.append(imgpath)
|
||||
backFid.append(frameId)
|
||||
if CamerType == '1':
|
||||
frontImgs.append(imgpath)
|
||||
frontFid.append(frameId)
|
||||
|
||||
frontIdx = np.argsort(np.array(frontFid))
|
||||
backIdx = np.argsort(np.array(backFid))
|
||||
|
||||
'''2.1 生成依据帧 ID 排序的前后摄图像地址列表'''
|
||||
frontImgs = [frontImgs[i] for i in frontIdx]
|
||||
backImgs = [backImgs[i] for i in backIdx]
|
||||
|
||||
'''2.2 将前、后摄图像路径添加至事件字典'''
|
||||
bfid = event['back_boxes'][:, 7].astype(np.int64)
|
||||
ffid = event['front_boxes'][:, 7].astype(np.int64)
|
||||
if len(bfid) and max(bfid) <= len(backImgs):
|
||||
event['back_imgpaths'] = [backImgs[i-1] for i in bfid]
|
||||
if len(ffid) and max(ffid) <= len(frontImgs):
|
||||
event['front_imgpaths'] = [frontImgs[i-1] for i in ffid]
|
||||
|
||||
|
||||
'''================ 3. 判断当前事件有效性,并添加至事件列表 =========='''
|
||||
condt1 = len(event['back_imgpaths'])==0 or len(event['front_imgpaths'])==0
|
||||
condt2 = len(event['front_feats'])==0 and len(event['back_feats'])==0
|
||||
|
||||
if condt1 or condt2:
|
||||
print(f" Error, condt1: {condt1}, condt2: {condt2}")
|
||||
continue
|
||||
|
||||
eventList.append(event)
|
||||
|
||||
# k += 1
|
||||
# if k==1:
|
||||
# continue
|
||||
|
||||
'''一、构造放入商品事件列表,暂不处理'''
|
||||
# delepath = os.path.join(basepath, 'deletedBarcode.txt')
|
||||
# bcdList = read_deletedBarcode_file(delepath)
|
||||
# for slist in bcdList:
|
||||
# getoutFold = slist['SeqDir'].strip()
|
||||
# getoutPath = os.path.join(basepath, getoutFold)
|
||||
|
||||
# '''取出事件文件夹不存在,跳出循环'''
|
||||
# if not os.path.exists(getoutPath) and not os.path.isdir(getoutPath):
|
||||
# continue
|
||||
|
||||
# ''' 生成取出事件字典 '''
|
||||
# event = {}
|
||||
# event['barcode'] = slist['Deleted'].strip()
|
||||
# event['type'] = 'getout'
|
||||
# event['basepath'] = getoutPath
|
||||
|
||||
|
||||
return eventList
|
||||
|
||||
def get_std_barcodeDict(bcdpath):
|
||||
stdBlist = []
|
||||
for filename in os.listdir(bcdpath):
|
||||
filepath = os.path.join(bcdpath, filename)
|
||||
if not os.path.isdir(filepath) or not filename.isdigit(): continue
|
||||
|
||||
stdBlist.append(filename)
|
||||
|
||||
|
||||
bcdpaths = [(barcode, os.path.join(bcdpath, barcode)) for barcode in stdBlist]
|
||||
|
||||
stdBarcodeDict = {}
|
||||
for barcode, bpath in bcdpaths:
|
||||
stdBarcodeDict[barcode] = []
|
||||
for root, dirs, files in os.walk(bpath):
|
||||
|
||||
imgpaths = []
|
||||
if "base" in dirs:
|
||||
broot = os.path.join(root, "base")
|
||||
for imgname in os.listdir(broot):
|
||||
imgpath = os.path.join(broot, imgname)
|
||||
_, ext = os.path.splitext(imgpath)
|
||||
if ext not in IMG_FORMAT: continue
|
||||
imgpaths.append(imgpath)
|
||||
|
||||
stdBarcodeDict[barcode].extend(imgpaths)
|
||||
break
|
||||
|
||||
else:
|
||||
for imgname in files:
|
||||
imgpath = os.path.join(root, imgname)
|
||||
_, ext = os.path.splitext(imgpath)
|
||||
if ext not in IMG_FORMAT: continue
|
||||
imgpaths.append(imgpath)
|
||||
stdBarcodeDict[barcode].extend(imgpaths)
|
||||
|
||||
with open('stdBarcodeDict.json', 'wb') as f:
|
||||
json.dump(stdBarcodeDict, f)
|
||||
|
||||
|
||||
|
||||
return stdBarcodeDict
|
||||
|
||||
|
||||
def one2one_test(filepath):
|
||||
|
||||
savepath = r'\\192.168.1.28\share\测试_202406\contrast'
|
||||
|
||||
'''获得 Barcode 列表'''
|
||||
bcdpath = r'\\192.168.1.28\share\已标注数据备份\对比数据\barcode\barcode_1771'
|
||||
stdBarcodeDict = get_std_barcodeDict(bcdpath)
|
||||
|
||||
|
||||
eventList = creat_shopping_event(filepath)
|
||||
print("=========== eventList have generated! ===========")
|
||||
barcodeDict = {}
|
||||
for event in eventList:
|
||||
'''9 items: barcode, type, filepath, back_imgpaths, front_imgpaths,
|
||||
back_boxes, front_boxes, back_feats, front_feats
|
||||
'''
|
||||
|
||||
barcode = event['barcode']
|
||||
if barcode not in stdBarcodeDict.keys():
|
||||
continue
|
||||
|
||||
|
||||
if len(event['feats_select']):
|
||||
event_feats = event['feats_select']
|
||||
elif len(event['back_feats']):
|
||||
event_feats = event['back_feats']
|
||||
else:
|
||||
continue
|
||||
|
||||
std_bcdpath = os.path.join(bcdpath, barcode)
|
||||
|
||||
|
||||
|
||||
for root, dirs, files in os.walk(std_bcdpath):
|
||||
if "base" in files:
|
||||
std_bcdpath = os.path.join(root, "base")
|
||||
break
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
'''保存一次购物事件的轨迹子图'''
|
||||
basename = os.path.basename(event['filepath'])
|
||||
spath = os.path.join(savepath, basename)
|
||||
if not os.path.exists(spath):
|
||||
os.makedirs(spath)
|
||||
cameras = ('front', 'back')
|
||||
for camera in cameras:
|
||||
if camera == 'front':
|
||||
boxes = event['front_boxes']
|
||||
imgpaths = event['front_imgpaths']
|
||||
else:
|
||||
boxes = event['back_boxes']
|
||||
imgpaths = event['back_imgpaths']
|
||||
|
||||
for i, box in enumerate(boxes):
|
||||
x1, y1, x2, y2, tid, score, cls, fid, bid = box
|
||||
|
||||
imgpath = imgpaths[i]
|
||||
image = cv2.imread(imgpath)
|
||||
subimg = image[int(y1/2):int(y2/2), int(x1/2):int(x2/2), :]
|
||||
|
||||
camerType, timeTamp, _, frameID = os.path.basename(imgpath).split('.')[0].split('_')
|
||||
subimgName = f"{camerType}_{tid}_fid({fid}, {frameID}).png"
|
||||
subimgPath = os.path.join(spath, subimgName)
|
||||
|
||||
cv2.imwrite(subimgPath, subimg)
|
||||
print(f"Image saved: {basename}")
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
def main():
|
||||
fplist = [r'\\192.168.1.28\share\测试_202406\0723\0723_1',
|
||||
r'\\192.168.1.28\share\测试_202406\0723\0723_2',
|
||||
# r'\\192.168.1.28\share\测试_202406\0723\0723_3',
|
||||
r'\\192.168.1.28\share\测试_202406\0722\0722_01',
|
||||
r'\\192.168.1.28\share\测试_202406\0722\0722_02'
|
||||
]
|
||||
|
||||
|
||||
|
||||
for filepath in fplist:
|
||||
one2one_test(filepath)
|
||||
|
||||
# for filepath in fplist:
|
||||
# try:
|
||||
# one2one_test(filepath)
|
||||
|
||||
# except Exception as e:
|
||||
# print(f'{filepath}, Error: {e}')
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
||||
main()
|
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
@ -96,7 +96,7 @@ class Track:
|
||||
|
||||
self.isCornpoint = False
|
||||
self.imgshape = imgshape
|
||||
self.isBorder = False
|
||||
# self.isBorder = False
|
||||
# self.state = MoveState.Unknown
|
||||
|
||||
'''轨迹开始帧、结束帧 ID'''
|
||||
@ -157,10 +157,12 @@ class Track:
|
||||
def compute_cornpts_feats(self):
|
||||
'''
|
||||
'''
|
||||
# print(f"TrackID: {self.tid}")
|
||||
trajectory = []
|
||||
trajlens = []
|
||||
trajdist = []
|
||||
trajrects = []
|
||||
trajrects_wh = []
|
||||
for k in range(5):
|
||||
# diff_xy2 = np.power(np.diff(self.cornpoints[:, 2*k:2*(k+1)], axis = 0), 2)
|
||||
# trajlen = np.sum(np.sqrt(np.sum(diff_xy2, axis = 1)))
|
||||
@ -182,12 +184,17 @@ class Track:
|
||||
rect[0]: 旋转角度 (-90°, 0]
|
||||
'''
|
||||
rect = cv2.minAreaRect(X.astype(np.int64))
|
||||
rect_wh = max(rect[1])
|
||||
|
||||
|
||||
trajrects_wh.append(rect_wh)
|
||||
trajrects.append(rect)
|
||||
|
||||
self.trajectory = trajectory
|
||||
self.trajlens = trajlens
|
||||
self.trajdist = trajdist
|
||||
self.trajrects = trajrects
|
||||
self.trajrects_wh = trajrects_wh
|
||||
|
||||
|
||||
|
||||
@ -198,12 +205,17 @@ class Track:
|
||||
-最小轨迹长度:trajlen_min
|
||||
-最小轨迹欧氏距离:trajdist_max
|
||||
'''
|
||||
idx1 = self.trajlens.index(max(self.trajlens))
|
||||
|
||||
# idx1 = self.trajlens.index(max(self.trajlens))
|
||||
idx1 = self.trajrects_wh.index(max(self.trajrects_wh))
|
||||
|
||||
trajmax = self.trajectory[idx1]
|
||||
trajlen_max = self.trajlens[idx1]
|
||||
trajdist_max = self.trajdist[idx1]
|
||||
if not self.isCornpoint:
|
||||
idx2 = self.trajlens.index(min(self.trajlens))
|
||||
# idx2 = self.trajlens.index(min(self.trajlens))
|
||||
idx2 = self.trajrects_wh.index(min(self.trajrects_wh))
|
||||
|
||||
trajmin = self.trajectory[idx2]
|
||||
trajlen_min = self.trajlens[idx2]
|
||||
trajdist_min = self.trajdist[idx2]
|
||||
@ -284,7 +296,7 @@ class Track:
|
||||
camerType: back, 后置摄像头
|
||||
front, 前置摄像头
|
||||
'''
|
||||
if camerType=="front":
|
||||
if camerType=="back":
|
||||
incart = cv2.imread("./shopcart/cart_tempt/incart.png", cv2.IMREAD_GRAYSCALE)
|
||||
outcart = cv2.imread("./shopcart/cart_tempt/outcart.png", cv2.IMREAD_GRAYSCALE)
|
||||
else:
|
||||
@ -487,6 +499,14 @@ class doTracks:
|
||||
blist = [b for b in alist]
|
||||
alist = []
|
||||
for btrack in blist:
|
||||
# afids = []
|
||||
# for track in cur_list:
|
||||
# afids.extend(list(track.boxes[:, 7].astype(np.int_)))
|
||||
# bfids = btrack.boxes[:, 7].astype(np.int_)
|
||||
# interfid = set(afids).intersection(set(bfids))
|
||||
# if len(interfid):
|
||||
# print("wait!!!")
|
||||
# if track_equal_track(atrack, btrack) and len(interfid)==0:
|
||||
if track_equal_track(atrack, btrack):
|
||||
cur_list.append(btrack)
|
||||
else:
|
||||
|
@ -155,6 +155,7 @@ class doBackTracks(doTracks):
|
||||
def merge_tracks(self, Residual):
|
||||
"""
|
||||
对不同id,但可能是同一商品的目标进行归并
|
||||
和 dotrack_front.py中函数相同,可以合并,可以合并至基类
|
||||
"""
|
||||
mergedTracks = self.base_merge_tracks(Residual)
|
||||
|
||||
|
@ -47,6 +47,7 @@ class doFrontTracks(doTracks):
|
||||
|
||||
tracks_free = [t for t in tracks if t.frnum>1 and t.is_freemove()]
|
||||
self.FreeMove.extend(tracks_free)
|
||||
tracks = self.sub_tracks(tracks, tracks_free)
|
||||
|
||||
# [self.associate_with_hand(htrack, gtrack) for htrack in hand_tracks for gtrack in tracks]
|
||||
'''轨迹循环归并'''
|
||||
@ -126,6 +127,7 @@ class doFrontTracks(doTracks):
|
||||
def merge_tracks(self, Residual):
|
||||
"""
|
||||
对不同id,但可能是同一商品的目标进行归并
|
||||
和 dotrack_back.py中函数相同,可以合并至基类
|
||||
"""
|
||||
mergedTracks = self.base_merge_tracks(Residual)
|
||||
|
||||
|
@ -165,7 +165,7 @@ class frontTrack(Track):
|
||||
|
||||
'''情况2:中心点向上 '''
|
||||
## 商品中心点向上移动,但没有关联的Hand轨迹,也不是左右边界点
|
||||
condt_b = condt0 and len(self.Hands)==0 and y0[-1] < y0[0] and (not self.is_edge_cornpoint())
|
||||
condt_b = condt0 and len(self.Hands)==0 and y0[-1] < y0[0] and (not self.is_edge_cornpoint()) and min(y0)>self.CART_HIGH_THRESH1
|
||||
|
||||
|
||||
'''情况3: 商品在购物车内,但运动方向无序'''
|
||||
|
@ -619,7 +619,6 @@ def match_evaluate(filename = r'./matching/featdata/MatchDict.pkl'):
|
||||
|
||||
|
||||
def have_tracked():
|
||||
featdir = r"./data/trackfeats"
|
||||
trackdir = r"./data/tracks"
|
||||
|
||||
# =============================================================================
|
||||
@ -634,35 +633,25 @@ def have_tracked():
|
||||
|
||||
MatchingDict = {}
|
||||
k, gt = 0, Profile()
|
||||
for filename in os.listdir(featdir):
|
||||
for filename in os.listdir(trackdir):
|
||||
file, ext = os.path.splitext(filename)
|
||||
|
||||
# if file not in FileList: continue
|
||||
if file.find('20240508')<0: continue
|
||||
if file.find('17327712807')<0: continue
|
||||
|
||||
trackpath = os.path.join(trackdir, file + ".npy")
|
||||
featpath = os.path.join(featdir, filename)
|
||||
|
||||
bboxes = np.load(trackpath)
|
||||
features_dict = np.load(featpath, allow_pickle=True)
|
||||
filepath = os.path.join(trackdir, filename)
|
||||
|
||||
|
||||
tracksDict = np.load(filepath, allow_pickle=True)
|
||||
bboxes = tracksDict['TrackBoxes']
|
||||
with gt:
|
||||
if filename.find("front") >= 0:
|
||||
vts = doFrontTracks(bboxes, features_dict)
|
||||
vts = doFrontTracks(bboxes, tracksDict)
|
||||
vts.classify()
|
||||
|
||||
plt = plot_frameID_y2(vts)
|
||||
|
||||
savedir = save_dir.joinpath(f'{file}_y2.png')
|
||||
|
||||
plt.savefig(savedir)
|
||||
plt.close()
|
||||
elif filename.find("back") >= 0:
|
||||
vts = doBackTracks(bboxes, features_dict)
|
||||
vts = doBackTracks(bboxes, tracksDict)
|
||||
vts.classify()
|
||||
|
||||
edgeline = cv2.imread("./shopcart/cart_tempt/edgeline.png")
|
||||
draw_all_trajectories(vts, edgeline, save_dir, filename)
|
||||
|
||||
print(file+f" need time: {gt.dt:.2f}s")
|
||||
|
||||
elements = file.split('_')
|
||||
@ -691,7 +680,7 @@ def have_tracked():
|
||||
box = boxes[i, :]
|
||||
tid, fid, bid = int(box[4]), int(box[7]), int(box[8])
|
||||
|
||||
feat_dict = features_dict[fid]
|
||||
feat_dict = tracksDict[fid]
|
||||
feature = feat_dict[bid]
|
||||
img = feat_dict[f'{bid}_img']
|
||||
|
@ -30,7 +30,14 @@ def compute_similar(feat1, feat2):
|
||||
|
||||
|
||||
def update_event(datapath):
|
||||
'''一次购物事件,包含 8 个keys'''
|
||||
'''一次购物事件,包含 8 个keys
|
||||
back_sole_boxes:后摄boxes
|
||||
front_sole_boxes:前摄boxes
|
||||
back_sole_feats:后摄特征
|
||||
front_sole_feats:前摄特征
|
||||
feats_compose:将前后摄特征进行合并
|
||||
feats_select:特征选择,优先选择前摄特征
|
||||
'''
|
||||
event = {}
|
||||
# event['front_tracking_boxes'] = []
|
||||
# event['front_tracking_feats'] = {}
|
||||
@ -157,6 +164,10 @@ def update_event(datapath):
|
||||
|
||||
|
||||
def creatd_deletedBarcode_front(filepath):
|
||||
'''
|
||||
生成deletedBarcodeTest.txt
|
||||
'''
|
||||
|
||||
# filepath = r'\\192.168.1.28\share\测试_202406\0723\0723_1\deletedBarcode.txt'
|
||||
basepath, _ = os.path.split(filepath)
|
||||
|
||||
@ -281,7 +292,7 @@ def creatd_deletedBarcode_front(filepath):
|
||||
print('Step 3: Similarity conputation Done!')
|
||||
|
||||
wpath = os.path.split(filepath)[0]
|
||||
wfile = os.path.join(wpath, 'deletedBarcodeTest_x.txt')
|
||||
wfile = os.path.join(wpath, 'deletedBarcodeTest.txt')
|
||||
with open(wfile, 'w', encoding='utf-8') as file:
|
||||
for result in results:
|
||||
|
||||
@ -299,11 +310,14 @@ def creatd_deletedBarcode_front(filepath):
|
||||
print('Step 4: File writting Done!')
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
def compute_precision(filepath, savepath):
|
||||
|
||||
def precision_compare(filepath, savepath):
|
||||
'''
|
||||
1. deletedBarcode.txt 中的相似度的计算为现场算法前后摄轨迹特征合并
|
||||
2. deletedBarcodeTest.txt 中的 3 个相似度计算方式依次为:
|
||||
(1)现场算法前后摄轨迹特征合并;
|
||||
(2)本地算法前后摄轨迹特征合并;
|
||||
(3)本地算法优先选择前摄
|
||||
'''
|
||||
|
||||
fpath = os.path.split(filepath)[0]
|
||||
_, basefile = os.path.split(fpath)
|
||||
@ -336,11 +350,16 @@ def compute_precision(filepath, savepath):
|
||||
plt1.title(basefile + ', front')
|
||||
plt2.savefig(os.path.join(savepath, basefile+'_pr_front.png'))
|
||||
plt2.close()
|
||||
|
||||
|
||||
def main():
|
||||
'''
|
||||
1. 成deletedBarcodeTest.txt
|
||||
2. 不同特征选择下的精度比对性能比较
|
||||
'''
|
||||
|
||||
fplist = [#r'\\192.168.1.28\share\测试_202406\0723\0723_1\deletedBarcode.txt',
|
||||
# r'\\192.168.1.28\share\测试_202406\0723\0723_2\deletedBarcode.txt',
|
||||
# r'\\192.168.1.28\share\测试_202406\0723\0723_3\deletedBarcode.txt',
|
||||
r'\\192.168.1.28\share\测试_202406\0723\0723_3\deletedBarcode.txt',
|
||||
# r'\\192.168.1.28\share\测试_202406\0722\0722_01\deletedBarcode.txt',
|
||||
# r'\\192.168.1.28\share\测试_202406\0722\0722_02\deletedBarcode.txt',
|
||||
# r'\\192.168.1.28\share\测试_202406\0719\719_1\deletedBarcode.txt',
|
||||
@ -376,25 +395,19 @@ def main():
|
||||
# r'\\192.168.1.28\share\测试_202406\627\deletedBarcode.txt',
|
||||
]
|
||||
|
||||
|
||||
fplist = [#r'\\192.168.1.28\share\测试_202406\0723\0723_1\deletedBarcode.txt',
|
||||
# r'\\192.168.1.28\share\测试_202406\0723\0723_3\deletedBarcode.txt',
|
||||
r'\\192.168.1.28\share\测试_202406\0723\0723_3\deletedBarcodeTest.txt',
|
||||
]
|
||||
|
||||
savepath = r'\\192.168.1.28\share\测试_202406\deletedBarcode\illustration'
|
||||
for filepath in fplist:
|
||||
print(filepath)
|
||||
# creatd_deletedBarcode_front(filepath)
|
||||
compute_precision(filepath, savepath)
|
||||
|
||||
# try:
|
||||
# creatd_deletedBarcode_front(filepath)
|
||||
# compute_pres(filepath, savepath)
|
||||
# except Exception as e:
|
||||
# print(f'{filepath}, Error: {e}')
|
||||
try:
|
||||
#1. 生成deletedBarcodeTest.txt 文件
|
||||
creatd_deletedBarcode_front(filepath)
|
||||
|
||||
#2. 确保该目录下存在deletedBarcode.txt, deletedBarcodeTest.txt 文件
|
||||
precision_compare(filepath, savepath)
|
||||
except Exception as e:
|
||||
print(f'{filepath}, Error: {e}')
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
||||
main()
|
||||
|
||||
|
||||
|
@ -25,110 +25,14 @@ from tracking.utils.drawtracks import plot_frameID_y2, draw_all_trajectories
|
||||
from tracking.utils.read_data import extract_data, read_deletedBarcode_file, read_tracking_output
|
||||
|
||||
from contrast_analysis import contrast_analysis
|
||||
|
||||
from tracking.utils.annotator import TrackAnnotator
|
||||
|
||||
W, H = 1024, 1280
|
||||
Mode = 'front' #'back'
|
||||
ImgFormat = ['.jpg', '.jpeg', '.png', '.bmp']
|
||||
|
||||
def video2imgs(path):
|
||||
vpath = os.path.join(path, "videos")
|
||||
|
||||
k = 0
|
||||
have = False
|
||||
for filename in os.listdir(vpath):
|
||||
file, ext = os.path.splitext(filename)
|
||||
imgdir = os.path.join(path, file)
|
||||
if os.path.exists(imgdir):
|
||||
continue
|
||||
else:
|
||||
os.mkdir(imgdir)
|
||||
|
||||
vfile = os.path.join(vpath, filename)
|
||||
cap = cv2.VideoCapture(vfile)
|
||||
i = 0
|
||||
while True:
|
||||
ret, frame = cap.read()
|
||||
if not ret:
|
||||
break
|
||||
|
||||
i += 1
|
||||
imgp = os.path.join(imgdir, file+f"_{i}.png")
|
||||
cv2.imwrite(imgp, frame)
|
||||
|
||||
print(filename+f": {i}")
|
||||
|
||||
|
||||
cap.release()
|
||||
|
||||
k+=1
|
||||
if k==1000:
|
||||
break
|
||||
|
||||
def draw_boxes():
|
||||
datapath = r'D:\datasets\ym\videos_test\20240530\1_tracker_inout(1).data'
|
||||
VideosData = read_tracker_input(datapath)
|
||||
|
||||
bboxes = VideosData[0][0]
|
||||
ffeats = VideosData[0][1]
|
||||
|
||||
videopath = r"D:\datasets\ym\videos_test\20240530\134458234-1cd970cf-f8b9-4e80-9c2e-7ca3eec83b81-1_seek0.10415589124891511.mp4"
|
||||
|
||||
cap = cv2.VideoCapture(videopath)
|
||||
i = 0
|
||||
while True:
|
||||
ret, frame = cap.read()
|
||||
if not ret:
|
||||
break
|
||||
|
||||
|
||||
annotator = Annotator(frame.copy(), line_width=3)
|
||||
|
||||
|
||||
boxes = bboxes[i]
|
||||
|
||||
for *xyxy, conf, cls in reversed(boxes):
|
||||
label = f'{int(cls)}: {conf:.2f}'
|
||||
|
||||
color = colors(int(cls), True)
|
||||
annotator.box_label(xyxy, label, color=color)
|
||||
|
||||
img = annotator.result()
|
||||
|
||||
imgpath = r"D:\datasets\ym\videos_test\20240530\result\int8_front\{}.png".format(i+1)
|
||||
cv2.imwrite(imgpath, img)
|
||||
|
||||
print(f"Output: {i}")
|
||||
i += 1
|
||||
cap.release()
|
||||
|
||||
def read_imgs(imgspath, CamerType):
|
||||
imgs, frmIDs = [], []
|
||||
for filename in os.listdir(imgspath):
|
||||
file, ext = os.path.splitext(filename)
|
||||
flist = file.split('_')
|
||||
if len(flist)==4 and ext in ImgFormat:
|
||||
camID, frmID = flist[0], int(flist[-1])
|
||||
imgpath = os.path.join(imgspath, filename)
|
||||
img = cv2.imread(imgpath)
|
||||
|
||||
if camID==CamerType:
|
||||
imgs.append(img)
|
||||
frmIDs.append(frmID)
|
||||
|
||||
if len(frmIDs):
|
||||
indice = np.argsort(np.array(frmIDs))
|
||||
imgs = [imgs[i] for i in indice]
|
||||
|
||||
return imgs
|
||||
|
||||
|
||||
|
||||
pass
|
||||
|
||||
|
||||
|
||||
'''调用tracking()函数,利用本地跟踪算法获取各目标轨迹,可以比较本地跟踪算法与现场跟踪算法的区别。'''
|
||||
def init_tracker(tracker_yaml = None, bs=1):
|
||||
"""
|
||||
Initialize tracker for object tracking during prediction.
|
||||
@ -177,38 +81,45 @@ def tracking(bboxes, ffeats):
|
||||
|
||||
return TrackBoxes, TracksDict
|
||||
|
||||
def read_imgs(imgspath, CamerType):
|
||||
'''
|
||||
inputs:
|
||||
imgspath;序列图像地址
|
||||
CamerType:相机类型,0:后摄,1:前摄
|
||||
outputs:
|
||||
imgs:图像序列
|
||||
功能:
|
||||
根据CamerType类型读取imgspath文件夹中的图像,并根据帧索引进行排序。
|
||||
do_tracking()中调用该函数,实现(1)读取imgs并绘制各目标轨迹框;(2)获取subimgs
|
||||
'''
|
||||
imgs, frmIDs = [], []
|
||||
for filename in os.listdir(imgspath):
|
||||
file, ext = os.path.splitext(filename)
|
||||
flist = file.split('_')
|
||||
if len(flist)==4 and ext in ImgFormat:
|
||||
camID, frmID = flist[0], int(flist[-1])
|
||||
imgpath = os.path.join(imgspath, filename)
|
||||
img = cv2.imread(imgpath)
|
||||
|
||||
if camID==CamerType:
|
||||
imgs.append(img)
|
||||
frmIDs.append(frmID)
|
||||
|
||||
|
||||
def do_tracker_tracking(fpath, save_dir):
|
||||
bboxes, ffeats, trackerboxes, tracker_feat_dict, trackingboxes, tracking_feat_dict = extract_data(fpath)
|
||||
tboxes, feats_dict = tracking(bboxes, ffeats)
|
||||
|
||||
CamerType = os.path.basename(fpath).split('_')[0]
|
||||
dirname = os.path.split(os.path.split(fpath)[0])[1]
|
||||
if CamerType == '1':
|
||||
vts = doFrontTracks(tboxes, feats_dict)
|
||||
vts.classify()
|
||||
if len(frmIDs):
|
||||
indice = np.argsort(np.array(frmIDs))
|
||||
imgs = [imgs[i] for i in indice]
|
||||
|
||||
plt = plot_frameID_y2(vts)
|
||||
plt.savefig('front_y2.png')
|
||||
# plt.close()
|
||||
elif CamerType == '0':
|
||||
vts = doBackTracks(tboxes, feats_dict)
|
||||
vts.classify()
|
||||
|
||||
filename = dirname+'_' + CamerType
|
||||
edgeline = cv2.imread("./shopcart/cart_tempt/edgeline.png")
|
||||
draw_all_trajectories(vts, edgeline, save_dir, filename)
|
||||
else:
|
||||
print("Please check data file!")
|
||||
|
||||
|
||||
return imgs
|
||||
|
||||
def do_tracking(fpath, savedir, event_name='images'):
|
||||
'''
|
||||
fpath: 算法各模块输出的data文件地址,匹配;
|
||||
savedir: 对 fpath 各模块输出的复现;
|
||||
分析具体视频时,需指定 fpath 和 savedir
|
||||
args:
|
||||
fpath: 算法各模块输出的data文件地址,匹配;
|
||||
savedir: 对 fpath 各模块输出的复现;
|
||||
分析具体视频时,需指定 fpath 和 savedir
|
||||
outputs:
|
||||
img_tracking:目标跟踪轨迹、本地轨迹分析算法的轨迹对比图
|
||||
abimg:现场轨迹分析算法、轨迹选择输出的对比图
|
||||
'''
|
||||
# fpath = r'D:\contrast\dataset\1_to_n\709\20240709-102758_6971558612189\1_track.data'
|
||||
# savedir = r'D:\contrast\dataset\result\20240709-102843_6958770005357_6971558612189\error_6971558612189'
|
||||
@ -231,8 +142,10 @@ def do_tracking(fpath, savedir, event_name='images'):
|
||||
bboxes, ffeats, trackerboxes, tracker_feat_dict, trackingboxes, tracking_feat_dict = extract_data(fpath)
|
||||
tracking_output_boxes, _ = read_tracking_output(tracking_output_path)
|
||||
|
||||
'''1.2 利用本地跟踪算法生成各商品轨迹'''
|
||||
# trackerboxes, tracker_feat_dict = tracking(bboxes, ffeats)
|
||||
|
||||
'''1.2 分别构造 2 个文件夹,(1) 存储画框后的图像; (2) 运动轨迹对应的 boxes子图'''
|
||||
'''1.3 分别构造 2 个文件夹,(1) 存储画框后的图像; (2) 运动轨迹对应的 boxes子图'''
|
||||
save_dir = os.path.join(savedir, event_name)
|
||||
subimg_dir = os.path.join(savedir, event_name + '_subimgs')
|
||||
if not os.path.exists(save_dir):
|
||||
@ -241,8 +154,6 @@ def do_tracking(fpath, savedir, event_name='images'):
|
||||
os.makedirs(subimg_dir)
|
||||
|
||||
|
||||
|
||||
|
||||
'''2. 执行轨迹分析, 保存轨迹分析前后的对比图示'''
|
||||
traj_graphic = event_name + '_' + CamerType
|
||||
if CamerType == '1':
|
||||
@ -344,24 +255,30 @@ def do_tracking(fpath, savedir, event_name='images'):
|
||||
|
||||
def tracking_simulate(eventpath, savepath):
|
||||
'''args:
|
||||
eventpath: 时间文件夹
|
||||
eventpath: 事件文件夹
|
||||
savepath: 存储文件夹
|
||||
遍历eventpath
|
||||
'''
|
||||
|
||||
'''1. 获取事件名'''
|
||||
event_names = os.path.basename(eventpath).strip().split('_')
|
||||
if len(event_names)==2 and len(event_names[1])>=8:
|
||||
enent_name = event_names[1]
|
||||
elif len(event_names)==2 and len(event_names[1])==0:
|
||||
enent_name = event_names[0]
|
||||
else:
|
||||
return
|
||||
# =============================================================================
|
||||
# '''1. 获取事件名'''
|
||||
# event_names = os.path.basename(eventpath).strip().split('_')
|
||||
# if len(event_names)==2 and len(event_names[1])>=8:
|
||||
# enent_name = event_names[1]
|
||||
# elif len(event_names)==2 and len(event_names[1])==0:
|
||||
# enent_name = event_names[0]
|
||||
# else:
|
||||
# return
|
||||
# =============================================================================
|
||||
|
||||
enent_name = os.path.basename(eventpath)[:15]
|
||||
|
||||
'''2. 依次读取 0/1_track.data 中数据,进行仿真'''
|
||||
illu_tracking, illu_select = [], []
|
||||
for filename in os.listdir(eventpath):
|
||||
# filename = '1_track.data'
|
||||
if filename.find("track.data") <= 0: continue
|
||||
if filename.find("track.data") < 0: continue
|
||||
|
||||
fpath = os.path.join(eventpath, filename)
|
||||
if not os.path.isfile(fpath): continue
|
||||
|
||||
@ -451,7 +368,7 @@ def main_loop():
|
||||
'''2. 循环执行操作事件:取出、放入、错误匹配'''
|
||||
for eventpath in tuple_paths:
|
||||
try:
|
||||
tracking_simulate(eventpath, savepath)
|
||||
tracking_simulate(eventpath, savepath)
|
||||
except Exception as e:
|
||||
print(f'Error! {eventpath}, {e}')
|
||||
|
||||
@ -462,29 +379,29 @@ def main_loop():
|
||||
|
||||
def main():
|
||||
'''
|
||||
eventpath: data文件地址,该 data 文件包括 Pipeline 各模块输出
|
||||
savepath: 包含二级目录,一级目录为轨迹图像;二级目录为与data文件对应的序列图像存储地址。
|
||||
eventPaths: data文件地址,该 data 文件包括 Pipeline 各模块输出
|
||||
SavePath: 包含二级目录,一级目录为轨迹图像;二级目录为与data文件对应的序列图像存储地址。
|
||||
'''
|
||||
EventPaths = r'\\192.168.1.28\share\测试_202406\0723\0723_2'
|
||||
SavePath = r'D:\contrast\dataset\result'
|
||||
eventPaths = r'\\192.168.1.28\share\测试_202406\0723\0723_3'
|
||||
savePath = r'D:\contrast\dataset\result'
|
||||
k=0
|
||||
for pathname in os.listdir(EventPaths):
|
||||
# pathname = "20240723-094731_6903148242797"
|
||||
|
||||
eventpath = os.path.join(EventPaths, pathname)
|
||||
savepath = os.path.join(SavePath, pathname)
|
||||
for pathname in os.listdir(eventPaths):
|
||||
pathname = "20240723-163121_6925282237668"
|
||||
|
||||
eventpath = os.path.join(eventPaths, pathname)
|
||||
savepath = os.path.join(savePath, pathname)
|
||||
if not os.path.exists(savepath):
|
||||
os.makedirs(savepath)
|
||||
|
||||
# tracking_simulate(eventpath, savepath)
|
||||
try:
|
||||
tracking_simulate(eventpath, savepath)
|
||||
except Exception as e:
|
||||
print(f'Error! {eventpath}, {e}')
|
||||
tracking_simulate(eventpath, savepath)
|
||||
# try:
|
||||
# tracking_simulate(eventpath, savepath)
|
||||
# except Exception as e:
|
||||
# print(f'Error! {eventpath}, {e}')
|
||||
|
||||
# k += 1
|
||||
# if k==10:
|
||||
# break
|
||||
k += 1
|
||||
if k==1:
|
||||
break
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
6
tracking/shopcart/cart_tempt/说明.txt
Normal file
6
tracking/shopcart/cart_tempt/说明.txt
Normal file
@ -0,0 +1,6 @@
|
||||
5幅图:
|
||||
incart.png
|
||||
outcart.png
|
||||
incart_ftmp.png
|
||||
outcart_ftmp.png
|
||||
cartboarder.png
|
@ -36,10 +36,10 @@ def temp_add_boarder():
|
||||
|
||||
|
||||
def create_front_temp():
|
||||
image = cv2.imread("image_front.png")
|
||||
image = cv2.imread("./iCart4/b.png")
|
||||
Height, Width = image.shape[:2]
|
||||
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
|
||||
thresh, binary = cv2.threshold(gray, 1, 255, cv2.THRESH_BINARY_INV)
|
||||
thresh, binary = cv2.threshold(gray, 128, 255, cv2.THRESH_BINARY_INV)
|
||||
board = cv2.bitwise_not(binary)
|
||||
contours, _ = cv2.findContours(board, cv2.RETR_LIST, cv2.CHAIN_APPROX_NONE)
|
||||
|
||||
@ -48,12 +48,12 @@ def create_front_temp():
|
||||
img = np.zeros((Height, Width), dtype=np.uint8)
|
||||
cv2.drawContours(img, [cnt], -1, 255, 3)
|
||||
k += 1
|
||||
cv2.imwrite(f"fronttemp_{k}.png", img)
|
||||
cv2.imwrite(f"./iCart4/back{k}.png", img)
|
||||
|
||||
imgshow = cv2.drawContours(image, contours, -1, (0,255,0), 3)
|
||||
cv2.imwrite("board_ftmp_line.png", imgshow)
|
||||
cv2.imwrite("./iCart4/board_back_line.png", imgshow)
|
||||
|
||||
# cv2.imwrite("4.png", board)
|
||||
# cv2.imwrite("./iCart4/4.png", board)
|
||||
# cv2.imwrite("1.png", gray)
|
||||
# cv2.imwrite("2.png", binary)
|
||||
|
BIN
tracking/shopcart/iCart4.zip
Normal file
BIN
tracking/shopcart/iCart4.zip
Normal file
Binary file not shown.
98
tracking/time_test.py
Normal file
98
tracking/time_test.py
Normal file
@ -0,0 +1,98 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
"""
|
||||
Created on Tue Aug 13 09:39:42 2024
|
||||
|
||||
@author: ym
|
||||
"""
|
||||
import os
|
||||
import time
|
||||
import datetime
|
||||
import numpy as np
|
||||
import sys
|
||||
sys.path.append(r"D:\DetectTracking")
|
||||
from tracking.utils.read_data import extract_data, read_weight_timeConsuming
|
||||
|
||||
|
||||
|
||||
def main():
|
||||
directory = r"\\192.168.1.28\share\测试_202406\0821\images"
|
||||
|
||||
TimeConsuming = []
|
||||
DayHMS = []
|
||||
for root, dirs, files in os.walk(directory):
|
||||
if root.find('20240821') == -1: continue
|
||||
for name in files:
|
||||
if name.find('process.data') == -1: continue
|
||||
datename = os.path.basename(root)[:15]
|
||||
|
||||
fpath = os.path.join(root, name)
|
||||
WeightDict, SensorDict, ProcessTimeDict = read_weight_timeConsuming(fpath)
|
||||
try:
|
||||
t1 = ProcessTimeDict['algroDoStart'] # 算法处理的第一帧图像时间
|
||||
t2 = ProcessTimeDict['breakinFirst'] # 第一次入侵时间
|
||||
t3 = ProcessTimeDict['algroLastFrame'] # 算法处理的最后一帧图像时间
|
||||
t4 = ProcessTimeDict['breakinLast'] # 最后一次入侵时间
|
||||
t5 = ProcessTimeDict['weightStablityTime'] # 重力稳定时间
|
||||
wv = ProcessTimeDict['weightValue'] # 重力值
|
||||
t6 = ProcessTimeDict['YoloResnetTrackerEnd'] # Yolo、Resnet、tracker执行结束时间
|
||||
t7 = ProcessTimeDict['trackingEnd'] # 轨迹分析结束时间
|
||||
t8 = ProcessTimeDict['contrastEnd'] # 比对结束时间
|
||||
t9 = ProcessTimeDict['algroStartToEnd'] # 算法从开始至结束时间
|
||||
t10 = ProcessTimeDict['weightstablityToEnd'] # 重力稳定至算法结束时间
|
||||
t11 = ProcessTimeDict['frameEndToEnd'] # 最后一帧图像至算法结束时间
|
||||
|
||||
TimeConsuming.append((t1, t2, t3, t4, t5, wv, t6, t7, t8, t9, t10, t11))
|
||||
DayHMS.append(datename)
|
||||
except Exception as e:
|
||||
print(f'Error! {datename}, {e}')
|
||||
|
||||
TimeConsuming = np.array(TimeConsuming, dtype = np.int64)
|
||||
|
||||
TimeTotal = np.concatenate((TimeConsuming,
|
||||
TimeConsuming[:,4][:, None] - TimeConsuming[:,0][:, None],
|
||||
TimeConsuming[:,4][:, None] - TimeConsuming[:,2][:, None]), axis=1)
|
||||
|
||||
tt = TimeTotal[:, 3]==0
|
||||
|
||||
TimeTotal0 = TimeTotal[tt]
|
||||
DayHMS0 = [DayHMS[ti] for i, ti in enumerate(tt) if ti]
|
||||
|
||||
TimeTotalMinus = TimeTotal[TimeTotal[:, 5]<0]
|
||||
TimeTotalAdd = TimeTotal[TimeTotal[:, 5]>=0]
|
||||
|
||||
TimeTotalAdd0 = TimeTotalAdd[TimeTotalAdd[:,3] == 0]
|
||||
TimeTotalAdd1 = TimeTotalAdd[TimeTotalAdd[:,3] != 0]
|
||||
|
||||
TimeTotalMinus0 = TimeTotalMinus[TimeTotalMinus[:,3] == 0]
|
||||
TimeTotalMinus1 = TimeTotalMinus[TimeTotalMinus[:,3] != 0]
|
||||
|
||||
print(f"Total number is {len(TimeConsuming)}")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
Binary file not shown.
@ -163,7 +163,7 @@ class BOTSORT(BYTETracker):
|
||||
'''1. reid 相似度阈值,低于该值的两 boxes 图像不可能是同一对象,需要确定一个合理的可信阈值
|
||||
2. iou 的约束为若约束,故 iou_dists 应设置为较大的值
|
||||
'''
|
||||
emb_dists_mask = (emb_dists > 0.65)
|
||||
emb_dists_mask = (emb_dists > 0.9)
|
||||
iou_dists[emb_dists_mask] = 1
|
||||
emb_dists[iou_dists_mask] = 1
|
||||
|
||||
|
462
tracking/trackers/reid/resnet_pre_lc.py
Normal file
462
tracking/trackers/reid/resnet_pre_lc.py
Normal file
@ -0,0 +1,462 @@
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from tools.config import config as conf
|
||||
|
||||
try:
|
||||
from torch.hub import load_state_dict_from_url
|
||||
except ImportError:
|
||||
from torch.utils.model_zoo import load_url as load_state_dict_from_url
|
||||
# from .utils import load_state_dict_from_url
|
||||
|
||||
__all__ = ['ResNet', 'resnet18', 'resnet34', 'resnet50', 'resnet101',
|
||||
'resnet152', 'resnext50_32x4d', 'resnext101_32x8d',
|
||||
'wide_resnet50_2', 'wide_resnet101_2']
|
||||
|
||||
model_urls = {
|
||||
'resnet18': 'https://download.pytorch.org/models/resnet18-5c106cde.pth',
|
||||
'resnet34': 'https://download.pytorch.org/models/resnet34-333f7ec4.pth',
|
||||
'resnet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth',
|
||||
'resnet101': 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth',
|
||||
'resnet152': 'https://download.pytorch.org/models/resnet152-b121ed2d.pth',
|
||||
'resnext50_32x4d': 'https://download.pytorch.org/models/resnext50_32x4d-7cdf4587.pth',
|
||||
'resnext101_32x8d': 'https://download.pytorch.org/models/resnext101_32x8d-8ba56ff5.pth',
|
||||
'wide_resnet50_2': 'https://download.pytorch.org/models/wide_resnet50_2-95faca4d.pth',
|
||||
'wide_resnet101_2': 'https://download.pytorch.org/models/wide_resnet101_2-32ee1156.pth',
|
||||
}
|
||||
|
||||
|
||||
def conv3x3(in_planes, out_planes, stride=1, groups=1, dilation=1):
|
||||
"""3x3 convolution with padding"""
|
||||
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
|
||||
padding=dilation, groups=groups, bias=False, dilation=dilation)
|
||||
|
||||
def conv1x1(in_planes, out_planes, stride=1):
|
||||
"""1x1 convolution"""
|
||||
return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False)
|
||||
|
||||
|
||||
class SpatialAttention(nn.Module):
|
||||
def __init__(self, kernel_size=7):
|
||||
super(SpatialAttention, self).__init__()
|
||||
|
||||
assert kernel_size in (3, 7), 'kernel size must be 3 or 7'
|
||||
padding = 3 if kernel_size == 7 else 1
|
||||
|
||||
self.conv1 = nn.Conv2d(2, 1, kernel_size, padding=padding, bias=False)
|
||||
self.sigmoid = nn.Sigmoid()
|
||||
|
||||
def forward(self, x):
|
||||
avg_out = torch.mean(x, dim=1, keepdim=True)
|
||||
max_out, _ = torch.max(x, dim=1, keepdim=True)
|
||||
x = torch.cat([avg_out, max_out], dim=1)
|
||||
x = self.conv1(x)
|
||||
return self.sigmoid(x)
|
||||
|
||||
class BasicBlock(nn.Module):
|
||||
expansion = 1
|
||||
|
||||
def __init__(self, inplanes, planes, stride=1, downsample=None, groups=1,
|
||||
base_width=64, dilation=1, norm_layer=None, cam=False, bam=False):
|
||||
super(BasicBlock, self).__init__()
|
||||
if norm_layer is None:
|
||||
norm_layer = nn.BatchNorm2d
|
||||
if groups != 1 or base_width != 64:
|
||||
raise ValueError('BasicBlock only supports groups=1 and base_width=64')
|
||||
if dilation > 1:
|
||||
raise NotImplementedError("Dilation > 1 not supported in BasicBlock")
|
||||
self.cam = cam
|
||||
self.bam = bam
|
||||
# Both self.conv1 and self.downsample layers downsample the input when stride != 1
|
||||
self.conv1 = conv3x3(inplanes, planes, stride)
|
||||
self.bn1 = norm_layer(planes)
|
||||
self.relu = nn.ReLU(inplace=True)
|
||||
self.conv2 = conv3x3(planes, planes)
|
||||
self.bn2 = norm_layer(planes)
|
||||
self.downsample = downsample
|
||||
self.stride = stride
|
||||
if self.cam:
|
||||
if planes == 64:
|
||||
self.globalAvgPool = nn.AvgPool2d(56, stride=1)
|
||||
elif planes == 128:
|
||||
self.globalAvgPool = nn.AvgPool2d(28, stride=1)
|
||||
elif planes == 256:
|
||||
self.globalAvgPool = nn.AvgPool2d(14, stride=1)
|
||||
elif planes == 512:
|
||||
self.globalAvgPool = nn.AvgPool2d(7, stride=1)
|
||||
|
||||
self.fc1 = nn.Linear(in_features=planes, out_features=round(planes / 16))
|
||||
self.fc2 = nn.Linear(in_features=round(planes / 16), out_features=planes)
|
||||
self.sigmod = nn.Sigmoid()
|
||||
if self.bam:
|
||||
self.bam = SpatialAttention()
|
||||
|
||||
def forward(self, x):
|
||||
identity = x
|
||||
|
||||
out = self.conv1(x)
|
||||
out = self.bn1(out)
|
||||
out = self.relu(out)
|
||||
|
||||
out = self.conv2(out)
|
||||
out = self.bn2(out)
|
||||
|
||||
if self.downsample is not None:
|
||||
identity = self.downsample(x)
|
||||
|
||||
if self.cam:
|
||||
ori_out = self.globalAvgPool(out)
|
||||
out = out.view(out.size(0), -1)
|
||||
out = self.fc1(out)
|
||||
out = self.relu(out)
|
||||
out = self.fc2(out)
|
||||
out = self.sigmod(out)
|
||||
out = out.view(out.size(0), out.size(-1), 1, 1)
|
||||
out = out * ori_out
|
||||
|
||||
if self.bam:
|
||||
out = out*self.bam(out)
|
||||
|
||||
out += identity
|
||||
out = self.relu(out)
|
||||
|
||||
return out
|
||||
|
||||
|
||||
class Bottleneck(nn.Module):
|
||||
# Bottleneck in torchvision places the stride for downsampling at 3x3 convolution(self.conv2)
|
||||
# while original implementation places the stride at the first 1x1 convolution(self.conv1)
|
||||
# according to "Deep residual learning for image recognition"https://arxiv.org/abs/1512.03385.
|
||||
# This variant is also known as ResNet V1.5 and improves accuracy according to
|
||||
# https://ngc.nvidia.com/catalog/model-scripts/nvidia:resnet_50_v1_5_for_pytorch.
|
||||
|
||||
expansion = 4
|
||||
|
||||
def __init__(self, inplanes, planes, stride=1, downsample=None, groups=1,
|
||||
base_width=64, dilation=1, norm_layer=None, cam=False, bam=False):
|
||||
super(Bottleneck, self).__init__()
|
||||
if norm_layer is None:
|
||||
norm_layer = nn.BatchNorm2d
|
||||
width = int(planes * (base_width / 64.)) * groups
|
||||
self.cam = cam
|
||||
self.bam = bam
|
||||
# Both self.conv2 and self.downsample layers downsample the input when stride != 1
|
||||
self.conv1 = conv1x1(inplanes, width)
|
||||
self.bn1 = norm_layer(width)
|
||||
self.conv2 = conv3x3(width, width, stride, groups, dilation)
|
||||
self.bn2 = norm_layer(width)
|
||||
self.conv3 = conv1x1(width, planes * self.expansion)
|
||||
self.bn3 = norm_layer(planes * self.expansion)
|
||||
self.relu = nn.ReLU(inplace=True)
|
||||
self.downsample = downsample
|
||||
self.stride = stride
|
||||
if self.cam:
|
||||
if planes == 64:
|
||||
self.globalAvgPool = nn.AvgPool2d(56, stride=1)
|
||||
elif planes == 128:
|
||||
self.globalAvgPool = nn.AvgPool2d(28, stride=1)
|
||||
elif planes == 256:
|
||||
self.globalAvgPool = nn.AvgPool2d(14, stride=1)
|
||||
elif planes == 512:
|
||||
self.globalAvgPool = nn.AvgPool2d(7, stride=1)
|
||||
|
||||
self.fc1 = nn.Linear(planes * self.expansion, round(planes / 4))
|
||||
self.fc2 = nn.Linear(round(planes / 4), planes * self.expansion)
|
||||
self.sigmod = nn.Sigmoid()
|
||||
|
||||
def forward(self, x):
|
||||
identity = x
|
||||
|
||||
out = self.conv1(x)
|
||||
out = self.bn1(out)
|
||||
out = self.relu(out)
|
||||
|
||||
out = self.conv2(out)
|
||||
out = self.bn2(out)
|
||||
out = self.relu(out)
|
||||
|
||||
out = self.conv3(out)
|
||||
out = self.bn3(out)
|
||||
|
||||
if self.downsample is not None:
|
||||
identity = self.downsample(x)
|
||||
|
||||
if self.cam:
|
||||
ori_out = self.globalAvgPool(out)
|
||||
out = out.view(out.size(0), -1)
|
||||
out = self.fc1(out)
|
||||
out = self.relu(out)
|
||||
out = self.fc2(out)
|
||||
out = self.sigmod(out)
|
||||
out = out.view(out.size(0), out.size(-1), 1, 1)
|
||||
out = out * ori_out
|
||||
out += identity
|
||||
out = self.relu(out)
|
||||
return out
|
||||
|
||||
|
||||
class ResNet(nn.Module):
|
||||
|
||||
def __init__(self, block, layers, num_classes=conf.embedding_size, zero_init_residual=False,
|
||||
groups=1, width_per_group=64, replace_stride_with_dilation=None,
|
||||
norm_layer=None, scale=0.75):
|
||||
super(ResNet, self).__init__()
|
||||
if norm_layer is None:
|
||||
norm_layer = nn.BatchNorm2d
|
||||
self._norm_layer = norm_layer
|
||||
|
||||
self.inplanes = 64
|
||||
self.dilation = 1
|
||||
if replace_stride_with_dilation is None:
|
||||
# each element in the tuple indicates if we should replace
|
||||
# the 2x2 stride with a dilated convolution instead
|
||||
replace_stride_with_dilation = [False, False, False]
|
||||
if len(replace_stride_with_dilation) != 3:
|
||||
raise ValueError("replace_stride_with_dilation should be None "
|
||||
"or a 3-element tuple, got {}".format(replace_stride_with_dilation))
|
||||
self.groups = groups
|
||||
self.base_width = width_per_group
|
||||
self.conv1 = nn.Conv2d(3, self.inplanes, kernel_size=7, stride=2, padding=3,
|
||||
bias=False)
|
||||
self.bn1 = norm_layer(self.inplanes)
|
||||
self.relu = nn.ReLU(inplace=True)
|
||||
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
|
||||
self.layer1 = self._make_layer(block, int(64*scale), layers[0])
|
||||
self.layer2 = self._make_layer(block, int(128*scale), layers[1], stride=2,
|
||||
dilate=replace_stride_with_dilation[0])
|
||||
self.layer3 = self._make_layer(block, int(256*scale), layers[2], stride=2,
|
||||
dilate=replace_stride_with_dilation[1])
|
||||
self.layer4 = self._make_layer(block, int(512*scale), layers[3], stride=2,
|
||||
dilate=replace_stride_with_dilation[2])
|
||||
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
|
||||
self.fc = nn.Linear(int(512 * block.expansion*scale), num_classes)
|
||||
|
||||
for m in self.modules():
|
||||
if isinstance(m, nn.Conv2d):
|
||||
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
|
||||
elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)):
|
||||
nn.init.constant_(m.weight, 1)
|
||||
nn.init.constant_(m.bias, 0)
|
||||
|
||||
# Zero-initialize the last BN in each residual branch,
|
||||
# so that the residual branch starts with zeros, and each residual block behaves like an identity.
|
||||
# This improves the model by 0.2~0.3% according to https://arxiv.org/abs/1706.02677
|
||||
if zero_init_residual:
|
||||
for m in self.modules():
|
||||
if isinstance(m, Bottleneck):
|
||||
nn.init.constant_(m.bn3.weight, 0)
|
||||
elif isinstance(m, BasicBlock):
|
||||
nn.init.constant_(m.bn2.weight, 0)
|
||||
|
||||
def _make_layer(self, block, planes, blocks, stride=1, dilate=False):
|
||||
norm_layer = self._norm_layer
|
||||
downsample = None
|
||||
previous_dilation = self.dilation
|
||||
if dilate:
|
||||
self.dilation *= stride
|
||||
stride = 1
|
||||
if stride != 1 or self.inplanes != planes * block.expansion:
|
||||
downsample = nn.Sequential(
|
||||
conv1x1(self.inplanes, planes * block.expansion, stride),
|
||||
norm_layer(planes * block.expansion),
|
||||
)
|
||||
|
||||
layers = []
|
||||
layers.append(block(self.inplanes, planes, stride, downsample, self.groups,
|
||||
self.base_width, previous_dilation, norm_layer))
|
||||
self.inplanes = planes * block.expansion
|
||||
for _ in range(1, blocks):
|
||||
layers.append(block(self.inplanes, planes, groups=self.groups,
|
||||
base_width=self.base_width, dilation=self.dilation,
|
||||
norm_layer=norm_layer))
|
||||
return nn.Sequential(*layers)
|
||||
|
||||
def _forward_impl(self, x):
|
||||
# See note [TorchScript super()]
|
||||
x = self.conv1(x)
|
||||
x = self.bn1(x)
|
||||
x = self.relu(x)
|
||||
x = self.maxpool(x)
|
||||
|
||||
x = self.layer1(x)
|
||||
x = self.layer2(x)
|
||||
x = self.layer3(x)
|
||||
x = self.layer4(x)
|
||||
|
||||
# print('poolBefore', x.shape)
|
||||
x = self.avgpool(x)
|
||||
# print('poolAfter', x.shape)
|
||||
x = torch.flatten(x, 1)
|
||||
# print('fcBefore',x.shape)
|
||||
x = self.fc(x)
|
||||
|
||||
# print('fcAfter',x.shape)
|
||||
|
||||
return x
|
||||
|
||||
def forward(self, x):
|
||||
return self._forward_impl(x)
|
||||
|
||||
|
||||
# def _resnet(arch, block, layers, pretrained, progress, **kwargs):
|
||||
# model = ResNet(block, layers, **kwargs)
|
||||
# if pretrained:
|
||||
# state_dict = load_state_dict_from_url(model_urls[arch],
|
||||
# progress=progress)
|
||||
# model.load_state_dict(state_dict, strict=False)
|
||||
# return model
|
||||
def _resnet(arch, block, layers, pretrained, progress, **kwargs):
|
||||
model = ResNet(block, layers, **kwargs)
|
||||
if pretrained:
|
||||
state_dict = load_state_dict_from_url(model_urls[arch],
|
||||
progress=progress)
|
||||
|
||||
src_state_dict = state_dict
|
||||
target_state_dict = model.state_dict()
|
||||
skip_keys = []
|
||||
# skip mismatch size tensors in case of pretraining
|
||||
for k in src_state_dict.keys():
|
||||
if k not in target_state_dict:
|
||||
continue
|
||||
if src_state_dict[k].size() != target_state_dict[k].size():
|
||||
skip_keys.append(k)
|
||||
for k in skip_keys:
|
||||
del src_state_dict[k]
|
||||
missing_keys, unexpected_keys = model.load_state_dict(src_state_dict, strict=False)
|
||||
|
||||
return model
|
||||
|
||||
|
||||
def resnet14(pretrained=True, progress=True, **kwargs):
|
||||
r"""ResNet-14 model from
|
||||
`"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_
|
||||
|
||||
Args:
|
||||
pretrained (bool): If True, returns a model pre-trained on ImageNet
|
||||
progress (bool): If True, displays a progress bar of the download to stderr
|
||||
"""
|
||||
return _resnet('resnet18', BasicBlock, [2, 1, 1, 2], pretrained, progress,
|
||||
**kwargs)
|
||||
|
||||
|
||||
def resnet18(pretrained=True, progress=True, **kwargs):
|
||||
r"""ResNet-18 model from
|
||||
`"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_
|
||||
|
||||
Args:
|
||||
pretrained (bool): If True, returns a model pre-trained on ImageNet
|
||||
progress (bool): If True, displays a progress bar of the download to stderr
|
||||
"""
|
||||
return _resnet('resnet18', BasicBlock, [2, 2, 2, 2], pretrained, progress,
|
||||
**kwargs)
|
||||
|
||||
|
||||
def resnet34(pretrained=False, progress=True, **kwargs):
|
||||
r"""ResNet-34 model from
|
||||
`"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_
|
||||
|
||||
Args:
|
||||
pretrained (bool): If True, returns a model pre-trained on ImageNet
|
||||
progress (bool): If True, displays a progress bar of the download to stderr
|
||||
"""
|
||||
return _resnet('resnet34', BasicBlock, [3, 4, 6, 3], pretrained, progress,
|
||||
**kwargs)
|
||||
|
||||
|
||||
def resnet50(pretrained=False, progress=True, **kwargs):
|
||||
r"""ResNet-50 model from
|
||||
`"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_
|
||||
|
||||
Args:
|
||||
pretrained (bool): If True, returns a model pre-trained on ImageNet
|
||||
progress (bool): If True, displays a progress bar of the download to stderr
|
||||
"""
|
||||
return _resnet('resnet50', Bottleneck, [3, 4, 6, 3], pretrained, progress,
|
||||
**kwargs)
|
||||
|
||||
|
||||
def resnet101(pretrained=False, progress=True, **kwargs):
|
||||
r"""ResNet-101 model from
|
||||
`"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_
|
||||
|
||||
Args:
|
||||
pretrained (bool): If True, returns a model pre-trained on ImageNet
|
||||
progress (bool): If True, displays a progress bar of the download to stderr
|
||||
"""
|
||||
return _resnet('resnet101', Bottleneck, [3, 4, 23, 3], pretrained, progress,
|
||||
**kwargs)
|
||||
|
||||
|
||||
def resnet152(pretrained=False, progress=True, **kwargs):
|
||||
r"""ResNet-152 model from
|
||||
`"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_
|
||||
|
||||
Args:
|
||||
pretrained (bool): If True, returns a model pre-trained on ImageNet
|
||||
progress (bool): If True, displays a progress bar of the download to stderr
|
||||
"""
|
||||
return _resnet('resnet152', Bottleneck, [3, 8, 36, 3], pretrained, progress,
|
||||
**kwargs)
|
||||
|
||||
|
||||
def resnext50_32x4d(pretrained=False, progress=True, **kwargs):
|
||||
r"""ResNeXt-50 32x4d model from
|
||||
`"Aggregated Residual Transformation for Deep Neural Networks" <https://arxiv.org/pdf/1611.05431.pdf>`_
|
||||
|
||||
Args:
|
||||
pretrained (bool): If True, returns a model pre-trained on ImageNet
|
||||
progress (bool): If True, displays a progress bar of the download to stderr
|
||||
"""
|
||||
kwargs['groups'] = 32
|
||||
kwargs['width_per_group'] = 4
|
||||
return _resnet('resnext50_32x4d', Bottleneck, [3, 4, 6, 3],
|
||||
pretrained, progress, **kwargs)
|
||||
|
||||
|
||||
def resnext101_32x8d(pretrained=False, progress=True, **kwargs):
|
||||
r"""ResNeXt-101 32x8d model from
|
||||
`"Aggregated Residual Transformation for Deep Neural Networks" <https://arxiv.org/pdf/1611.05431.pdf>`_
|
||||
|
||||
Args:
|
||||
pretrained (bool): If True, returns a model pre-trained on ImageNet
|
||||
progress (bool): If True, displays a progress bar of the download to stderr
|
||||
"""
|
||||
kwargs['groups'] = 32
|
||||
kwargs['width_per_group'] = 8
|
||||
return _resnet('resnext101_32x8d', Bottleneck, [3, 4, 23, 3],
|
||||
pretrained, progress, **kwargs)
|
||||
|
||||
|
||||
def wide_resnet50_2(pretrained=False, progress=True, **kwargs):
|
||||
r"""Wide ResNet-50-2 model from
|
||||
`"Wide Residual Networks" <https://arxiv.org/pdf/1605.07146.pdf>`_
|
||||
|
||||
The model is the same as ResNet except for the bottleneck number of channels
|
||||
which is twice larger in every block. The number of channels in outer 1x1
|
||||
convolutions is the same, e.g. last block in ResNet-50 has 2048-512-2048
|
||||
channels, and in Wide ResNet-50-2 has 2048-1024-2048.
|
||||
|
||||
Args:
|
||||
pretrained (bool): If True, returns a model pre-trained on ImageNet
|
||||
progress (bool): If True, displays a progress bar of the download to stderr
|
||||
"""
|
||||
kwargs['width_per_group'] = 64 * 2
|
||||
return _resnet('wide_resnet50_2', Bottleneck, [3, 4, 6, 3],
|
||||
pretrained, progress, **kwargs)
|
||||
|
||||
|
||||
def wide_resnet101_2(pretrained=False, progress=True, **kwargs):
|
||||
r"""Wide ResNet-101-2 model from
|
||||
`"Wide Residual Networks" <https://arxiv.org/pdf/1605.07146.pdf>`_
|
||||
|
||||
The model is the same as ResNet except for the bottleneck number of channels
|
||||
which is twice larger in every block. The number of channels in outer 1x1
|
||||
convolutions is the same, e.g. last block in ResNet-50 has 2048-512-2048
|
||||
channels, and in Wide ResNet-50-2 has 2048-1024-2048.
|
||||
|
||||
Args:
|
||||
pretrained (bool): If True, returns a model pre-trained on ImageNet
|
||||
progress (bool): If True, displays a progress bar of the download to stderr
|
||||
"""
|
||||
kwargs['width_per_group'] = 64 * 2
|
||||
return _resnet('wide_resnet101_2', Bottleneck, [3, 4, 23, 3],
|
||||
pretrained, progress, **kwargs)
|
@ -107,6 +107,10 @@ def have_tracked():
|
||||
|
||||
plt.savefig(savedir)
|
||||
plt.close()
|
||||
|
||||
edgeline = cv2.imread("./shopcart/cart_tempt/board_ftmp_line.png")
|
||||
img_tracking = draw_all_trajectories(vts, edgeline, save_dir, file, draw5p=True)
|
||||
|
||||
else:
|
||||
vts = doBackTracks(bboxes, TracksDict)
|
||||
vts.classify()
|
||||
@ -114,7 +118,7 @@ def have_tracked():
|
||||
|
||||
save_subimgs(vts, file, TracksDict)
|
||||
edgeline = cv2.imread("./shopcart/cart_tempt/edgeline.png")
|
||||
draw_all_trajectories(vts, edgeline, save_dir, filename)
|
||||
img_tracking = draw_all_trajectories(vts, edgeline, save_dir, file)
|
||||
print(file+f" need time: {gt.dt:.2f}s")
|
||||
|
||||
k += 1
|
Binary file not shown.
Binary file not shown.
@ -114,7 +114,7 @@ def draw_all_trajectories(vts, edgeline, save_dir, file, draw5p=False):
|
||||
img = edgeline.copy()
|
||||
img = draw5points(track, img)
|
||||
|
||||
pth = trackpth.joinpath(f"{file}_{track.tid}.png")
|
||||
pth = trackpth.joinpath(f"{file}_{track.tid}_.png")
|
||||
cv2.imwrite(str(pth), img)
|
||||
|
||||
# for track in vts.Residual:
|
||||
@ -307,11 +307,13 @@ def draw5points(track, img):
|
||||
|
||||
|
||||
'''=============== 最小轨迹长度索引 ===================='''
|
||||
if track.isBorder:
|
||||
trajlens = [int(t) for t in track.trajrects_wh]
|
||||
if track.isCornpoint:
|
||||
idx = 0
|
||||
else:
|
||||
idx = trajlens.index(min(trajlens))
|
||||
|
||||
|
||||
'''=============== PCA ===================='''
|
||||
if trajlens[idx] > 12:
|
||||
X = cornpoints[:, 2*idx:2*(idx+1)]
|
||||
|
@ -9,7 +9,8 @@ func: extract_data()
|
||||
import numpy as np
|
||||
import re
|
||||
import os
|
||||
|
||||
from collections import OrderedDict
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
|
||||
|
||||
@ -206,19 +207,130 @@ def read_deletedBarcode_file(filePth):
|
||||
return all_list
|
||||
|
||||
|
||||
def read_weight_timeConsuming(filePth):
|
||||
WeightDict, SensorDict, ProcessTimeDict = OrderedDict(), OrderedDict(), OrderedDict()
|
||||
|
||||
with open(filePth, 'r', encoding='utf-8') as f:
|
||||
lines = f.readlines()
|
||||
for i, line in enumerate(lines):
|
||||
line = line.strip()
|
||||
|
||||
if line.find(':') < 0: continue
|
||||
if line.find("Weight") >= 0:
|
||||
label = "Weight"
|
||||
continue
|
||||
if line.find("Sensor") >= 0:
|
||||
label = "Sensor"
|
||||
continue
|
||||
if line.find("processTime") >= 0:
|
||||
label = "ProcessTime"
|
||||
continue
|
||||
|
||||
keyword = line.split(':')[0]
|
||||
value = line.split(':')[1]
|
||||
|
||||
if label == "Weight":
|
||||
WeightDict[keyword] = float(value.strip(','))
|
||||
if label == "Sensor":
|
||||
SensorDict[keyword] = [float(s) for s in value.split(',') if len(s)]
|
||||
if label == "ProcessTime":
|
||||
ProcessTimeDict[keyword] = float(value.strip(','))
|
||||
|
||||
# print("Done!")
|
||||
return WeightDict, SensorDict, ProcessTimeDict
|
||||
|
||||
|
||||
def plot_sensor_curve(WeightDict, SensorDict, ProcessTimeDict):
|
||||
|
||||
wtime, wdata = [], []
|
||||
stime, sdata = [], []
|
||||
for key, value in WeightDict.items():
|
||||
wtime.append(int(key))
|
||||
wdata.append(value)
|
||||
|
||||
for key, value in SensorDict.items():
|
||||
if len(value) != 9: continue
|
||||
|
||||
stime.append(int(key))
|
||||
sdata.append(np.array(value))
|
||||
|
||||
static_range = []
|
||||
dynamic_range = []
|
||||
windth = 8
|
||||
nw = len(wdata)
|
||||
assert(nw) >= 8, "The num of weight data is less than 8!"
|
||||
|
||||
i1, i2 = 0, 7
|
||||
while i2 < nw:
|
||||
data = wdata[i1:(i2+1)]
|
||||
max(data) - min(data)
|
||||
|
||||
if i2<7:
|
||||
i1 = 0
|
||||
else:
|
||||
i1 = i2-windth
|
||||
|
||||
min_t = min(wtime + stime)
|
||||
wtime = [t-min_t for t in wtime]
|
||||
stime = [t-min_t for t in stime]
|
||||
|
||||
max_t = max(wtime + stime)
|
||||
|
||||
fig = plt.figure(figsize=(16, 12))
|
||||
gs = fig.add_gridspec(2, 1, left=0.1, right=0.9, bottom=0.1, top=0.9,
|
||||
wspace=0.05, hspace=0.15)
|
||||
# ax1, ax2 = axs
|
||||
|
||||
ax1 = fig.add_subplot(gs[0,0])
|
||||
ax2 = fig.add_subplot(gs[1,0])
|
||||
|
||||
ax1.plot(wtime, wdata, 'b--', linewidth=2 )
|
||||
for i in range(9):
|
||||
ydata = [s[i] for s in sdata]
|
||||
ax2.plot(stime, ydata, linewidth=2 )
|
||||
|
||||
ax1.grid(True), ax1.set_xlim(0, max_t), ax1.set_title('Weight')
|
||||
ax1.set_label("(Time: ms)")
|
||||
# ax1.legend()
|
||||
|
||||
ax2.grid(True), ax2.set_xlim(0, max_t), ax2.set_title('IMU')
|
||||
# ax2.legend()
|
||||
|
||||
plt.show()
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
def main(file_path):
|
||||
WeightDict, SensorDict, ProcessTimeDict = read_weight_timeConsuming(file_path)
|
||||
plot_sensor_curve(WeightDict, SensorDict, ProcessTimeDict)
|
||||
|
||||
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
files_path = 'D:/contrast/dataset/1_to_n/709/20240709-112658_6903148351833/'
|
||||
|
||||
# 遍历目录下的所有文件和目录
|
||||
files_path = r'\\192.168.1.28\share\测试_202406\0814\0814\20240814-102227-62264578-a720-4eb9-b95e-cb8be009aa98_null'
|
||||
k = 0
|
||||
for filename in os.listdir(files_path):
|
||||
filename = '1_track.data'
|
||||
filename = 'process.data'
|
||||
|
||||
file_path = os.path.join(files_path, filename)
|
||||
if os.path.isfile(file_path) and filename.find("track.data")>0:
|
||||
extract_data(file_path)
|
||||
|
||||
print("Done")
|
||||
|
||||
if os.path.isfile(file_path) and filename.find("process.data")>=0:
|
||||
main(file_path)
|
||||
|
||||
k += 1
|
||||
if k == 1:
|
||||
break
|
||||
|
||||
|
||||
|
||||
# print("Done")
|
||||
|
||||
|
||||
|
||||
|
@ -14,38 +14,23 @@ import cv2
|
||||
# import sys
|
||||
# from scipy.spatial.distance import cdist
|
||||
|
||||
VideoFormat = ['.mp4', '.avi']
|
||||
def video2imgs(videopath, savepath):
|
||||
k = 0
|
||||
have = False
|
||||
for filename in os.listdir(videopath):
|
||||
file, ext = os.path.splitext(filename)
|
||||
if ext not in VideoFormat:
|
||||
continue
|
||||
|
||||
basename = os.path.basename(videopath)
|
||||
imgbase = basename + '_' + file
|
||||
imgdir = os.path.join(savepath, imgbase)
|
||||
if not os.path.exists(imgdir):
|
||||
os.mkdir(imgdir)
|
||||
|
||||
video = os.path.join(videopath, filename)
|
||||
cap = cv2.VideoCapture(video)
|
||||
i = 0
|
||||
while True:
|
||||
ret, frame = cap.read()
|
||||
if not ret:
|
||||
break
|
||||
imgp = os.path.join(imgdir, file+f"_{i}.png")
|
||||
i += 1
|
||||
cv2.imwrite(imgp, frame)
|
||||
cap.release()
|
||||
|
||||
print(filename + f" haved resolved")
|
||||
|
||||
k+=1
|
||||
if k==1000:
|
||||
VideoFormat = ['.mp4', '.avi', '.ts']
|
||||
def video2imgs(videof, imgdir):
|
||||
cap = cv2.VideoCapture(videof)
|
||||
i = 0
|
||||
while True:
|
||||
ret, frame = cap.read()
|
||||
if not ret:
|
||||
break
|
||||
imgp = os.path.join(imgdir, f"{i}.png")
|
||||
i += 1
|
||||
cv2.imwrite(imgp, frame)
|
||||
|
||||
if i == 400:
|
||||
break
|
||||
cap.release()
|
||||
|
||||
print(os.path.basename(videof) + f" haved resolved")
|
||||
|
||||
def videosave(bboxes, videopath="100_1688009697927.mp4"):
|
||||
|
||||
@ -95,10 +80,30 @@ def videosave(bboxes, videopath="100_1688009697927.mp4"):
|
||||
cap.release()
|
||||
|
||||
def main():
|
||||
videopath = r'C:\Users\ym\Desktop'
|
||||
savepath = r'C:\Users\ym\Desktop'
|
||||
video2imgs(videopath, savepath)
|
||||
|
||||
videopath = r'\\192.168.1.28\share\测试_202406\0822\A_1724314806144'
|
||||
savepath = r'D:\badvideo'
|
||||
# video2imgs(videopath, savepath)
|
||||
k = 0
|
||||
for filename in os.listdir(videopath):
|
||||
filename = "20240822-163506_88e6409d-f19b-4e97-9f01-b3fde259cbff.ts"
|
||||
|
||||
file, ext = os.path.splitext(filename)
|
||||
if ext not in VideoFormat:
|
||||
continue
|
||||
|
||||
basename = os.path.basename(videopath)
|
||||
imgbase = basename + '-&-' + file
|
||||
imgdir = os.path.join(savepath, imgbase)
|
||||
if not os.path.exists(imgdir):
|
||||
os.mkdir(imgdir)
|
||||
|
||||
videof = os.path.join(videopath, filename)
|
||||
video2imgs(videof, imgdir)
|
||||
|
||||
k += 1
|
||||
if k == 1:
|
||||
break
|
||||
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
35
tracking/说明文档.txt
Normal file
35
tracking/说明文档.txt
Normal file
@ -0,0 +1,35 @@
|
||||
tracking_test.py
|
||||
have_tracked():
|
||||
轨迹分析测试。遍历track_reid.py输出的文件夹trackdict下的所有.pkl文件。
|
||||
|
||||
time_test.py
|
||||
统计Pipeline整体流程中各模块耗时
|
||||
|
||||
module_analysis.py
|
||||
main():
|
||||
遍历文件夹下的每一个子文件夹,对子文件夹执行tracking_simulate() 函数;
|
||||
|
||||
main_loop():
|
||||
(1) 根据 deletedBarcode.txt 生成事件对,并利用事件对生成存储地址
|
||||
(2) 调用 tracking_simulate() 函数
|
||||
|
||||
tracking_simulate(eventpath, savepath):
|
||||
(1) 根据event_names获取事件名enent_name
|
||||
(2) 遍历并执行 eventpath 文件夹下的 0_track.data、1_track.data 文件,并调用do_tracking() 执行
|
||||
(3) 将前后摄、本地与现场,工8幅子图合并为1幅大图。
|
||||
|
||||
do_tracking(fpath, savedir, event_name='images')
|
||||
|
||||
enentmatch.py
|
||||
1:n 模拟测试,have Deprecated!
|
||||
contrast_analysis.py
|
||||
1:n 现场测试评估。
|
||||
main():
|
||||
循环读取不同文件夹中的 deletedBarcode.txt,合并评估。
|
||||
main1():
|
||||
指定deletedBarcode.txt进行1:n性能评估
|
||||
|
||||
feat_select.py
|
||||
以下两种特征选择策略下的比对性能比较
|
||||
(1) 现场算法前后摄特征组合;
|
||||
(2) 本地算法优先选择前摄特征;
|
Reference in New Issue
Block a user