diff --git a/contrast/feat_similar.py b/contrast/feat_similar.py new file mode 100644 index 0000000..eb6704a --- /dev/null +++ b/contrast/feat_similar.py @@ -0,0 +1,131 @@ +# -*- coding: utf-8 -*- +""" +Created on Fri Aug 9 10:36:45 2024 + +@author: ym +""" +import os +import cv2 +import numpy as np +import torch +import sys +from scipy.spatial.distance import cdist +sys.path.append(r"D:\DetectTracking") +from tracking.trackers.reid.reid_interface import ReIDInterface +from tracking.trackers.reid.config import config as ReIDConfig +ReIDEncoder = ReIDInterface(ReIDConfig) + + +def inference_image(images): + batch_patches = [] + patches = [] + for d, img1 in enumerate(images): + + + img = img1[:, :, ::-1].copy() # the model expects RGB inputs + patch = ReIDEncoder.transform(img) + + # patch = patch.to(device=self.device).half() + if str(ReIDEncoder.device) != "cpu": + patch = patch.to(device=ReIDEncoder.device).half() + else: + patch = patch.to(device=ReIDEncoder.device) + + patches.append(patch) + if (d + 1) % ReIDEncoder.batch_size == 0: + patches = torch.stack(patches, dim=0) + batch_patches.append(patches) + patches = [] + + if len(patches): + patches = torch.stack(patches, dim=0) + batch_patches.append(patches) + + features = np.zeros((0, ReIDEncoder.embedding_size)) + for patches in batch_patches: + pred = ReIDEncoder.model(patches) + pred[torch.isinf(pred)] = 1.0 + feat = pred.cpu().data.numpy() + features = np.vstack((features, feat)) + + return features + + +def similarity_compare(root_dir): + ''' + root_dir:包含 "subimgs"字段的文件夹中图像为 subimg子图 + 功能:相邻帧子图间相似度比较 + ''' + + all_files = [] + extensions = ['.png', '.jpg'] + for dirpath, dirnames, filenames in os.walk(root_dir): + filepaths = [] + for filename in filenames: + if os.path.basename(dirpath).find('subimgs') < 0: + continue + file, ext = os.path.splitext(filename) + if ext in extensions: + imgpath = os.path.join(dirpath, filename) + filepaths.append(imgpath) + nf = len(filepaths) + if nf==0: + continue + + fnma = os.path.basename(filepaths[0]).split('.')[0] + imga = cv2.imread(filepaths[0]) + ha, wa = imga.shape[:2] + + for i in range(1, nf): + fnmb = os.path.basename(filepaths[i]).split('.')[0] + + imgb = cv2.imread(filepaths[i]) + hb, wb = imgb.shape[:2] + + + feats = inference_image(((imga, imgb))) + + similar = 1 - np.maximum(0.0, cdist(feats, feats, metric='cosine')) + + + h, w = max((ha, hb)), max((wa, wb)) + img = np.zeros(((h, 2*w, 3)), np.uint8) + img[0:ha, 0:wa], img[0:hb, w:(w+wb)] = imga, imgb + + linewidth = max(round(((h+2*w))/2 * 0.001), 2) + cv2.putText(img, + text=f'{similar[0,1]:.2f}', # Text string to be drawn + org=(max(w-20, 10), h-10), # Bottom-left corner of the text string + fontFace=0, # Font type + fontScale=linewidth/3, # Font scale factor + color=(0, 0, 255), # Text color + thickness=linewidth, # Thickness of the lines used to draw a text + lineType=cv2.LINE_AA, # Line type + ) + spath = os.path.join(dirpath, 's'+fnma+'-vs-'+fnmb+'.png') + cv2.imwrite(spath, img) + + + fnma = os.path.basename(filepaths[i]).split('.')[0] + imga = imgb.copy() + ha, wa = imga.shape[:2] + + + + return + + +def main(): + root_dir = r"D:\contrast\dataset\result\20240723-112242_6923790709882" + + try: + similarity_compare(root_dir) + except Exception as e: + print(f'Error: {e}') + + + + +if __name__ == '__main__': + main() + \ No newline at end of file diff --git a/runs/detect/加购_88_/detect - 快捷方式.lnk b/runs/detect/加购_88_/detect - 快捷方式.lnk deleted file mode 100644 index eef2b9d..0000000 Binary files a/runs/detect/加购_88_/detect - 快捷方式.lnk and /dev/null differ diff --git a/track_reid.py b/track_reid.py index adcc4ee..d2ef1de 100644 --- a/track_reid.py +++ b/track_reid.py @@ -172,7 +172,10 @@ def run( if is_url and is_file: source = check_file(source) # download - save_dir = Path(project) / Path(source).stem + + # spth = source.split('\\')[-2] + "_" + Path(source).stem + save_dir = Path(project) / Path(source.split('\\')[-2] + "_" + str(Path(source).stem)) + # save_dir = Path(project) / Path(source).stem if save_dir.exists(): print(Path(source).stem) # return @@ -387,6 +390,8 @@ def run( # Print time (inference-only) LOGGER.info(f"{s}{'' if len(det) else '(no detections), '}{dt[1].dt * 1E3:.1f}ms") + if track_boxes.size == 0: + return ## ======================================================================== written by WQG ## track_boxes: Array, [x1, y1, x2, y2, track_id, score, cls, frame_index, box_id] @@ -397,7 +402,7 @@ def run( filename = os.path.split(save_path_img)[-1] '''======================== 1. save in './run/detect/' ====================''' - if source.find("front") >= 0: + if source.find("front") >= 0 or Path(source).stem.split('_')[0] == '1': carttemp = cv2.imread("./tracking/shopcart/cart_tempt/board_ftmp_line.png") else: carttemp = cv2.imread("./tracking/shopcart/cart_tempt/edgeline.png") @@ -516,10 +521,11 @@ def main_loop(opt): optdict = vars(opt) # p = r"D:\datasets\ym\永辉测试数据_比对" - p = r"D:\datasets\ym\广告板遮挡测试\8" + # p = r"D:\datasets\ym\广告板遮挡测试\8" # p = r"D:\datasets\ym\videos\标记视频" # p = r"D:\datasets\ym\实验室测试" # p = r"D:\datasets\ym\永辉双摄视频\新建文件夹" + p = r"\\192.168.1.28\share\测试_202406\0723\0723_2\20240723-112522_" k = 0 if os.path.isdir(p): @@ -531,16 +537,16 @@ def main_loop(opt): # r"D:\datasets\ym\广告板遮挡测试\8\2500441577966_20240508-175946_front_addGood_70f75407b7ae_155_17788571404.mp4" # ] - files = [r"D:\datasets\ym\广告板遮挡测试\8\6907149227609_20240508-174733_back_returnGood_70f754088050_425_17327712807.mp4"] + # files = [r"\\192.168.1.28\share\测试_202406\0723\0723_2\20240723-095838_\1_seek_193.mp4"] for file in files: optdict["source"] = file run(**optdict) - k += 1 - if k == 1: - break + # k += 1 + # if k == 10: + # break elif os.path.isfile(p): optdict["source"] = p run(**vars(opt)) diff --git a/tracking/__pycache__/contrast_analysis.cpython-39.pyc b/tracking/__pycache__/contrast_analysis.cpython-39.pyc index 4e6fcdb..80898f0 100644 Binary files a/tracking/__pycache__/contrast_analysis.cpython-39.pyc and b/tracking/__pycache__/contrast_analysis.cpython-39.pyc differ diff --git a/tracking/contrast_analysis.py b/tracking/contrast_analysis.py index 628bea6..54c04e6 100644 --- a/tracking/contrast_analysis.py +++ b/tracking/contrast_analysis.py @@ -346,14 +346,6 @@ def performance_evaluate(all_list, isshow=False): return errpairs, corrpairs, err_similarity, correct_similarity - - - return errpairs, corrpairs, err_similarity, correct_similarity - - - - - def contrast_analysis(del_barcode_file, basepath, savepath, saveimgs=False): @@ -417,21 +409,20 @@ def contrast_loop(fpath): # plt2.savefig(os.path.join(savepath, file+'_hist.png')) # plt.close() + def main(): - fpath = r'\\192.168.1.28\share\测试_202406\deletedBarcode\other' - + fpath = r'\\192.168.1.28\share\测试_202406\deletedBarcode\other' contrast_loop(fpath) def main1(): - del_barcode_file = 'D:/contrast/dataset/compairsonResult/deletedBarcode_20240709_pm.txt' - basepath = r'D:\contrast\dataset\1_to_n\709' + del_barcode_file = r'\\192.168.1.28\share\测试_202406\709\deletedBarcode.txt' + basepath = r'\\192.168.1.28\share\测试_202406\709' savepath = r'D:\contrast\dataset\result' try: relative_path = contrast_analysis(del_barcode_file, basepath, savepath) except Exception as e: print(f'Error Type: {e}') - if __name__ == '__main__': diff --git a/tracking/contrast_one2one.py b/tracking/contrast_one2one.py new file mode 100644 index 0000000..bb7cc3f --- /dev/null +++ b/tracking/contrast_one2one.py @@ -0,0 +1,332 @@ +# -*- coding: utf-8 -*- +""" +Created on Fri Aug 30 17:53:03 2024 + +1. 确认在相同CamerType下,track.data 中 CamerID 项数量 = 图像数 = 帧ID数 = 最大帧ID + +2. 读取0/1_tracking_output.data 中数据,boxes、feats,len(boxes)=len(feats) + 帧ID约束 + +3. 优先选择前摄 + +4. 保存图像数据 + +5. 一次购物事件类型 + shopEvent: {barcode: + type: getout, input + front_traj:[{imgpath: str, + box: arrar(1, 9), + feat: array(1, 256) + }] + back_traj: [{imgpath: str, + box: arrar(1, 9), + feat: array(1, 256) + }] + } + + + +@author: ym + +""" +import numpy as np +import cv2 +import os +import sys +import json +sys.path.append(r"D:\DetectTracking") +from tracking.utils.read_data import extract_data, read_tracking_output, read_deletedBarcode_file + +IMG_FORMAT = ['.bmp', '.jpg', '.jpeg', '.png'] + +def creat_shopping_event(basepath): + eventList = [] + + '''一、构造放入商品事件列表''' + k = 0 + for filename in os.listdir(basepath): + # filename = "20240723-155413_6904406215720" + + '''filename下为一次购物事件''' + filepath = os.path.join(basepath, filename) + + '''================ 0. 检查 filename 及 filepath 正确性和有效性 ================''' + nmlist = filename.split('_') + if filename.find('2024')<0 or len(nmlist)!=2 or len(nmlist[0])!=15 or len(nmlist[1])<11: + continue + if not os.path.isdir(filepath): continue + print(f"Event name: {filename}") + + '''================ 1. 构造事件描述字典,暂定 9 items ===============''' + event = {} + event['barcode'] = nmlist[1] + event['type'] = 'input' + event['filepath'] = filepath + event['back_imgpaths'] = [] + event['front_imgpaths'] = [] + event['back_boxes'] = np.empty((0, 9), dtype=np.float64) + event['front_boxes'] = np.empty((0, 9), dtype=np.float64) + event['back_feats'] = np.empty((0, 256), dtype=np.float64) + event['front_feats'] = np.empty((0, 256), dtype=np.float64) + # event['feats_compose'] = np.empty((0, 256), dtype=np.float64) + # event['feats_select'] = np.empty((0, 256), dtype=np.float64) + + + '''================= 1. 读取 data 文件 =============================''' + for dataname in os.listdir(filepath): + # filename = '1_track.data' + datapath = os.path.join(filepath, dataname) + if not os.path.isfile(datapath): continue + + CamerType = dataname.split('_')[0] + ''' 3.1 读取 0/1_track.data 中数据,暂不考虑''' + # if dataname.find("_track.data")>0: + # bboxes, ffeats, trackerboxes, tracker_feat_dict, trackingboxes, tracking_feat_dict = extract_data(datapath) + + ''' 3.2 读取 0/1_tracking_output.data 中数据''' + if dataname.find("_tracking_output.data")>0: + tracking_output_boxes, tracking_output_feats = read_tracking_output(datapath) + if len(tracking_output_boxes) != len(tracking_output_feats): continue + if CamerType == '0': + event['back_boxes'] = tracking_output_boxes + event['back_feats'] = tracking_output_feats + elif CamerType == '1': + event['front_boxes'] = tracking_output_boxes + event['front_feats'] = tracking_output_feats + + # '''1.1 事件的特征表征方式选择''' + # bk_feats = event['back_feats'] + # ft_feats = event['front_feats'] + + # feats_compose = np.empty((0, 256), dtype=np.float64) + # if len(ft_feats): + # feats_compose = np.concatenate((feats_compose, ft_feats), axis=0) + # if len(bk_feats): + # feats_compose = np.concatenate((feats_compose, bk_feats), axis=0) + # event['feats_compose'] = feats_compose + + # '''3. 构造前摄特征''' + # if len(ft_feats): + # event['feats_select'] = ft_feats + + + + '''================ 2. 读取图像文件地址,并按照帧ID排序 =============''' + frontImgs, frontFid = [], [] + backImgs, backFid = [], [] + for imgname in os.listdir(filepath): + name, ext = os.path.splitext(imgname) + if ext not in IMG_FORMAT or name.find('frameId')<0: continue + + CamerType = name.split('_')[0] + frameId = int(name.split('_')[3]) + imgpath = os.path.join(filepath, imgname) + if CamerType == '0': + backImgs.append(imgpath) + backFid.append(frameId) + if CamerType == '1': + frontImgs.append(imgpath) + frontFid.append(frameId) + + frontIdx = np.argsort(np.array(frontFid)) + backIdx = np.argsort(np.array(backFid)) + + '''2.1 生成依据帧 ID 排序的前后摄图像地址列表''' + frontImgs = [frontImgs[i] for i in frontIdx] + backImgs = [backImgs[i] for i in backIdx] + + '''2.2 将前、后摄图像路径添加至事件字典''' + bfid = event['back_boxes'][:, 7].astype(np.int64) + ffid = event['front_boxes'][:, 7].astype(np.int64) + if len(bfid) and max(bfid) <= len(backImgs): + event['back_imgpaths'] = [backImgs[i-1] for i in bfid] + if len(ffid) and max(ffid) <= len(frontImgs): + event['front_imgpaths'] = [frontImgs[i-1] for i in ffid] + + + '''================ 3. 判断当前事件有效性,并添加至事件列表 ==========''' + condt1 = len(event['back_imgpaths'])==0 or len(event['front_imgpaths'])==0 + condt2 = len(event['front_feats'])==0 and len(event['back_feats'])==0 + + if condt1 or condt2: + print(f" Error, condt1: {condt1}, condt2: {condt2}") + continue + + eventList.append(event) + + # k += 1 + # if k==1: + # continue + + '''一、构造放入商品事件列表,暂不处理''' + # delepath = os.path.join(basepath, 'deletedBarcode.txt') + # bcdList = read_deletedBarcode_file(delepath) + # for slist in bcdList: + # getoutFold = slist['SeqDir'].strip() + # getoutPath = os.path.join(basepath, getoutFold) + + # '''取出事件文件夹不存在,跳出循环''' + # if not os.path.exists(getoutPath) and not os.path.isdir(getoutPath): + # continue + + # ''' 生成取出事件字典 ''' + # event = {} + # event['barcode'] = slist['Deleted'].strip() + # event['type'] = 'getout' + # event['basepath'] = getoutPath + + + return eventList + +def get_std_barcodeDict(bcdpath): + stdBlist = [] + for filename in os.listdir(bcdpath): + filepath = os.path.join(bcdpath, filename) + if not os.path.isdir(filepath) or not filename.isdigit(): continue + + stdBlist.append(filename) + + + bcdpaths = [(barcode, os.path.join(bcdpath, barcode)) for barcode in stdBlist] + + stdBarcodeDict = {} + for barcode, bpath in bcdpaths: + stdBarcodeDict[barcode] = [] + for root, dirs, files in os.walk(bpath): + + imgpaths = [] + if "base" in dirs: + broot = os.path.join(root, "base") + for imgname in os.listdir(broot): + imgpath = os.path.join(broot, imgname) + _, ext = os.path.splitext(imgpath) + if ext not in IMG_FORMAT: continue + imgpaths.append(imgpath) + + stdBarcodeDict[barcode].extend(imgpaths) + break + + else: + for imgname in files: + imgpath = os.path.join(root, imgname) + _, ext = os.path.splitext(imgpath) + if ext not in IMG_FORMAT: continue + imgpaths.append(imgpath) + stdBarcodeDict[barcode].extend(imgpaths) + + with open('stdBarcodeDict.json', 'wb') as f: + json.dump(stdBarcodeDict, f) + + + + return stdBarcodeDict + + +def one2one_test(filepath): + + savepath = r'\\192.168.1.28\share\测试_202406\contrast' + + '''获得 Barcode 列表''' + bcdpath = r'\\192.168.1.28\share\已标注数据备份\对比数据\barcode\barcode_1771' + stdBarcodeDict = get_std_barcodeDict(bcdpath) + + + eventList = creat_shopping_event(filepath) + print("=========== eventList have generated! ===========") + barcodeDict = {} + for event in eventList: + '''9 items: barcode, type, filepath, back_imgpaths, front_imgpaths, + back_boxes, front_boxes, back_feats, front_feats + ''' + + barcode = event['barcode'] + if barcode not in stdBarcodeDict.keys(): + continue + + + if len(event['feats_select']): + event_feats = event['feats_select'] + elif len(event['back_feats']): + event_feats = event['back_feats'] + else: + continue + + std_bcdpath = os.path.join(bcdpath, barcode) + + + + for root, dirs, files in os.walk(std_bcdpath): + if "base" in files: + std_bcdpath = os.path.join(root, "base") + break + + + + + + + + + + + + + + '''保存一次购物事件的轨迹子图''' + basename = os.path.basename(event['filepath']) + spath = os.path.join(savepath, basename) + if not os.path.exists(spath): + os.makedirs(spath) + cameras = ('front', 'back') + for camera in cameras: + if camera == 'front': + boxes = event['front_boxes'] + imgpaths = event['front_imgpaths'] + else: + boxes = event['back_boxes'] + imgpaths = event['back_imgpaths'] + + for i, box in enumerate(boxes): + x1, y1, x2, y2, tid, score, cls, fid, bid = box + + imgpath = imgpaths[i] + image = cv2.imread(imgpath) + subimg = image[int(y1/2):int(y2/2), int(x1/2):int(x2/2), :] + + camerType, timeTamp, _, frameID = os.path.basename(imgpath).split('.')[0].split('_') + subimgName = f"{camerType}_{tid}_fid({fid}, {frameID}).png" + subimgPath = os.path.join(spath, subimgName) + + cv2.imwrite(subimgPath, subimg) + print(f"Image saved: {basename}") + + + + + + + + +def main(): + fplist = [r'\\192.168.1.28\share\测试_202406\0723\0723_1', + r'\\192.168.1.28\share\测试_202406\0723\0723_2', + # r'\\192.168.1.28\share\测试_202406\0723\0723_3', + r'\\192.168.1.28\share\测试_202406\0722\0722_01', + r'\\192.168.1.28\share\测试_202406\0722\0722_02' + ] + + + + for filepath in fplist: + one2one_test(filepath) + + # for filepath in fplist: + # try: + # one2one_test(filepath) + + # except Exception as e: + # print(f'{filepath}, Error: {e}') + +if __name__ == '__main__': + + main() \ No newline at end of file diff --git a/tracking/dotrack/__pycache__/dotracks.cpython-39.pyc b/tracking/dotrack/__pycache__/dotracks.cpython-39.pyc index 0632b49..579b1db 100644 Binary files a/tracking/dotrack/__pycache__/dotracks.cpython-39.pyc and b/tracking/dotrack/__pycache__/dotracks.cpython-39.pyc differ diff --git a/tracking/dotrack/__pycache__/dotracks_back.cpython-39.pyc b/tracking/dotrack/__pycache__/dotracks_back.cpython-39.pyc index 2e5c4d3..9463618 100644 Binary files a/tracking/dotrack/__pycache__/dotracks_back.cpython-39.pyc and b/tracking/dotrack/__pycache__/dotracks_back.cpython-39.pyc differ diff --git a/tracking/dotrack/__pycache__/dotracks_front.cpython-39.pyc b/tracking/dotrack/__pycache__/dotracks_front.cpython-39.pyc index b734b93..cf6b154 100644 Binary files a/tracking/dotrack/__pycache__/dotracks_front.cpython-39.pyc and b/tracking/dotrack/__pycache__/dotracks_front.cpython-39.pyc differ diff --git a/tracking/dotrack/__pycache__/track_back.cpython-39.pyc b/tracking/dotrack/__pycache__/track_back.cpython-39.pyc index 18a245e..777090c 100644 Binary files a/tracking/dotrack/__pycache__/track_back.cpython-39.pyc and b/tracking/dotrack/__pycache__/track_back.cpython-39.pyc differ diff --git a/tracking/dotrack/__pycache__/track_front.cpython-39.pyc b/tracking/dotrack/__pycache__/track_front.cpython-39.pyc index 48551a6..08dd9f8 100644 Binary files a/tracking/dotrack/__pycache__/track_front.cpython-39.pyc and b/tracking/dotrack/__pycache__/track_front.cpython-39.pyc differ diff --git a/tracking/dotrack/dotracks.py b/tracking/dotrack/dotracks.py index 4f6098e..848cc70 100644 --- a/tracking/dotrack/dotracks.py +++ b/tracking/dotrack/dotracks.py @@ -96,7 +96,7 @@ class Track: self.isCornpoint = False self.imgshape = imgshape - self.isBorder = False + # self.isBorder = False # self.state = MoveState.Unknown '''轨迹开始帧、结束帧 ID''' @@ -157,10 +157,12 @@ class Track: def compute_cornpts_feats(self): ''' ''' + # print(f"TrackID: {self.tid}") trajectory = [] trajlens = [] trajdist = [] trajrects = [] + trajrects_wh = [] for k in range(5): # diff_xy2 = np.power(np.diff(self.cornpoints[:, 2*k:2*(k+1)], axis = 0), 2) # trajlen = np.sum(np.sqrt(np.sum(diff_xy2, axis = 1))) @@ -182,12 +184,17 @@ class Track: rect[0]: 旋转角度 (-90°, 0] ''' rect = cv2.minAreaRect(X.astype(np.int64)) + rect_wh = max(rect[1]) + + + trajrects_wh.append(rect_wh) trajrects.append(rect) self.trajectory = trajectory self.trajlens = trajlens self.trajdist = trajdist self.trajrects = trajrects + self.trajrects_wh = trajrects_wh @@ -198,12 +205,17 @@ class Track: -最小轨迹长度:trajlen_min -最小轨迹欧氏距离:trajdist_max ''' - idx1 = self.trajlens.index(max(self.trajlens)) + + # idx1 = self.trajlens.index(max(self.trajlens)) + idx1 = self.trajrects_wh.index(max(self.trajrects_wh)) + trajmax = self.trajectory[idx1] trajlen_max = self.trajlens[idx1] trajdist_max = self.trajdist[idx1] if not self.isCornpoint: - idx2 = self.trajlens.index(min(self.trajlens)) + # idx2 = self.trajlens.index(min(self.trajlens)) + idx2 = self.trajrects_wh.index(min(self.trajrects_wh)) + trajmin = self.trajectory[idx2] trajlen_min = self.trajlens[idx2] trajdist_min = self.trajdist[idx2] @@ -284,7 +296,7 @@ class Track: camerType: back, 后置摄像头 front, 前置摄像头 ''' - if camerType=="front": + if camerType=="back": incart = cv2.imread("./shopcart/cart_tempt/incart.png", cv2.IMREAD_GRAYSCALE) outcart = cv2.imread("./shopcart/cart_tempt/outcart.png", cv2.IMREAD_GRAYSCALE) else: @@ -487,6 +499,14 @@ class doTracks: blist = [b for b in alist] alist = [] for btrack in blist: + # afids = [] + # for track in cur_list: + # afids.extend(list(track.boxes[:, 7].astype(np.int_))) + # bfids = btrack.boxes[:, 7].astype(np.int_) + # interfid = set(afids).intersection(set(bfids)) + # if len(interfid): + # print("wait!!!") + # if track_equal_track(atrack, btrack) and len(interfid)==0: if track_equal_track(atrack, btrack): cur_list.append(btrack) else: diff --git a/tracking/dotrack/dotracks_back.py b/tracking/dotrack/dotracks_back.py index c4a44e7..48bf025 100644 --- a/tracking/dotrack/dotracks_back.py +++ b/tracking/dotrack/dotracks_back.py @@ -155,6 +155,7 @@ class doBackTracks(doTracks): def merge_tracks(self, Residual): """ 对不同id,但可能是同一商品的目标进行归并 + 和 dotrack_front.py中函数相同,可以合并,可以合并至基类 """ mergedTracks = self.base_merge_tracks(Residual) diff --git a/tracking/dotrack/dotracks_front.py b/tracking/dotrack/dotracks_front.py index 05624da..e2b763a 100644 --- a/tracking/dotrack/dotracks_front.py +++ b/tracking/dotrack/dotracks_front.py @@ -47,6 +47,7 @@ class doFrontTracks(doTracks): tracks_free = [t for t in tracks if t.frnum>1 and t.is_freemove()] self.FreeMove.extend(tracks_free) + tracks = self.sub_tracks(tracks, tracks_free) # [self.associate_with_hand(htrack, gtrack) for htrack in hand_tracks for gtrack in tracks] '''轨迹循环归并''' @@ -126,6 +127,7 @@ class doFrontTracks(doTracks): def merge_tracks(self, Residual): """ 对不同id,但可能是同一商品的目标进行归并 + 和 dotrack_back.py中函数相同,可以合并至基类 """ mergedTracks = self.base_merge_tracks(Residual) diff --git a/tracking/dotrack/track_front.py b/tracking/dotrack/track_front.py index e027408..0d957dd 100644 --- a/tracking/dotrack/track_front.py +++ b/tracking/dotrack/track_front.py @@ -165,7 +165,7 @@ class frontTrack(Track): '''情况2:中心点向上 ''' ## 商品中心点向上移动,但没有关联的Hand轨迹,也不是左右边界点 - condt_b = condt0 and len(self.Hands)==0 and y0[-1] < y0[0] and (not self.is_edge_cornpoint()) + condt_b = condt0 and len(self.Hands)==0 and y0[-1] < y0[0] and (not self.is_edge_cornpoint()) and min(y0)>self.CART_HIGH_THRESH1 '''情况3: 商品在购物车内,但运动方向无序''' diff --git a/tracking/goodmatch.py b/tracking/eventsmatch.py similarity index 96% rename from tracking/goodmatch.py rename to tracking/eventsmatch.py index ee89559..be7b080 100644 --- a/tracking/goodmatch.py +++ b/tracking/eventsmatch.py @@ -619,7 +619,6 @@ def match_evaluate(filename = r'./matching/featdata/MatchDict.pkl'): def have_tracked(): - featdir = r"./data/trackfeats" trackdir = r"./data/tracks" # ============================================================================= @@ -634,35 +633,25 @@ def have_tracked(): MatchingDict = {} k, gt = 0, Profile() - for filename in os.listdir(featdir): + for filename in os.listdir(trackdir): file, ext = os.path.splitext(filename) # if file not in FileList: continue if file.find('20240508')<0: continue - if file.find('17327712807')<0: continue - - trackpath = os.path.join(trackdir, file + ".npy") - featpath = os.path.join(featdir, filename) - - bboxes = np.load(trackpath) - features_dict = np.load(featpath, allow_pickle=True) + filepath = os.path.join(trackdir, filename) + + + tracksDict = np.load(filepath, allow_pickle=True) + bboxes = tracksDict['TrackBoxes'] with gt: if filename.find("front") >= 0: - vts = doFrontTracks(bboxes, features_dict) + vts = doFrontTracks(bboxes, tracksDict) vts.classify() - plt = plot_frameID_y2(vts) - - savedir = save_dir.joinpath(f'{file}_y2.png') - - plt.savefig(savedir) - plt.close() elif filename.find("back") >= 0: - vts = doBackTracks(bboxes, features_dict) + vts = doBackTracks(bboxes, tracksDict) vts.classify() - - edgeline = cv2.imread("./shopcart/cart_tempt/edgeline.png") - draw_all_trajectories(vts, edgeline, save_dir, filename) + print(file+f" need time: {gt.dt:.2f}s") elements = file.split('_') @@ -691,7 +680,7 @@ def have_tracked(): box = boxes[i, :] tid, fid, bid = int(box[4]), int(box[7]), int(box[8]) - feat_dict = features_dict[fid] + feat_dict = tracksDict[fid] feature = feat_dict[bid] img = feat_dict[f'{bid}_img'] diff --git a/tracking/feat_select.py b/tracking/feat_select.py index 4646938..eecd825 100644 --- a/tracking/feat_select.py +++ b/tracking/feat_select.py @@ -30,7 +30,14 @@ def compute_similar(feat1, feat2): def update_event(datapath): - '''一次购物事件,包含 8 个keys''' + '''一次购物事件,包含 8 个keys + back_sole_boxes:后摄boxes + front_sole_boxes:前摄boxes + back_sole_feats:后摄特征 + front_sole_feats:前摄特征 + feats_compose:将前后摄特征进行合并 + feats_select:特征选择,优先选择前摄特征 + ''' event = {} # event['front_tracking_boxes'] = [] # event['front_tracking_feats'] = {} @@ -157,6 +164,10 @@ def update_event(datapath): def creatd_deletedBarcode_front(filepath): + ''' + 生成deletedBarcodeTest.txt + ''' + # filepath = r'\\192.168.1.28\share\测试_202406\0723\0723_1\deletedBarcode.txt' basepath, _ = os.path.split(filepath) @@ -281,7 +292,7 @@ def creatd_deletedBarcode_front(filepath): print('Step 3: Similarity conputation Done!') wpath = os.path.split(filepath)[0] - wfile = os.path.join(wpath, 'deletedBarcodeTest_x.txt') + wfile = os.path.join(wpath, 'deletedBarcodeTest.txt') with open(wfile, 'w', encoding='utf-8') as file: for result in results: @@ -299,11 +310,14 @@ def creatd_deletedBarcode_front(filepath): print('Step 4: File writting Done!') - - - -def compute_precision(filepath, savepath): - +def precision_compare(filepath, savepath): + ''' + 1. deletedBarcode.txt 中的相似度的计算为现场算法前后摄轨迹特征合并 + 2. deletedBarcodeTest.txt 中的 3 个相似度计算方式依次为: + (1)现场算法前后摄轨迹特征合并; + (2)本地算法前后摄轨迹特征合并; + (3)本地算法优先选择前摄 + ''' fpath = os.path.split(filepath)[0] _, basefile = os.path.split(fpath) @@ -336,11 +350,16 @@ def compute_precision(filepath, savepath): plt1.title(basefile + ', front') plt2.savefig(os.path.join(savepath, basefile+'_pr_front.png')) plt2.close() - + def main(): + ''' + 1. 成deletedBarcodeTest.txt + 2. 不同特征选择下的精度比对性能比较 + ''' + fplist = [#r'\\192.168.1.28\share\测试_202406\0723\0723_1\deletedBarcode.txt', # r'\\192.168.1.28\share\测试_202406\0723\0723_2\deletedBarcode.txt', - # r'\\192.168.1.28\share\测试_202406\0723\0723_3\deletedBarcode.txt', + r'\\192.168.1.28\share\测试_202406\0723\0723_3\deletedBarcode.txt', # r'\\192.168.1.28\share\测试_202406\0722\0722_01\deletedBarcode.txt', # r'\\192.168.1.28\share\测试_202406\0722\0722_02\deletedBarcode.txt', # r'\\192.168.1.28\share\测试_202406\0719\719_1\deletedBarcode.txt', @@ -376,25 +395,19 @@ def main(): # r'\\192.168.1.28\share\测试_202406\627\deletedBarcode.txt', ] - - fplist = [#r'\\192.168.1.28\share\测试_202406\0723\0723_1\deletedBarcode.txt', - # r'\\192.168.1.28\share\测试_202406\0723\0723_3\deletedBarcode.txt', - r'\\192.168.1.28\share\测试_202406\0723\0723_3\deletedBarcodeTest.txt', - ] - savepath = r'\\192.168.1.28\share\测试_202406\deletedBarcode\illustration' for filepath in fplist: - print(filepath) - # creatd_deletedBarcode_front(filepath) - compute_precision(filepath, savepath) - - # try: - # creatd_deletedBarcode_front(filepath) - # compute_pres(filepath, savepath) - # except Exception as e: - # print(f'{filepath}, Error: {e}') + try: + #1. 生成deletedBarcodeTest.txt 文件 + creatd_deletedBarcode_front(filepath) + + #2. 确保该目录下存在deletedBarcode.txt, deletedBarcodeTest.txt 文件 + precision_compare(filepath, savepath) + except Exception as e: + print(f'{filepath}, Error: {e}') if __name__ == '__main__': + main() diff --git a/tracking/test_merge.py b/tracking/merge_track_test.py similarity index 100% rename from tracking/test_merge.py rename to tracking/merge_track_test.py diff --git a/tracking/module_analysis.py b/tracking/module_analysis.py index 23b2f63..a892003 100644 --- a/tracking/module_analysis.py +++ b/tracking/module_analysis.py @@ -25,110 +25,14 @@ from tracking.utils.drawtracks import plot_frameID_y2, draw_all_trajectories from tracking.utils.read_data import extract_data, read_deletedBarcode_file, read_tracking_output from contrast_analysis import contrast_analysis - from tracking.utils.annotator import TrackAnnotator W, H = 1024, 1280 Mode = 'front' #'back' ImgFormat = ['.jpg', '.jpeg', '.png', '.bmp'] -def video2imgs(path): - vpath = os.path.join(path, "videos") - - k = 0 - have = False - for filename in os.listdir(vpath): - file, ext = os.path.splitext(filename) - imgdir = os.path.join(path, file) - if os.path.exists(imgdir): - continue - else: - os.mkdir(imgdir) - - vfile = os.path.join(vpath, filename) - cap = cv2.VideoCapture(vfile) - i = 0 - while True: - ret, frame = cap.read() - if not ret: - break - - i += 1 - imgp = os.path.join(imgdir, file+f"_{i}.png") - cv2.imwrite(imgp, frame) - - print(filename+f": {i}") - - - cap.release() - - k+=1 - if k==1000: - break - -def draw_boxes(): - datapath = r'D:\datasets\ym\videos_test\20240530\1_tracker_inout(1).data' - VideosData = read_tracker_input(datapath) - - bboxes = VideosData[0][0] - ffeats = VideosData[0][1] - - videopath = r"D:\datasets\ym\videos_test\20240530\134458234-1cd970cf-f8b9-4e80-9c2e-7ca3eec83b81-1_seek0.10415589124891511.mp4" - - cap = cv2.VideoCapture(videopath) - i = 0 - while True: - ret, frame = cap.read() - if not ret: - break - - - annotator = Annotator(frame.copy(), line_width=3) - - - boxes = bboxes[i] - - for *xyxy, conf, cls in reversed(boxes): - label = f'{int(cls)}: {conf:.2f}' - - color = colors(int(cls), True) - annotator.box_label(xyxy, label, color=color) - - img = annotator.result() - - imgpath = r"D:\datasets\ym\videos_test\20240530\result\int8_front\{}.png".format(i+1) - cv2.imwrite(imgpath, img) - - print(f"Output: {i}") - i += 1 - cap.release() - -def read_imgs(imgspath, CamerType): - imgs, frmIDs = [], [] - for filename in os.listdir(imgspath): - file, ext = os.path.splitext(filename) - flist = file.split('_') - if len(flist)==4 and ext in ImgFormat: - camID, frmID = flist[0], int(flist[-1]) - imgpath = os.path.join(imgspath, filename) - img = cv2.imread(imgpath) - - if camID==CamerType: - imgs.append(img) - frmIDs.append(frmID) - - if len(frmIDs): - indice = np.argsort(np.array(frmIDs)) - imgs = [imgs[i] for i in indice] - - return imgs - - - - pass - - +'''调用tracking()函数,利用本地跟踪算法获取各目标轨迹,可以比较本地跟踪算法与现场跟踪算法的区别。''' def init_tracker(tracker_yaml = None, bs=1): """ Initialize tracker for object tracking during prediction. @@ -177,38 +81,45 @@ def tracking(bboxes, ffeats): return TrackBoxes, TracksDict +def read_imgs(imgspath, CamerType): + ''' + inputs: + imgspath;序列图像地址 + CamerType:相机类型,0:后摄,1:前摄 + outputs: + imgs:图像序列 + 功能: + 根据CamerType类型读取imgspath文件夹中的图像,并根据帧索引进行排序。 + do_tracking()中调用该函数,实现(1)读取imgs并绘制各目标轨迹框;(2)获取subimgs + ''' + imgs, frmIDs = [], [] + for filename in os.listdir(imgspath): + file, ext = os.path.splitext(filename) + flist = file.split('_') + if len(flist)==4 and ext in ImgFormat: + camID, frmID = flist[0], int(flist[-1]) + imgpath = os.path.join(imgspath, filename) + img = cv2.imread(imgpath) + + if camID==CamerType: + imgs.append(img) + frmIDs.append(frmID) - -def do_tracker_tracking(fpath, save_dir): - bboxes, ffeats, trackerboxes, tracker_feat_dict, trackingboxes, tracking_feat_dict = extract_data(fpath) - tboxes, feats_dict = tracking(bboxes, ffeats) - - CamerType = os.path.basename(fpath).split('_')[0] - dirname = os.path.split(os.path.split(fpath)[0])[1] - if CamerType == '1': - vts = doFrontTracks(tboxes, feats_dict) - vts.classify() + if len(frmIDs): + indice = np.argsort(np.array(frmIDs)) + imgs = [imgs[i] for i in indice] - plt = plot_frameID_y2(vts) - plt.savefig('front_y2.png') - # plt.close() - elif CamerType == '0': - vts = doBackTracks(tboxes, feats_dict) - vts.classify() - - filename = dirname+'_' + CamerType - edgeline = cv2.imread("./shopcart/cart_tempt/edgeline.png") - draw_all_trajectories(vts, edgeline, save_dir, filename) - else: - print("Please check data file!") - - + return imgs def do_tracking(fpath, savedir, event_name='images'): ''' - fpath: 算法各模块输出的data文件地址,匹配; - savedir: 对 fpath 各模块输出的复现; - 分析具体视频时,需指定 fpath 和 savedir + args: + fpath: 算法各模块输出的data文件地址,匹配; + savedir: 对 fpath 各模块输出的复现; + 分析具体视频时,需指定 fpath 和 savedir + outputs: + img_tracking:目标跟踪轨迹、本地轨迹分析算法的轨迹对比图 + abimg:现场轨迹分析算法、轨迹选择输出的对比图 ''' # fpath = r'D:\contrast\dataset\1_to_n\709\20240709-102758_6971558612189\1_track.data' # savedir = r'D:\contrast\dataset\result\20240709-102843_6958770005357_6971558612189\error_6971558612189' @@ -231,8 +142,10 @@ def do_tracking(fpath, savedir, event_name='images'): bboxes, ffeats, trackerboxes, tracker_feat_dict, trackingboxes, tracking_feat_dict = extract_data(fpath) tracking_output_boxes, _ = read_tracking_output(tracking_output_path) + '''1.2 利用本地跟踪算法生成各商品轨迹''' + # trackerboxes, tracker_feat_dict = tracking(bboxes, ffeats) - '''1.2 分别构造 2 个文件夹,(1) 存储画框后的图像; (2) 运动轨迹对应的 boxes子图''' + '''1.3 分别构造 2 个文件夹,(1) 存储画框后的图像; (2) 运动轨迹对应的 boxes子图''' save_dir = os.path.join(savedir, event_name) subimg_dir = os.path.join(savedir, event_name + '_subimgs') if not os.path.exists(save_dir): @@ -241,8 +154,6 @@ def do_tracking(fpath, savedir, event_name='images'): os.makedirs(subimg_dir) - - '''2. 执行轨迹分析, 保存轨迹分析前后的对比图示''' traj_graphic = event_name + '_' + CamerType if CamerType == '1': @@ -344,24 +255,30 @@ def do_tracking(fpath, savedir, event_name='images'): def tracking_simulate(eventpath, savepath): '''args: - eventpath: 时间文件夹 + eventpath: 事件文件夹 savepath: 存储文件夹 + 遍历eventpath ''' - '''1. 获取事件名''' - event_names = os.path.basename(eventpath).strip().split('_') - if len(event_names)==2 and len(event_names[1])>=8: - enent_name = event_names[1] - elif len(event_names)==2 and len(event_names[1])==0: - enent_name = event_names[0] - else: - return +# ============================================================================= +# '''1. 获取事件名''' +# event_names = os.path.basename(eventpath).strip().split('_') +# if len(event_names)==2 and len(event_names[1])>=8: +# enent_name = event_names[1] +# elif len(event_names)==2 and len(event_names[1])==0: +# enent_name = event_names[0] +# else: +# return +# ============================================================================= + + enent_name = os.path.basename(eventpath)[:15] '''2. 依次读取 0/1_track.data 中数据,进行仿真''' illu_tracking, illu_select = [], [] for filename in os.listdir(eventpath): # filename = '1_track.data' - if filename.find("track.data") <= 0: continue + if filename.find("track.data") < 0: continue + fpath = os.path.join(eventpath, filename) if not os.path.isfile(fpath): continue @@ -451,7 +368,7 @@ def main_loop(): '''2. 循环执行操作事件:取出、放入、错误匹配''' for eventpath in tuple_paths: try: - tracking_simulate(eventpath, savepath) + tracking_simulate(eventpath, savepath) except Exception as e: print(f'Error! {eventpath}, {e}') @@ -462,29 +379,29 @@ def main_loop(): def main(): ''' - eventpath: data文件地址,该 data 文件包括 Pipeline 各模块输出 - savepath: 包含二级目录,一级目录为轨迹图像;二级目录为与data文件对应的序列图像存储地址。 + eventPaths: data文件地址,该 data 文件包括 Pipeline 各模块输出 + SavePath: 包含二级目录,一级目录为轨迹图像;二级目录为与data文件对应的序列图像存储地址。 ''' - EventPaths = r'\\192.168.1.28\share\测试_202406\0723\0723_2' - SavePath = r'D:\contrast\dataset\result' + eventPaths = r'\\192.168.1.28\share\测试_202406\0723\0723_3' + savePath = r'D:\contrast\dataset\result' k=0 - for pathname in os.listdir(EventPaths): - # pathname = "20240723-094731_6903148242797" - - eventpath = os.path.join(EventPaths, pathname) - savepath = os.path.join(SavePath, pathname) + for pathname in os.listdir(eventPaths): + pathname = "20240723-163121_6925282237668" + + eventpath = os.path.join(eventPaths, pathname) + savepath = os.path.join(savePath, pathname) if not os.path.exists(savepath): os.makedirs(savepath) - # tracking_simulate(eventpath, savepath) - try: - tracking_simulate(eventpath, savepath) - except Exception as e: - print(f'Error! {eventpath}, {e}') + tracking_simulate(eventpath, savepath) + # try: + # tracking_simulate(eventpath, savepath) + # except Exception as e: + # print(f'Error! {eventpath}, {e}') - # k += 1 - # if k==10: - # break + k += 1 + if k==1: + break if __name__ == "__main__": diff --git a/tracking/shopcart/cart_tempt/说明.txt b/tracking/shopcart/cart_tempt/说明.txt new file mode 100644 index 0000000..671b906 --- /dev/null +++ b/tracking/shopcart/cart_tempt/说明.txt @@ -0,0 +1,6 @@ +5幅图: +incart.png +outcart.png +incart_ftmp.png +outcart_ftmp.png +cartboarder.png \ No newline at end of file diff --git a/tracking/shopcart/cart_program/carttempt.py b/tracking/shopcart/carttempt.py similarity index 92% rename from tracking/shopcart/cart_program/carttempt.py rename to tracking/shopcart/carttempt.py index dd671b5..e8046c1 100644 --- a/tracking/shopcart/cart_program/carttempt.py +++ b/tracking/shopcart/carttempt.py @@ -36,10 +36,10 @@ def temp_add_boarder(): def create_front_temp(): - image = cv2.imread("image_front.png") + image = cv2.imread("./iCart4/b.png") Height, Width = image.shape[:2] gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) - thresh, binary = cv2.threshold(gray, 1, 255, cv2.THRESH_BINARY_INV) + thresh, binary = cv2.threshold(gray, 128, 255, cv2.THRESH_BINARY_INV) board = cv2.bitwise_not(binary) contours, _ = cv2.findContours(board, cv2.RETR_LIST, cv2.CHAIN_APPROX_NONE) @@ -48,12 +48,12 @@ def create_front_temp(): img = np.zeros((Height, Width), dtype=np.uint8) cv2.drawContours(img, [cnt], -1, 255, 3) k += 1 - cv2.imwrite(f"fronttemp_{k}.png", img) + cv2.imwrite(f"./iCart4/back{k}.png", img) imgshow = cv2.drawContours(image, contours, -1, (0,255,0), 3) - cv2.imwrite("board_ftmp_line.png", imgshow) + cv2.imwrite("./iCart4/board_back_line.png", imgshow) - # cv2.imwrite("4.png", board) + # cv2.imwrite("./iCart4/4.png", board) # cv2.imwrite("1.png", gray) # cv2.imwrite("2.png", binary) diff --git a/tracking/shopcart/iCart4.zip b/tracking/shopcart/iCart4.zip new file mode 100644 index 0000000..401c719 Binary files /dev/null and b/tracking/shopcart/iCart4.zip differ diff --git a/tracking/time_test.py b/tracking/time_test.py new file mode 100644 index 0000000..d1c374d --- /dev/null +++ b/tracking/time_test.py @@ -0,0 +1,98 @@ +# -*- coding: utf-8 -*- +""" +Created on Tue Aug 13 09:39:42 2024 + +@author: ym +""" +import os +import time +import datetime +import numpy as np +import sys +sys.path.append(r"D:\DetectTracking") +from tracking.utils.read_data import extract_data, read_weight_timeConsuming + + + +def main(): + directory = r"\\192.168.1.28\share\测试_202406\0821\images" + + TimeConsuming = [] + DayHMS = [] + for root, dirs, files in os.walk(directory): + if root.find('20240821') == -1: continue + for name in files: + if name.find('process.data') == -1: continue + datename = os.path.basename(root)[:15] + + fpath = os.path.join(root, name) + WeightDict, SensorDict, ProcessTimeDict = read_weight_timeConsuming(fpath) + try: + t1 = ProcessTimeDict['algroDoStart'] # 算法处理的第一帧图像时间 + t2 = ProcessTimeDict['breakinFirst'] # 第一次入侵时间 + t3 = ProcessTimeDict['algroLastFrame'] # 算法处理的最后一帧图像时间 + t4 = ProcessTimeDict['breakinLast'] # 最后一次入侵时间 + t5 = ProcessTimeDict['weightStablityTime'] # 重力稳定时间 + wv = ProcessTimeDict['weightValue'] # 重力值 + t6 = ProcessTimeDict['YoloResnetTrackerEnd'] # Yolo、Resnet、tracker执行结束时间 + t7 = ProcessTimeDict['trackingEnd'] # 轨迹分析结束时间 + t8 = ProcessTimeDict['contrastEnd'] # 比对结束时间 + t9 = ProcessTimeDict['algroStartToEnd'] # 算法从开始至结束时间 + t10 = ProcessTimeDict['weightstablityToEnd'] # 重力稳定至算法结束时间 + t11 = ProcessTimeDict['frameEndToEnd'] # 最后一帧图像至算法结束时间 + + TimeConsuming.append((t1, t2, t3, t4, t5, wv, t6, t7, t8, t9, t10, t11)) + DayHMS.append(datename) + except Exception as e: + print(f'Error! {datename}, {e}') + + TimeConsuming = np.array(TimeConsuming, dtype = np.int64) + + TimeTotal = np.concatenate((TimeConsuming, + TimeConsuming[:,4][:, None] - TimeConsuming[:,0][:, None], + TimeConsuming[:,4][:, None] - TimeConsuming[:,2][:, None]), axis=1) + + tt = TimeTotal[:, 3]==0 + + TimeTotal0 = TimeTotal[tt] + DayHMS0 = [DayHMS[ti] for i, ti in enumerate(tt) if ti] + + TimeTotalMinus = TimeTotal[TimeTotal[:, 5]<0] + TimeTotalAdd = TimeTotal[TimeTotal[:, 5]>=0] + + TimeTotalAdd0 = TimeTotalAdd[TimeTotalAdd[:,3] == 0] + TimeTotalAdd1 = TimeTotalAdd[TimeTotalAdd[:,3] != 0] + + TimeTotalMinus0 = TimeTotalMinus[TimeTotalMinus[:,3] == 0] + TimeTotalMinus1 = TimeTotalMinus[TimeTotalMinus[:,3] != 0] + + print(f"Total number is {len(TimeConsuming)}") + + +if __name__ == "__main__": + main() + + + + + + + + + + + + + + + + + + + + + + + + + \ No newline at end of file diff --git a/tracking/trackers/__pycache__/bot_sort.cpython-39.pyc b/tracking/trackers/__pycache__/bot_sort.cpython-39.pyc index 1e10882..0c57999 100644 Binary files a/tracking/trackers/__pycache__/bot_sort.cpython-39.pyc and b/tracking/trackers/__pycache__/bot_sort.cpython-39.pyc differ diff --git a/tracking/trackers/bot_sort.py b/tracking/trackers/bot_sort.py index 01b86f4..7a96d90 100644 --- a/tracking/trackers/bot_sort.py +++ b/tracking/trackers/bot_sort.py @@ -163,7 +163,7 @@ class BOTSORT(BYTETracker): '''1. reid 相似度阈值,低于该值的两 boxes 图像不可能是同一对象,需要确定一个合理的可信阈值 2. iou 的约束为若约束,故 iou_dists 应设置为较大的值 ''' - emb_dists_mask = (emb_dists > 0.65) + emb_dists_mask = (emb_dists > 0.9) iou_dists[emb_dists_mask] = 1 emb_dists[iou_dists_mask] = 1 diff --git a/tracking/trackers/reid/resnet_pre_lc.py b/tracking/trackers/reid/resnet_pre_lc.py new file mode 100644 index 0000000..83b3068 --- /dev/null +++ b/tracking/trackers/reid/resnet_pre_lc.py @@ -0,0 +1,462 @@ +import torch +import torch.nn as nn +from tools.config import config as conf + +try: + from torch.hub import load_state_dict_from_url +except ImportError: + from torch.utils.model_zoo import load_url as load_state_dict_from_url +# from .utils import load_state_dict_from_url + +__all__ = ['ResNet', 'resnet18', 'resnet34', 'resnet50', 'resnet101', + 'resnet152', 'resnext50_32x4d', 'resnext101_32x8d', + 'wide_resnet50_2', 'wide_resnet101_2'] + +model_urls = { + 'resnet18': 'https://download.pytorch.org/models/resnet18-5c106cde.pth', + 'resnet34': 'https://download.pytorch.org/models/resnet34-333f7ec4.pth', + 'resnet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth', + 'resnet101': 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth', + 'resnet152': 'https://download.pytorch.org/models/resnet152-b121ed2d.pth', + 'resnext50_32x4d': 'https://download.pytorch.org/models/resnext50_32x4d-7cdf4587.pth', + 'resnext101_32x8d': 'https://download.pytorch.org/models/resnext101_32x8d-8ba56ff5.pth', + 'wide_resnet50_2': 'https://download.pytorch.org/models/wide_resnet50_2-95faca4d.pth', + 'wide_resnet101_2': 'https://download.pytorch.org/models/wide_resnet101_2-32ee1156.pth', +} + + +def conv3x3(in_planes, out_planes, stride=1, groups=1, dilation=1): + """3x3 convolution with padding""" + return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, + padding=dilation, groups=groups, bias=False, dilation=dilation) + +def conv1x1(in_planes, out_planes, stride=1): + """1x1 convolution""" + return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False) + + +class SpatialAttention(nn.Module): + def __init__(self, kernel_size=7): + super(SpatialAttention, self).__init__() + + assert kernel_size in (3, 7), 'kernel size must be 3 or 7' + padding = 3 if kernel_size == 7 else 1 + + self.conv1 = nn.Conv2d(2, 1, kernel_size, padding=padding, bias=False) + self.sigmoid = nn.Sigmoid() + + def forward(self, x): + avg_out = torch.mean(x, dim=1, keepdim=True) + max_out, _ = torch.max(x, dim=1, keepdim=True) + x = torch.cat([avg_out, max_out], dim=1) + x = self.conv1(x) + return self.sigmoid(x) + +class BasicBlock(nn.Module): + expansion = 1 + + def __init__(self, inplanes, planes, stride=1, downsample=None, groups=1, + base_width=64, dilation=1, norm_layer=None, cam=False, bam=False): + super(BasicBlock, self).__init__() + if norm_layer is None: + norm_layer = nn.BatchNorm2d + if groups != 1 or base_width != 64: + raise ValueError('BasicBlock only supports groups=1 and base_width=64') + if dilation > 1: + raise NotImplementedError("Dilation > 1 not supported in BasicBlock") + self.cam = cam + self.bam = bam + # Both self.conv1 and self.downsample layers downsample the input when stride != 1 + self.conv1 = conv3x3(inplanes, planes, stride) + self.bn1 = norm_layer(planes) + self.relu = nn.ReLU(inplace=True) + self.conv2 = conv3x3(planes, planes) + self.bn2 = norm_layer(planes) + self.downsample = downsample + self.stride = stride + if self.cam: + if planes == 64: + self.globalAvgPool = nn.AvgPool2d(56, stride=1) + elif planes == 128: + self.globalAvgPool = nn.AvgPool2d(28, stride=1) + elif planes == 256: + self.globalAvgPool = nn.AvgPool2d(14, stride=1) + elif planes == 512: + self.globalAvgPool = nn.AvgPool2d(7, stride=1) + + self.fc1 = nn.Linear(in_features=planes, out_features=round(planes / 16)) + self.fc2 = nn.Linear(in_features=round(planes / 16), out_features=planes) + self.sigmod = nn.Sigmoid() + if self.bam: + self.bam = SpatialAttention() + + def forward(self, x): + identity = x + + out = self.conv1(x) + out = self.bn1(out) + out = self.relu(out) + + out = self.conv2(out) + out = self.bn2(out) + + if self.downsample is not None: + identity = self.downsample(x) + + if self.cam: + ori_out = self.globalAvgPool(out) + out = out.view(out.size(0), -1) + out = self.fc1(out) + out = self.relu(out) + out = self.fc2(out) + out = self.sigmod(out) + out = out.view(out.size(0), out.size(-1), 1, 1) + out = out * ori_out + + if self.bam: + out = out*self.bam(out) + + out += identity + out = self.relu(out) + + return out + + +class Bottleneck(nn.Module): + # Bottleneck in torchvision places the stride for downsampling at 3x3 convolution(self.conv2) + # while original implementation places the stride at the first 1x1 convolution(self.conv1) + # according to "Deep residual learning for image recognition"https://arxiv.org/abs/1512.03385. + # This variant is also known as ResNet V1.5 and improves accuracy according to + # https://ngc.nvidia.com/catalog/model-scripts/nvidia:resnet_50_v1_5_for_pytorch. + + expansion = 4 + + def __init__(self, inplanes, planes, stride=1, downsample=None, groups=1, + base_width=64, dilation=1, norm_layer=None, cam=False, bam=False): + super(Bottleneck, self).__init__() + if norm_layer is None: + norm_layer = nn.BatchNorm2d + width = int(planes * (base_width / 64.)) * groups + self.cam = cam + self.bam = bam + # Both self.conv2 and self.downsample layers downsample the input when stride != 1 + self.conv1 = conv1x1(inplanes, width) + self.bn1 = norm_layer(width) + self.conv2 = conv3x3(width, width, stride, groups, dilation) + self.bn2 = norm_layer(width) + self.conv3 = conv1x1(width, planes * self.expansion) + self.bn3 = norm_layer(planes * self.expansion) + self.relu = nn.ReLU(inplace=True) + self.downsample = downsample + self.stride = stride + if self.cam: + if planes == 64: + self.globalAvgPool = nn.AvgPool2d(56, stride=1) + elif planes == 128: + self.globalAvgPool = nn.AvgPool2d(28, stride=1) + elif planes == 256: + self.globalAvgPool = nn.AvgPool2d(14, stride=1) + elif planes == 512: + self.globalAvgPool = nn.AvgPool2d(7, stride=1) + + self.fc1 = nn.Linear(planes * self.expansion, round(planes / 4)) + self.fc2 = nn.Linear(round(planes / 4), planes * self.expansion) + self.sigmod = nn.Sigmoid() + + def forward(self, x): + identity = x + + out = self.conv1(x) + out = self.bn1(out) + out = self.relu(out) + + out = self.conv2(out) + out = self.bn2(out) + out = self.relu(out) + + out = self.conv3(out) + out = self.bn3(out) + + if self.downsample is not None: + identity = self.downsample(x) + + if self.cam: + ori_out = self.globalAvgPool(out) + out = out.view(out.size(0), -1) + out = self.fc1(out) + out = self.relu(out) + out = self.fc2(out) + out = self.sigmod(out) + out = out.view(out.size(0), out.size(-1), 1, 1) + out = out * ori_out + out += identity + out = self.relu(out) + return out + + +class ResNet(nn.Module): + + def __init__(self, block, layers, num_classes=conf.embedding_size, zero_init_residual=False, + groups=1, width_per_group=64, replace_stride_with_dilation=None, + norm_layer=None, scale=0.75): + super(ResNet, self).__init__() + if norm_layer is None: + norm_layer = nn.BatchNorm2d + self._norm_layer = norm_layer + + self.inplanes = 64 + self.dilation = 1 + if replace_stride_with_dilation is None: + # each element in the tuple indicates if we should replace + # the 2x2 stride with a dilated convolution instead + replace_stride_with_dilation = [False, False, False] + if len(replace_stride_with_dilation) != 3: + raise ValueError("replace_stride_with_dilation should be None " + "or a 3-element tuple, got {}".format(replace_stride_with_dilation)) + self.groups = groups + self.base_width = width_per_group + self.conv1 = nn.Conv2d(3, self.inplanes, kernel_size=7, stride=2, padding=3, + bias=False) + self.bn1 = norm_layer(self.inplanes) + self.relu = nn.ReLU(inplace=True) + self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) + self.layer1 = self._make_layer(block, int(64*scale), layers[0]) + self.layer2 = self._make_layer(block, int(128*scale), layers[1], stride=2, + dilate=replace_stride_with_dilation[0]) + self.layer3 = self._make_layer(block, int(256*scale), layers[2], stride=2, + dilate=replace_stride_with_dilation[1]) + self.layer4 = self._make_layer(block, int(512*scale), layers[3], stride=2, + dilate=replace_stride_with_dilation[2]) + self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) + self.fc = nn.Linear(int(512 * block.expansion*scale), num_classes) + + for m in self.modules(): + if isinstance(m, nn.Conv2d): + nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') + elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)): + nn.init.constant_(m.weight, 1) + nn.init.constant_(m.bias, 0) + + # Zero-initialize the last BN in each residual branch, + # so that the residual branch starts with zeros, and each residual block behaves like an identity. + # This improves the model by 0.2~0.3% according to https://arxiv.org/abs/1706.02677 + if zero_init_residual: + for m in self.modules(): + if isinstance(m, Bottleneck): + nn.init.constant_(m.bn3.weight, 0) + elif isinstance(m, BasicBlock): + nn.init.constant_(m.bn2.weight, 0) + + def _make_layer(self, block, planes, blocks, stride=1, dilate=False): + norm_layer = self._norm_layer + downsample = None + previous_dilation = self.dilation + if dilate: + self.dilation *= stride + stride = 1 + if stride != 1 or self.inplanes != planes * block.expansion: + downsample = nn.Sequential( + conv1x1(self.inplanes, planes * block.expansion, stride), + norm_layer(planes * block.expansion), + ) + + layers = [] + layers.append(block(self.inplanes, planes, stride, downsample, self.groups, + self.base_width, previous_dilation, norm_layer)) + self.inplanes = planes * block.expansion + for _ in range(1, blocks): + layers.append(block(self.inplanes, planes, groups=self.groups, + base_width=self.base_width, dilation=self.dilation, + norm_layer=norm_layer)) + return nn.Sequential(*layers) + + def _forward_impl(self, x): + # See note [TorchScript super()] + x = self.conv1(x) + x = self.bn1(x) + x = self.relu(x) + x = self.maxpool(x) + + x = self.layer1(x) + x = self.layer2(x) + x = self.layer3(x) + x = self.layer4(x) + + # print('poolBefore', x.shape) + x = self.avgpool(x) + # print('poolAfter', x.shape) + x = torch.flatten(x, 1) + # print('fcBefore',x.shape) + x = self.fc(x) + + # print('fcAfter',x.shape) + + return x + + def forward(self, x): + return self._forward_impl(x) + + +# def _resnet(arch, block, layers, pretrained, progress, **kwargs): +# model = ResNet(block, layers, **kwargs) +# if pretrained: +# state_dict = load_state_dict_from_url(model_urls[arch], +# progress=progress) +# model.load_state_dict(state_dict, strict=False) +# return model +def _resnet(arch, block, layers, pretrained, progress, **kwargs): + model = ResNet(block, layers, **kwargs) + if pretrained: + state_dict = load_state_dict_from_url(model_urls[arch], + progress=progress) + + src_state_dict = state_dict + target_state_dict = model.state_dict() + skip_keys = [] + # skip mismatch size tensors in case of pretraining + for k in src_state_dict.keys(): + if k not in target_state_dict: + continue + if src_state_dict[k].size() != target_state_dict[k].size(): + skip_keys.append(k) + for k in skip_keys: + del src_state_dict[k] + missing_keys, unexpected_keys = model.load_state_dict(src_state_dict, strict=False) + + return model + + +def resnet14(pretrained=True, progress=True, **kwargs): + r"""ResNet-14 model from + `"Deep Residual Learning for Image Recognition" `_ + + Args: + pretrained (bool): If True, returns a model pre-trained on ImageNet + progress (bool): If True, displays a progress bar of the download to stderr + """ + return _resnet('resnet18', BasicBlock, [2, 1, 1, 2], pretrained, progress, + **kwargs) + + +def resnet18(pretrained=True, progress=True, **kwargs): + r"""ResNet-18 model from + `"Deep Residual Learning for Image Recognition" `_ + + Args: + pretrained (bool): If True, returns a model pre-trained on ImageNet + progress (bool): If True, displays a progress bar of the download to stderr + """ + return _resnet('resnet18', BasicBlock, [2, 2, 2, 2], pretrained, progress, + **kwargs) + + +def resnet34(pretrained=False, progress=True, **kwargs): + r"""ResNet-34 model from + `"Deep Residual Learning for Image Recognition" `_ + + Args: + pretrained (bool): If True, returns a model pre-trained on ImageNet + progress (bool): If True, displays a progress bar of the download to stderr + """ + return _resnet('resnet34', BasicBlock, [3, 4, 6, 3], pretrained, progress, + **kwargs) + + +def resnet50(pretrained=False, progress=True, **kwargs): + r"""ResNet-50 model from + `"Deep Residual Learning for Image Recognition" `_ + + Args: + pretrained (bool): If True, returns a model pre-trained on ImageNet + progress (bool): If True, displays a progress bar of the download to stderr + """ + return _resnet('resnet50', Bottleneck, [3, 4, 6, 3], pretrained, progress, + **kwargs) + + +def resnet101(pretrained=False, progress=True, **kwargs): + r"""ResNet-101 model from + `"Deep Residual Learning for Image Recognition" `_ + + Args: + pretrained (bool): If True, returns a model pre-trained on ImageNet + progress (bool): If True, displays a progress bar of the download to stderr + """ + return _resnet('resnet101', Bottleneck, [3, 4, 23, 3], pretrained, progress, + **kwargs) + + +def resnet152(pretrained=False, progress=True, **kwargs): + r"""ResNet-152 model from + `"Deep Residual Learning for Image Recognition" `_ + + Args: + pretrained (bool): If True, returns a model pre-trained on ImageNet + progress (bool): If True, displays a progress bar of the download to stderr + """ + return _resnet('resnet152', Bottleneck, [3, 8, 36, 3], pretrained, progress, + **kwargs) + + +def resnext50_32x4d(pretrained=False, progress=True, **kwargs): + r"""ResNeXt-50 32x4d model from + `"Aggregated Residual Transformation for Deep Neural Networks" `_ + + Args: + pretrained (bool): If True, returns a model pre-trained on ImageNet + progress (bool): If True, displays a progress bar of the download to stderr + """ + kwargs['groups'] = 32 + kwargs['width_per_group'] = 4 + return _resnet('resnext50_32x4d', Bottleneck, [3, 4, 6, 3], + pretrained, progress, **kwargs) + + +def resnext101_32x8d(pretrained=False, progress=True, **kwargs): + r"""ResNeXt-101 32x8d model from + `"Aggregated Residual Transformation for Deep Neural Networks" `_ + + Args: + pretrained (bool): If True, returns a model pre-trained on ImageNet + progress (bool): If True, displays a progress bar of the download to stderr + """ + kwargs['groups'] = 32 + kwargs['width_per_group'] = 8 + return _resnet('resnext101_32x8d', Bottleneck, [3, 4, 23, 3], + pretrained, progress, **kwargs) + + +def wide_resnet50_2(pretrained=False, progress=True, **kwargs): + r"""Wide ResNet-50-2 model from + `"Wide Residual Networks" `_ + + The model is the same as ResNet except for the bottleneck number of channels + which is twice larger in every block. The number of channels in outer 1x1 + convolutions is the same, e.g. last block in ResNet-50 has 2048-512-2048 + channels, and in Wide ResNet-50-2 has 2048-1024-2048. + + Args: + pretrained (bool): If True, returns a model pre-trained on ImageNet + progress (bool): If True, displays a progress bar of the download to stderr + """ + kwargs['width_per_group'] = 64 * 2 + return _resnet('wide_resnet50_2', Bottleneck, [3, 4, 6, 3], + pretrained, progress, **kwargs) + + +def wide_resnet101_2(pretrained=False, progress=True, **kwargs): + r"""Wide ResNet-101-2 model from + `"Wide Residual Networks" `_ + + The model is the same as ResNet except for the bottleneck number of channels + which is twice larger in every block. The number of channels in outer 1x1 + convolutions is the same, e.g. last block in ResNet-50 has 2048-512-2048 + channels, and in Wide ResNet-50-2 has 2048-1024-2048. + + Args: + pretrained (bool): If True, returns a model pre-trained on ImageNet + progress (bool): If True, displays a progress bar of the download to stderr + """ + kwargs['width_per_group'] = 64 * 2 + return _resnet('wide_resnet101_2', Bottleneck, [3, 4, 23, 3], + pretrained, progress, **kwargs) diff --git a/tracking/test_tracking.py b/tracking/tracking_test.py similarity index 93% rename from tracking/test_tracking.py rename to tracking/tracking_test.py index 5a51a2f..d98b9be 100644 --- a/tracking/test_tracking.py +++ b/tracking/tracking_test.py @@ -107,6 +107,10 @@ def have_tracked(): plt.savefig(savedir) plt.close() + + edgeline = cv2.imread("./shopcart/cart_tempt/board_ftmp_line.png") + img_tracking = draw_all_trajectories(vts, edgeline, save_dir, file, draw5p=True) + else: vts = doBackTracks(bboxes, TracksDict) vts.classify() @@ -114,7 +118,7 @@ def have_tracked(): save_subimgs(vts, file, TracksDict) edgeline = cv2.imread("./shopcart/cart_tempt/edgeline.png") - draw_all_trajectories(vts, edgeline, save_dir, filename) + img_tracking = draw_all_trajectories(vts, edgeline, save_dir, file) print(file+f" need time: {gt.dt:.2f}s") k += 1 diff --git a/tracking/utils/__pycache__/drawtracks.cpython-39.pyc b/tracking/utils/__pycache__/drawtracks.cpython-39.pyc index c497d0c..568c628 100644 Binary files a/tracking/utils/__pycache__/drawtracks.cpython-39.pyc and b/tracking/utils/__pycache__/drawtracks.cpython-39.pyc differ diff --git a/tracking/utils/__pycache__/read_data.cpython-39.pyc b/tracking/utils/__pycache__/read_data.cpython-39.pyc index 4f785aa..f60b5d1 100644 Binary files a/tracking/utils/__pycache__/read_data.cpython-39.pyc and b/tracking/utils/__pycache__/read_data.cpython-39.pyc differ diff --git a/tracking/utils/drawtracks.py b/tracking/utils/drawtracks.py index f6600d7..651004b 100644 --- a/tracking/utils/drawtracks.py +++ b/tracking/utils/drawtracks.py @@ -114,7 +114,7 @@ def draw_all_trajectories(vts, edgeline, save_dir, file, draw5p=False): img = edgeline.copy() img = draw5points(track, img) - pth = trackpth.joinpath(f"{file}_{track.tid}.png") + pth = trackpth.joinpath(f"{file}_{track.tid}_.png") cv2.imwrite(str(pth), img) # for track in vts.Residual: @@ -307,11 +307,13 @@ def draw5points(track, img): '''=============== 最小轨迹长度索引 ====================''' - if track.isBorder: + trajlens = [int(t) for t in track.trajrects_wh] + if track.isCornpoint: idx = 0 else: idx = trajlens.index(min(trajlens)) + '''=============== PCA ====================''' if trajlens[idx] > 12: X = cornpoints[:, 2*idx:2*(idx+1)] diff --git a/tracking/utils/read_data.py b/tracking/utils/read_data.py index 5bda6b0..bc380b9 100644 --- a/tracking/utils/read_data.py +++ b/tracking/utils/read_data.py @@ -9,7 +9,8 @@ func: extract_data() import numpy as np import re import os - +from collections import OrderedDict +import matplotlib.pyplot as plt @@ -206,19 +207,130 @@ def read_deletedBarcode_file(filePth): return all_list +def read_weight_timeConsuming(filePth): + WeightDict, SensorDict, ProcessTimeDict = OrderedDict(), OrderedDict(), OrderedDict() + + with open(filePth, 'r', encoding='utf-8') as f: + lines = f.readlines() + for i, line in enumerate(lines): + line = line.strip() + + if line.find(':') < 0: continue + if line.find("Weight") >= 0: + label = "Weight" + continue + if line.find("Sensor") >= 0: + label = "Sensor" + continue + if line.find("processTime") >= 0: + label = "ProcessTime" + continue + + keyword = line.split(':')[0] + value = line.split(':')[1] + + if label == "Weight": + WeightDict[keyword] = float(value.strip(',')) + if label == "Sensor": + SensorDict[keyword] = [float(s) for s in value.split(',') if len(s)] + if label == "ProcessTime": + ProcessTimeDict[keyword] = float(value.strip(',')) + + # print("Done!") + return WeightDict, SensorDict, ProcessTimeDict + + +def plot_sensor_curve(WeightDict, SensorDict, ProcessTimeDict): + + wtime, wdata = [], [] + stime, sdata = [], [] + for key, value in WeightDict.items(): + wtime.append(int(key)) + wdata.append(value) + + for key, value in SensorDict.items(): + if len(value) != 9: continue + + stime.append(int(key)) + sdata.append(np.array(value)) + + static_range = [] + dynamic_range = [] + windth = 8 + nw = len(wdata) + assert(nw) >= 8, "The num of weight data is less than 8!" + + i1, i2 = 0, 7 + while i2 < nw: + data = wdata[i1:(i2+1)] + max(data) - min(data) + if i2<7: + i1 = 0 + else: + i1 = i2-windth + + min_t = min(wtime + stime) + wtime = [t-min_t for t in wtime] + stime = [t-min_t for t in stime] + + max_t = max(wtime + stime) + + fig = plt.figure(figsize=(16, 12)) + gs = fig.add_gridspec(2, 1, left=0.1, right=0.9, bottom=0.1, top=0.9, + wspace=0.05, hspace=0.15) + # ax1, ax2 = axs + + ax1 = fig.add_subplot(gs[0,0]) + ax2 = fig.add_subplot(gs[1,0]) + + ax1.plot(wtime, wdata, 'b--', linewidth=2 ) + for i in range(9): + ydata = [s[i] for s in sdata] + ax2.plot(stime, ydata, linewidth=2 ) + + ax1.grid(True), ax1.set_xlim(0, max_t), ax1.set_title('Weight') + ax1.set_label("(Time: ms)") + # ax1.legend() + + ax2.grid(True), ax2.set_xlim(0, max_t), ax2.set_title('IMU') + # ax2.legend() + + plt.show() + + + + + + +def main(file_path): + WeightDict, SensorDict, ProcessTimeDict = read_weight_timeConsuming(file_path) + plot_sensor_curve(WeightDict, SensorDict, ProcessTimeDict) + + + if __name__ == "__main__": - files_path = 'D:/contrast/dataset/1_to_n/709/20240709-112658_6903148351833/' - # 遍历目录下的所有文件和目录 + files_path = r'\\192.168.1.28\share\测试_202406\0814\0814\20240814-102227-62264578-a720-4eb9-b95e-cb8be009aa98_null' + k = 0 for filename in os.listdir(files_path): - filename = '1_track.data' + filename = 'process.data' + file_path = os.path.join(files_path, filename) if os.path.isfile(file_path) and filename.find("track.data")>0: extract_data(file_path) - - print("Done") + + if os.path.isfile(file_path) and filename.find("process.data")>=0: + main(file_path) + + k += 1 + if k == 1: + break + + + + # print("Done") diff --git a/tracking/rename.py b/tracking/utils/rename.py similarity index 100% rename from tracking/rename.py rename to tracking/utils/rename.py diff --git a/tracking/utils/videot.py b/tracking/utils/videot.py index a16b387..15ae6e2 100644 --- a/tracking/utils/videot.py +++ b/tracking/utils/videot.py @@ -14,38 +14,23 @@ import cv2 # import sys # from scipy.spatial.distance import cdist -VideoFormat = ['.mp4', '.avi'] -def video2imgs(videopath, savepath): - k = 0 - have = False - for filename in os.listdir(videopath): - file, ext = os.path.splitext(filename) - if ext not in VideoFormat: - continue - - basename = os.path.basename(videopath) - imgbase = basename + '_' + file - imgdir = os.path.join(savepath, imgbase) - if not os.path.exists(imgdir): - os.mkdir(imgdir) - - video = os.path.join(videopath, filename) - cap = cv2.VideoCapture(video) - i = 0 - while True: - ret, frame = cap.read() - if not ret: - break - imgp = os.path.join(imgdir, file+f"_{i}.png") - i += 1 - cv2.imwrite(imgp, frame) - cap.release() - - print(filename + f" haved resolved") - - k+=1 - if k==1000: +VideoFormat = ['.mp4', '.avi', '.ts'] +def video2imgs(videof, imgdir): + cap = cv2.VideoCapture(videof) + i = 0 + while True: + ret, frame = cap.read() + if not ret: break + imgp = os.path.join(imgdir, f"{i}.png") + i += 1 + cv2.imwrite(imgp, frame) + + if i == 400: + break + cap.release() + + print(os.path.basename(videof) + f" haved resolved") def videosave(bboxes, videopath="100_1688009697927.mp4"): @@ -95,10 +80,30 @@ def videosave(bboxes, videopath="100_1688009697927.mp4"): cap.release() def main(): - videopath = r'C:\Users\ym\Desktop' - savepath = r'C:\Users\ym\Desktop' - video2imgs(videopath, savepath) - + videopath = r'\\192.168.1.28\share\测试_202406\0822\A_1724314806144' + savepath = r'D:\badvideo' + # video2imgs(videopath, savepath) + k = 0 + for filename in os.listdir(videopath): + filename = "20240822-163506_88e6409d-f19b-4e97-9f01-b3fde259cbff.ts" + + file, ext = os.path.splitext(filename) + if ext not in VideoFormat: + continue + + basename = os.path.basename(videopath) + imgbase = basename + '-&-' + file + imgdir = os.path.join(savepath, imgbase) + if not os.path.exists(imgdir): + os.mkdir(imgdir) + + videof = os.path.join(videopath, filename) + video2imgs(videof, imgdir) + + k += 1 + if k == 1: + break + if __name__ == '__main__': diff --git a/tracking/说明文档.txt b/tracking/说明文档.txt new file mode 100644 index 0000000..850ee9a --- /dev/null +++ b/tracking/说明文档.txt @@ -0,0 +1,35 @@ +tracking_test.py + have_tracked(): + 轨迹分析测试。遍历track_reid.py输出的文件夹trackdict下的所有.pkl文件。 + +time_test.py + 统计Pipeline整体流程中各模块耗时 + +module_analysis.py + main(): + 遍历文件夹下的每一个子文件夹,对子文件夹执行tracking_simulate() 函数; + + main_loop(): + (1) 根据 deletedBarcode.txt 生成事件对,并利用事件对生成存储地址 + (2) 调用 tracking_simulate() 函数 + + tracking_simulate(eventpath, savepath): + (1) 根据event_names获取事件名enent_name + (2) 遍历并执行 eventpath 文件夹下的 0_track.data、1_track.data 文件,并调用do_tracking() 执行 + (3) 将前后摄、本地与现场,工8幅子图合并为1幅大图。 + + do_tracking(fpath, savedir, event_name='images') + +enentmatch.py + 1:n 模拟测试,have Deprecated! +contrast_analysis.py + 1:n 现场测试评估。 + main(): + 循环读取不同文件夹中的 deletedBarcode.txt,合并评估。 + main1(): + 指定deletedBarcode.txt进行1:n性能评估 + +feat_select.py + 以下两种特征选择策略下的比对性能比较 + (1) 现场算法前后摄特征组合; + (2) 本地算法优先选择前摄特征;