7.4
This commit is contained in:
15
detect.py
15
detect.py
@ -1,7 +1,7 @@
|
||||
import argparse
|
||||
import time
|
||||
from pathlib import Path
|
||||
import numpy as np
|
||||
|
||||
import cv2
|
||||
import torch
|
||||
import torch.backends.cudnn as cudnn
|
||||
@ -61,14 +61,6 @@ def detect(opt, save_img=False):
|
||||
model(torch.zeros(1, 3, imgsz, imgsz).to(device).type_as(next(model.parameters()))) # run once
|
||||
t0 = time.time()
|
||||
for path, img, im0s, vid_cap in dataset:
|
||||
#MASK
|
||||
site = np.array([[[0, 1024], [0, 571], [313, 365], [949, 367], [1277, 596], [1280, 1024]]], dtype=np.int32)
|
||||
im = np.zeros(img.shape[:2], dtype="uint8")
|
||||
cv2.polylines(im, site, 1, 255)
|
||||
cv2.fillPoly(im, site, 255)
|
||||
mask = im
|
||||
masked = cv2.bitwise_or(img, img, mask=mask)
|
||||
img = masked
|
||||
img = torch.from_numpy(img).to(device)
|
||||
img = img.half() if half else img.float() # uint8 to fp16/32
|
||||
img /= 255.0 # 0 - 255 to 0.0 - 1.0
|
||||
@ -158,8 +150,7 @@ def detect(opt, save_img=False):
|
||||
"6923644272159", "6924882486100", "6956511907458"]
|
||||
targets = []
|
||||
for target in pred[0]:
|
||||
targets.append({"Class": names[int(target[5].item())], "precision": target[4].item(),
|
||||
"xy1": [target[0].item(), target[1].item()],
|
||||
targets.append({"Class": names[int(target[5].item())], "precision": target[4].item(), "xy1": [target[0].item(), target[1].item()],
|
||||
"xy2": [target[2].item(), target[3].item()]})
|
||||
resu = {"TargetDetect": targets}
|
||||
print(resu)
|
||||
@ -197,4 +188,4 @@ if __name__ == '__main__':
|
||||
# detect(opt)
|
||||
# strip_optimizer(opt.weights)
|
||||
# else:
|
||||
# detect(opt,True)
|
||||
# detect(opt,True)
|
@ -78,6 +78,16 @@ def get_isempty():
|
||||
image_path = '../module/ieemoo-ai-zhanting/imgs/1.jpg'
|
||||
file = open(image_path, 'wb')
|
||||
file.write(imgdata)
|
||||
# #mask
|
||||
# img = cv2.imread(image_path)
|
||||
# site = np.array([[[0, 1024], [0, 571], [313, 365], [949, 367], [1277, 596], [1280, 1024]]], dtype=np.int32)
|
||||
# im = np.zeros(img.shape[:2], dtype="uint8")
|
||||
# cv2.polylines(im, site, 1, 255)
|
||||
# cv2.fillPoly(im, site, 255)
|
||||
# mask = im
|
||||
# masked = cv2.bitwise_or(img, img, mask=mask)
|
||||
# img0 = masked
|
||||
# cv2.imwrite("../module/ieemoo-ai-zhanting/imgs/1.jpg",img0)
|
||||
pred = detect.detect(opt)
|
||||
logger.info(pred)
|
||||
#print('pred', pred)
|
||||
|
Reference in New Issue
Block a user