更新 detacttracking

This commit is contained in:
lee
2025-01-22 13:16:44 +08:00
parent 2320468c40
commit c9d79f8059
355 changed files with 61097 additions and 1 deletions

270
detecttracking/pipeline.py Normal file
View File

@ -0,0 +1,270 @@
# -*- coding: utf-8 -*-
"""
Created on Sun Sep 29 08:59:21 2024
@author: ym
"""
import os
# import sys
import cv2
import pickle
import numpy as np
from pathlib import Path
from track_reid import yolo_resnet_tracker
from tracking.dotrack.dotracks_back import doBackTracks
from tracking.dotrack.dotracks_front import doFrontTracks
from tracking.utils.drawtracks import plot_frameID_y2, draw_all_trajectories
from utils.getsource import get_image_pairs, get_video_pairs
from tracking.utils.read_data import read_similar
def save_subimgs(imgdict, boxes, spath, ctype):
for i in range(len(boxes)):
fid, bid = int(boxes[i, 7]), int(boxes[i, 8])
if f"{fid}_{bid}" in imgdict.keys():
img = imgdict[f"{fid}_{bid}"]
imgpath = spath / f"{ctype}_{fid}_{bid}.png"
cv2.imwrite(imgpath, img)
def pipeline(
eventpath,
savepath,
SourceType,
weights
):
'''
eventpath: 单个事件的存储路径
'''
if SourceType == "video":
vpaths = get_video_pairs(eventpath)
elif SourceType == "image":
vpaths = get_image_pairs(eventpath)
optdict = {}
optdict["weights"] = weights
event_tracks = []
## 构造购物事件字典
evtname = Path(eventpath).stem
barcode = evtname.split('_')[-1] if len(evtname.split('_'))>=2 \
and len(evtname.split('_')[-1])>=8 \
and evtname.split('_')[-1].isdigit() else ''
'''事件结果存储文件夹'''
if not savepath:
savepath = Path(__file__).resolve().parents[0] / "events_result"
savepath_pipeline = Path(savepath) / Path("Yolos_Tracking") / evtname
"""ShoppingDict pickle 文件保存地址 """
savepath_spdict = Path(savepath) / "ShoppingDict_pkfile"
if not savepath_spdict.exists():
savepath_spdict.mkdir(parents=True, exist_ok=True)
pf_path = Path(savepath_spdict) / Path(str(evtname)+".pickle")
# if pf_path.exists():
# return
ShoppingDict = {"eventPath": eventpath,
"eventName": evtname,
"barcode": barcode,
"eventType": '', # "input", "output", "other"
"frontCamera": {},
"backCamera": {},
"one2n": []
}
procpath = Path(eventpath).joinpath('process.data')
if procpath.is_file():
SimiDict = read_similar(procpath)
ShoppingDict["one2n"] = SimiDict['one2n']
for vpath in vpaths:
'''相机事件字典构造'''
CameraEvent = {"cameraType": '', # "front", "back"
"videoPath": '',
"imagePaths": [],
"yoloResnetTracker": [],
"tracking": [],
}
if isinstance(vpath, list):
CameraEvent["imagePaths"] = vpath
bname = os.path.basename(vpath[0])
if not isinstance(vpath, list):
CameraEvent["videoPath"] = vpath
bname = os.path.basename(vpath)
if bname.split('_')[0] == "0" or bname.find('back')>=0:
CameraEvent["cameraType"] = "back"
if bname.split('_')[0] == "1" or bname.find('front')>=0:
CameraEvent["cameraType"] = "front"
'''事件结果存储文件夹'''
if isinstance(vpath, list):
savepath_pipeline_imgs = savepath_pipeline / Path("images")
else:
savepath_pipeline_imgs = savepath_pipeline / Path(str(Path(vpath).stem))
if not savepath_pipeline_imgs.exists():
savepath_pipeline_imgs.mkdir(parents=True, exist_ok=True)
savepath_pipeline_subimgs = savepath_pipeline / Path("subimgs")
if not savepath_pipeline_subimgs.exists():
savepath_pipeline_subimgs.mkdir(parents=True, exist_ok=True)
'''Yolo + Resnet + Tracker'''
optdict["source"] = vpath
optdict["save_dir"] = savepath_pipeline_imgs
yrtOut = yolo_resnet_tracker(**optdict)
CameraEvent["yoloResnetTracker"] = yrtOut
# bboxes = np.empty((0, 9), dtype = np.float32)
# for frameDict in yrtOut:
# bboxes = np.concatenate([bboxes, frameDict["tboxes"]], axis=0)
trackerboxes = np.empty((0, 9), dtype=np.float64)
trackefeats = {}
for frameDict in yrtOut:
tboxes = frameDict["tboxes"]
ffeats = frameDict["feats"]
trackerboxes = np.concatenate((trackerboxes, np.array(tboxes)), axis=0)
for i in range(len(tboxes)):
fid, bid = int(tboxes[i, 7]), int(tboxes[i, 8])
trackefeats.update({f"{fid}_{bid}": ffeats[f"{fid}_{bid}"]})
'''tracking'''
if CameraEvent["cameraType"] == "back":
vts = doBackTracks(trackerboxes, trackefeats)
vts.classify()
event_tracks.append(("back", vts))
CameraEvent["tracking"] = vts
ShoppingDict["backCamera"] = CameraEvent
if CameraEvent["cameraType"] == "front":
vts = doFrontTracks(trackerboxes, trackefeats)
vts.classify()
event_tracks.append(("front", vts))
CameraEvent["tracking"] = vts
ShoppingDict["frontCamera"] = CameraEvent
with open(str(pf_path), 'wb') as f:
pickle.dump(ShoppingDict, f)
for CamerType, vts in event_tracks:
if len(vts.tracks)==0: continue
if CamerType == 'front':
yolos = ShoppingDict["frontCamera"]["yoloResnetTracker"]
ctype = 1
if CamerType == 'back':
yolos = ShoppingDict["backCamera"]["yoloResnetTracker"]
ctype = 0
imgdict = {}
for y in yolos:
imgdict.update(y["imgs"])
for track in vts.Residual:
if isinstance(track, np.ndarray):
save_subimgs(imgdict, track, savepath_pipeline_subimgs, ctype)
else:
save_subimgs(imgdict, track.boxes, savepath_pipeline_subimgs, ctype)
'''轨迹显示模块'''
illus = [None, None]
for CamerType, vts in event_tracks:
if len(vts.tracks)==0: continue
if CamerType == 'front':
edgeline = cv2.imread("./tracking/shopcart/cart_tempt/board_ftmp_line.png")
h, w = edgeline.shape[:2]
# nh, nw = h//2, w//2
# edgeline = cv2.resize(edgeline, (nw, nh), interpolation=cv2.INTER_AREA)
img_tracking = draw_all_trajectories(vts, edgeline, savepath_pipeline, CamerType, draw5p=True)
illus[0] = img_tracking
plt = plot_frameID_y2(vts)
plt.savefig(os.path.join(savepath_pipeline, "front_y2.png"))
if CamerType == 'back':
edgeline = cv2.imread("./tracking/shopcart/cart_tempt/edgeline.png")
h, w = edgeline.shape[:2]
# nh, nw = h//2, w//2
# edgeline = cv2.resize(edgeline, (nw, nh), interpolation=cv2.INTER_AREA)
img_tracking = draw_all_trajectories(vts, edgeline, savepath_pipeline, CamerType, draw5p=True)
illus[1] = img_tracking
illus = [im for im in illus if im is not None]
if len(illus):
img_cat = np.concatenate(illus, axis = 1)
if len(illus)==2:
H, W = img_cat.shape[:2]
cv2.line(img_cat, (int(W/2), 0), (int(W/2), int(H)), (128, 128, 255), 3)
trajpath = os.path.join(savepath_pipeline, "trajectory.png")
cv2.imwrite(trajpath, img_cat)
def main():
'''
函数pipeline(),遍历事件文件夹,选择类型 image 或 video,
'''
parmDict = {}
evtdir = r"\\192.168.1.28\share\测试视频数据以及日志\算法全流程测试\202412\images"
parmDict["SourceType"] = "video" # video, image
parmDict["savepath"] = r"\\192.168.1.28\share\测试视频数据以及日志\算法全流程测试\202412\result"
parmDict["weights"] = r'D:\DetectTracking\ckpts\best_cls10_0906.pt'
evtdir = Path(evtdir)
k, errEvents = 0, []
for item in evtdir.iterdir():
if item.is_dir():
# item = evtdir/Path("20241209-160201-b97f7a0e-7322-4375-9f17-c475500097e9_6926265317292")
parmDict["eventpath"] = item
# pipeline(**parmDict)
try:
pipeline(**parmDict)
except Exception as e:
errEvents.append(str(item))
k+=1
if k==1:
break
errfile = os.path.join(parmDict["savepath"], f'error_events.txt')
with open(errfile, 'w', encoding='utf-8') as f:
for line in errEvents:
f.write(line + '\n')
if __name__ == "__main__":
main()