270 lines
9.0 KiB
Python
270 lines
9.0 KiB
Python
# -*- coding: utf-8 -*-
|
||
"""
|
||
Created on Sun Sep 29 08:59:21 2024
|
||
|
||
@author: ym
|
||
"""
|
||
import os
|
||
# import sys
|
||
import cv2
|
||
import pickle
|
||
import numpy as np
|
||
from pathlib import Path
|
||
from track_reid import yolo_resnet_tracker
|
||
|
||
from tracking.dotrack.dotracks_back import doBackTracks
|
||
from tracking.dotrack.dotracks_front import doFrontTracks
|
||
from tracking.utils.drawtracks import plot_frameID_y2, draw_all_trajectories
|
||
from utils.getsource import get_image_pairs, get_video_pairs
|
||
from tracking.utils.read_data import read_similar
|
||
|
||
|
||
def save_subimgs(imgdict, boxes, spath, ctype):
|
||
for i in range(len(boxes)):
|
||
fid, bid = int(boxes[i, 7]), int(boxes[i, 8])
|
||
if f"{fid}_{bid}" in imgdict.keys():
|
||
img = imgdict[f"{fid}_{bid}"]
|
||
imgpath = spath / f"{ctype}_{fid}_{bid}.png"
|
||
cv2.imwrite(imgpath, img)
|
||
|
||
|
||
def pipeline(
|
||
eventpath,
|
||
savepath,
|
||
SourceType,
|
||
weights
|
||
):
|
||
'''
|
||
eventpath: 单个事件的存储路径
|
||
|
||
'''
|
||
|
||
if SourceType == "video":
|
||
vpaths = get_video_pairs(eventpath)
|
||
elif SourceType == "image":
|
||
vpaths = get_image_pairs(eventpath)
|
||
|
||
optdict = {}
|
||
optdict["weights"] = weights
|
||
|
||
|
||
event_tracks = []
|
||
|
||
## 构造购物事件字典
|
||
evtname = Path(eventpath).stem
|
||
barcode = evtname.split('_')[-1] if len(evtname.split('_'))>=2 \
|
||
and len(evtname.split('_')[-1])>=8 \
|
||
and evtname.split('_')[-1].isdigit() else ''
|
||
'''事件结果存储文件夹'''
|
||
if not savepath:
|
||
savepath = Path(__file__).resolve().parents[0] / "events_result"
|
||
|
||
savepath_pipeline = Path(savepath) / Path("Yolos_Tracking") / evtname
|
||
|
||
|
||
"""ShoppingDict pickle 文件保存地址 """
|
||
savepath_spdict = Path(savepath) / "ShoppingDict_pkfile"
|
||
if not savepath_spdict.exists():
|
||
savepath_spdict.mkdir(parents=True, exist_ok=True)
|
||
pf_path = Path(savepath_spdict) / Path(str(evtname)+".pickle")
|
||
|
||
# if pf_path.exists():
|
||
# return
|
||
|
||
ShoppingDict = {"eventPath": eventpath,
|
||
"eventName": evtname,
|
||
"barcode": barcode,
|
||
"eventType": '', # "input", "output", "other"
|
||
"frontCamera": {},
|
||
"backCamera": {},
|
||
"one2n": []
|
||
}
|
||
|
||
|
||
procpath = Path(eventpath).joinpath('process.data')
|
||
if procpath.is_file():
|
||
SimiDict = read_similar(procpath)
|
||
ShoppingDict["one2n"] = SimiDict['one2n']
|
||
|
||
|
||
for vpath in vpaths:
|
||
'''相机事件字典构造'''
|
||
CameraEvent = {"cameraType": '', # "front", "back"
|
||
"videoPath": '',
|
||
"imagePaths": [],
|
||
"yoloResnetTracker": [],
|
||
"tracking": [],
|
||
}
|
||
|
||
if isinstance(vpath, list):
|
||
CameraEvent["imagePaths"] = vpath
|
||
bname = os.path.basename(vpath[0])
|
||
if not isinstance(vpath, list):
|
||
CameraEvent["videoPath"] = vpath
|
||
bname = os.path.basename(vpath)
|
||
if bname.split('_')[0] == "0" or bname.find('back')>=0:
|
||
CameraEvent["cameraType"] = "back"
|
||
if bname.split('_')[0] == "1" or bname.find('front')>=0:
|
||
CameraEvent["cameraType"] = "front"
|
||
|
||
'''事件结果存储文件夹'''
|
||
|
||
if isinstance(vpath, list):
|
||
savepath_pipeline_imgs = savepath_pipeline / Path("images")
|
||
else:
|
||
savepath_pipeline_imgs = savepath_pipeline / Path(str(Path(vpath).stem))
|
||
if not savepath_pipeline_imgs.exists():
|
||
savepath_pipeline_imgs.mkdir(parents=True, exist_ok=True)
|
||
|
||
savepath_pipeline_subimgs = savepath_pipeline / Path("subimgs")
|
||
if not savepath_pipeline_subimgs.exists():
|
||
savepath_pipeline_subimgs.mkdir(parents=True, exist_ok=True)
|
||
|
||
|
||
'''Yolo + Resnet + Tracker'''
|
||
optdict["source"] = vpath
|
||
optdict["save_dir"] = savepath_pipeline_imgs
|
||
|
||
yrtOut = yolo_resnet_tracker(**optdict)
|
||
|
||
CameraEvent["yoloResnetTracker"] = yrtOut
|
||
|
||
|
||
# bboxes = np.empty((0, 9), dtype = np.float32)
|
||
# for frameDict in yrtOut:
|
||
# bboxes = np.concatenate([bboxes, frameDict["tboxes"]], axis=0)
|
||
|
||
trackerboxes = np.empty((0, 9), dtype=np.float64)
|
||
trackefeats = {}
|
||
for frameDict in yrtOut:
|
||
tboxes = frameDict["tboxes"]
|
||
ffeats = frameDict["feats"]
|
||
|
||
trackerboxes = np.concatenate((trackerboxes, np.array(tboxes)), axis=0)
|
||
for i in range(len(tboxes)):
|
||
fid, bid = int(tboxes[i, 7]), int(tboxes[i, 8])
|
||
trackefeats.update({f"{fid}_{bid}": ffeats[f"{fid}_{bid}"]})
|
||
|
||
|
||
'''tracking'''
|
||
if CameraEvent["cameraType"] == "back":
|
||
vts = doBackTracks(trackerboxes, trackefeats)
|
||
vts.classify()
|
||
event_tracks.append(("back", vts))
|
||
|
||
CameraEvent["tracking"] = vts
|
||
ShoppingDict["backCamera"] = CameraEvent
|
||
|
||
if CameraEvent["cameraType"] == "front":
|
||
vts = doFrontTracks(trackerboxes, trackefeats)
|
||
vts.classify()
|
||
event_tracks.append(("front", vts))
|
||
|
||
CameraEvent["tracking"] = vts
|
||
ShoppingDict["frontCamera"] = CameraEvent
|
||
|
||
|
||
with open(str(pf_path), 'wb') as f:
|
||
pickle.dump(ShoppingDict, f)
|
||
|
||
|
||
for CamerType, vts in event_tracks:
|
||
if len(vts.tracks)==0: continue
|
||
if CamerType == 'front':
|
||
yolos = ShoppingDict["frontCamera"]["yoloResnetTracker"]
|
||
ctype = 1
|
||
if CamerType == 'back':
|
||
yolos = ShoppingDict["backCamera"]["yoloResnetTracker"]
|
||
ctype = 0
|
||
|
||
imgdict = {}
|
||
for y in yolos:
|
||
imgdict.update(y["imgs"])
|
||
|
||
for track in vts.Residual:
|
||
if isinstance(track, np.ndarray):
|
||
save_subimgs(imgdict, track, savepath_pipeline_subimgs, ctype)
|
||
else:
|
||
save_subimgs(imgdict, track.boxes, savepath_pipeline_subimgs, ctype)
|
||
|
||
|
||
'''轨迹显示模块'''
|
||
illus = [None, None]
|
||
for CamerType, vts in event_tracks:
|
||
if len(vts.tracks)==0: continue
|
||
|
||
if CamerType == 'front':
|
||
edgeline = cv2.imread("./tracking/shopcart/cart_tempt/board_ftmp_line.png")
|
||
|
||
h, w = edgeline.shape[:2]
|
||
# nh, nw = h//2, w//2
|
||
# edgeline = cv2.resize(edgeline, (nw, nh), interpolation=cv2.INTER_AREA)
|
||
|
||
img_tracking = draw_all_trajectories(vts, edgeline, savepath_pipeline, CamerType, draw5p=True)
|
||
illus[0] = img_tracking
|
||
|
||
plt = plot_frameID_y2(vts)
|
||
plt.savefig(os.path.join(savepath_pipeline, "front_y2.png"))
|
||
|
||
if CamerType == 'back':
|
||
edgeline = cv2.imread("./tracking/shopcart/cart_tempt/edgeline.png")
|
||
|
||
h, w = edgeline.shape[:2]
|
||
# nh, nw = h//2, w//2
|
||
# edgeline = cv2.resize(edgeline, (nw, nh), interpolation=cv2.INTER_AREA)
|
||
|
||
img_tracking = draw_all_trajectories(vts, edgeline, savepath_pipeline, CamerType, draw5p=True)
|
||
illus[1] = img_tracking
|
||
|
||
illus = [im for im in illus if im is not None]
|
||
if len(illus):
|
||
img_cat = np.concatenate(illus, axis = 1)
|
||
if len(illus)==2:
|
||
H, W = img_cat.shape[:2]
|
||
cv2.line(img_cat, (int(W/2), 0), (int(W/2), int(H)), (128, 128, 255), 3)
|
||
|
||
trajpath = os.path.join(savepath_pipeline, "trajectory.png")
|
||
cv2.imwrite(trajpath, img_cat)
|
||
|
||
def main():
|
||
'''
|
||
函数:pipeline(),遍历事件文件夹,选择类型 image 或 video,
|
||
'''
|
||
|
||
parmDict = {}
|
||
evtdir = r"\\192.168.1.28\share\测试视频数据以及日志\算法全流程测试\202412\images"
|
||
parmDict["SourceType"] = "video" # video, image
|
||
parmDict["savepath"] = r"\\192.168.1.28\share\测试视频数据以及日志\算法全流程测试\202412\result"
|
||
parmDict["weights"] = r'D:\DetectTracking\ckpts\best_cls10_0906.pt'
|
||
|
||
evtdir = Path(evtdir)
|
||
k, errEvents = 0, []
|
||
for item in evtdir.iterdir():
|
||
if item.is_dir():
|
||
# item = evtdir/Path("20241209-160201-b97f7a0e-7322-4375-9f17-c475500097e9_6926265317292")
|
||
parmDict["eventpath"] = item
|
||
# pipeline(**parmDict)
|
||
|
||
try:
|
||
pipeline(**parmDict)
|
||
except Exception as e:
|
||
errEvents.append(str(item))
|
||
k+=1
|
||
if k==1:
|
||
break
|
||
|
||
errfile = os.path.join(parmDict["savepath"], f'error_events.txt')
|
||
with open(errfile, 'w', encoding='utf-8') as f:
|
||
for line in errEvents:
|
||
f.write(line + '\n')
|
||
|
||
|
||
|
||
if __name__ == "__main__":
|
||
main()
|
||
|
||
|
||
|
||
|
||
|
||
|