update ieemoo-ai-isempty.py.
This commit is contained in:
@ -45,12 +45,13 @@ print(torch.__version__)
|
||||
|
||||
def parse_args():
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("--img_size", default=320, type=int, help="Resolution size")
|
||||
parser.add_argument("--img_size", default=600, type=int, help="Resolution size")
|
||||
parser.add_argument('--split', type=str, default='overlap', help="Split method")
|
||||
parser.add_argument('--slide_step', type=int, default=2, help="Slide step for overlap split")
|
||||
parser.add_argument('--smoothing_value', type=float, default=0.0, help="Label smoothing value")
|
||||
parser.add_argument("--pretrained_model", type=str, default="../module/ieemoo-ai-isempty/model/now/emptyjudge5_checkpoint.bin", help="load pretrained model")
|
||||
#parser.add_argument("--pretrained_model", type=str, default="output/emptyjudge5_checkpoint.bin", help="load pretrained model")
|
||||
#parser.add_argument("--pretrained_model", type=str, default="output/ieemooempty_vit_checkpoint.pth", help="load pretrained model") #使用自定义VIT
|
||||
parser.add_argument("--pretrained_model", type=str, default="../module/ieemoo-ai-isempty/model/new/ieemooempty_vit_checkpoint.pth", help="load pretrained model")
|
||||
opt, unknown = parser.parse_known_args()
|
||||
return opt
|
||||
|
||||
@ -65,7 +66,7 @@ class Predictor(object):
|
||||
self.num_classes = 0
|
||||
self.model = None
|
||||
self.prepare_model()
|
||||
self.test_transform = transforms.Compose([transforms.Resize((320, 320), Image.BILINEAR),
|
||||
self.test_transform = transforms.Compose([transforms.Resize((600, 600), Image.BILINEAR),
|
||||
transforms.ToTensor(),
|
||||
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])])
|
||||
|
||||
@ -84,7 +85,8 @@ class Predictor(object):
|
||||
# self.model = torch.load(self.args.pretrained_model,map_location='cpu')
|
||||
self.model = torch.load(self.args.pretrained_model,map_location=torch.device('cpu'))
|
||||
self.model.eval()
|
||||
self.model.to("cuda")
|
||||
if torch.cuda.is_available():
|
||||
self.model.to("cuda")
|
||||
|
||||
def normal_predict(self, img_data, result):
|
||||
# img = Image.open(img_path)
|
||||
@ -95,8 +97,8 @@ class Predictor(object):
|
||||
else:
|
||||
with torch.no_grad():
|
||||
x = self.test_transform(img_data)
|
||||
# if torch.cuda.is_available():
|
||||
# x = x.cuda()
|
||||
if torch.cuda.is_available():
|
||||
x = x.cuda()
|
||||
part_logits = self.model(x.unsqueeze(0))
|
||||
probs = torch.nn.Softmax(dim=-1)(part_logits)
|
||||
topN = torch.argsort(probs, dim=-1, descending=True).tolist()
|
||||
|
Reference in New Issue
Block a user