update testsingle.py.

This commit is contained in:
Brainway
2022-10-26 15:43:05 +00:00
committed by Gitee
parent 835c923dbc
commit 5c21167991

View File

@ -12,13 +12,13 @@ import time
#模型测试单张图片
parser = argparse.ArgumentParser()
parser.add_argument("--dataset", choices=["emptyJudge2"], default="emptyJudge2", help="Which dataset.")
parser.add_argument("--img_size", default=600, type=int, help="Resolution size")
parser.add_argument("--dataset", choices=["emptyJudge5"], default="emptyJudge5", help="Which dataset.")
parser.add_argument("--img_size", default=320, type=int, help="Resolution size")
parser.add_argument('--split', type=str, default='overlap', help="Split method") # non-overlap
parser.add_argument('--slide_step', type=int, default=2, help="Slide step for overlap split")
parser.add_argument('--slide_step', type=int, default=12, help="Slide step for overlap split")
parser.add_argument('--smoothing_value', type=float, default=0.0, help="Label smoothing value\n")
#parser.add_argument("--pretrained_model", type=str, default="../module/ieemoo-ai-isempty/model/now/emptyjudge5_checkpoint.bin", help="load pretrained model")
parser.add_argument("--pretrained_model", type=str, default="output/ieemooempty_vit_checkpoint.pth", help="load pretrained model") #使用自定义VIT
parser.add_argument("--pretrained_model", type=str, default="../module/ieemoo-ai-isempty/model/now/emptyjudge5_checkpoint.bin", help="load pretrained model")
#parser.add_argument("--pretrained_model", type=str, default="output/ieemooempty_vit_checkpoint.pth", help="load pretrained model") #使用自定义VIT
args = parser.parse_args()
args.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
@ -30,17 +30,17 @@ config.split = args.split
config.slide_step = args.slide_step
num_classes = 5
cls_dict = {0: "noemp", 1: "yesemp"}
cls_dict = {0: "noemp", 1: "yesemp", 2: "hard", 3: "fly", 4: "stack"}
model = None
#model = VisionTransformer(config, args.img_size, zero_head=True, num_classes=num_classes, smoothing_value=args.smoothing_value)
if args.pretrained_model is not None:
model = torch.load(args.pretrained_model) #自己预训练模型
model = torch.load(args.pretrained_model,map_location=torch.device('cpu')) #自己预训练模型
model.to(args.device)
model.eval()
test_transform = transforms.Compose([transforms.Resize((600, 600), Image.BILINEAR),
test_transform = transforms.Compose([transforms.Resize((320, 320), Image.BILINEAR),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])])
@ -71,6 +71,14 @@ print("Prediction Label\n")
for idx in top5[0, :5]:
print(f'{probs[0, idx.item()]:.5f} : {cls_dict[idx.item()]}', end='\n')
clas_ids = top5[0][0]
clas_ids = 0 if 0==int(clas_ids) or 2 == int(clas_ids) or 3 == int(clas_ids) else 1
print("cur_img result: class id: %d, score: %0.3f" % (clas_ids, probs[0, clas_ids].item()))
result={}
result["success"] = "true"
result["rst_cls"] = str(clas_ids)
print(result)
endtime = time.process_time()
print("Time cost:"+ str(endtime - startime)) #评估一张图片耗时2.8秒