160 lines
5.9 KiB
Python
160 lines
5.9 KiB
Python
# YOLOv5 🚀 by Ultralytics, AGPL-3.0 license
|
||
import argparse
|
||
import csv
|
||
import os
|
||
import platform
|
||
import sys
|
||
from pathlib import Path
|
||
import glob
|
||
import numpy as np
|
||
import pickle
|
||
import torch
|
||
from tools.config import cfg
|
||
|
||
sys.path.append('./ytracking')
|
||
from models.common import DetectMultiBackend
|
||
from utils.dataloaders import LoadImages
|
||
from utils.general import (LOGGER, Profile, check_img_size, check_requirements, colorstr, cv2,
|
||
increment_path, non_max_suppression, scale_boxes, strip_optimizer)
|
||
from utils.torch_utils import select_device, smart_inference_mode
|
||
|
||
'''集成跟踪模块,输出跟踪结果文件 .npy'''
|
||
# from ultralytics.engine.results import Boxes # Results
|
||
# from ultralytics.utils import IterableSimpleNamespace, yaml_load
|
||
from tracking.utils.plotting import Annotator, colors
|
||
from tracking.utils import Boxes, IterableSimpleNamespace, yaml_load
|
||
from tracking.trackers import BOTSORT, BYTETracker
|
||
from tracking.utils.showtrack import drawtracks
|
||
import time
|
||
|
||
|
||
def init_trackers(tracker_yaml=None, bs=1):
|
||
"""
|
||
Initialize trackers for object tracking during prediction.
|
||
"""
|
||
# tracker_yaml = r"./tracking/trackers/cfg/botsort.yaml"
|
||
|
||
TRACKER_MAP = {'bytetrack': BYTETracker, 'botsort': BOTSORT}
|
||
cfg = IterableSimpleNamespace(**yaml_load(tracker_yaml))
|
||
trackers = []
|
||
for _ in range(bs):
|
||
tracker = TRACKER_MAP[cfg.tracker_type](args=cfg, frame_rate=30)
|
||
trackers.append(tracker)
|
||
|
||
return trackers
|
||
|
||
|
||
@smart_inference_mode()
|
||
def run(
|
||
# weights=cfg.tracking_model, # model path or triton URL
|
||
Model, # model path or triton URL
|
||
source=None, # file/dir/URL/glob/screen/0(webcam)
|
||
|
||
project=r'./runs/detect', # save results to project/name
|
||
|
||
tracker_yaml=cfg.botsort,
|
||
imgsz=(640, 640), # inference size (height, width)
|
||
conf_thres=0.25, # confidence threshold
|
||
iou_thres=0.45, # NMS IOU threshold
|
||
max_det=1000, # maximum detections per image
|
||
device='', # cuda device, i.e. 0 or 0,1,2,3 or cpu
|
||
bs=1, # batch_size
|
||
save_img=True, # do not save images/videos
|
||
classes=None, # filter by class: --class 0, or --class 0 2 3
|
||
agnostic_nms=False, # class-agnostic NMS
|
||
augment=False, # augmented inference
|
||
visualize=False, # visualize features
|
||
line_thickness=3, # bounding box thickness (pixels)
|
||
half=False, # use FP16 half-precision inference
|
||
dnn=False, # use OpenCV DNN for ONNX inference
|
||
vid_stride=1, # video frame-rate stride
|
||
):
|
||
if source is None:
|
||
raise ValueError("Have to provide --source argument")
|
||
|
||
# Load model
|
||
# device = select_device(device)
|
||
# model = DetectMultiBackend(weights, device=device, dnn=dnn, fp16=half)
|
||
if Model is None:
|
||
raise ValueError("Have to provide --model argument")
|
||
model = Model.yoloModel
|
||
print(model.stride, model.names, model.pt)
|
||
stride, names, pt = model.stride, model.names, model.pt
|
||
imgsz = check_img_size(imgsz, s=stride) # check image size
|
||
|
||
# Run inference
|
||
model.warmup(imgsz=(1 if pt or model.triton else bs, 3, *imgsz)) # warmup
|
||
|
||
##=============================生成文件夹 save_dir,存储检测跟踪图像
|
||
source = str(source)
|
||
save_dir = Path(project) / Path(source).stem
|
||
|
||
# Dataloader
|
||
seen, dt = 0, (Profile(), Profile(), Profile())
|
||
dataset = LoadImages(source, img_size=imgsz, stride=stride, auto=pt, vid_stride=vid_stride)
|
||
|
||
## ================================================= 生成跟踪器对象
|
||
tracker = init_trackers(tracker_yaml, bs)[0]
|
||
track_boxes = np.empty((0, 9), dtype=np.float32)
|
||
features_dict = {}
|
||
frameid_img = {}
|
||
|
||
for path, im, im0s, vid_cap, s in dataset:
|
||
# img preprocess
|
||
with dt[0]:
|
||
im = torch.from_numpy(im).to(model.device)
|
||
im = im.half() if model.fp16 else im.float() # uint8 to fp16/32
|
||
im /= 255 # 0 - 255 to 0.0 - 1.0
|
||
if len(im.shape) == 3:
|
||
im = im[None] # expand for batch dim
|
||
|
||
# Inference
|
||
with dt[1]:
|
||
visualize = increment_path(save_dir / Path(path).stem, mkdir=True) if visualize else False
|
||
pred = model(im, augment=augment, visualize=visualize)
|
||
|
||
# NMS
|
||
with dt[2]:
|
||
pred = non_max_suppression(pred, conf_thres, iou_thres, classes, agnostic_nms, max_det=max_det)
|
||
|
||
# Process predictions
|
||
for i, det in enumerate(pred): # per image
|
||
seen += 1
|
||
frameid_img[seen] = im0s.copy()
|
||
|
||
p, im0, frame = path, im0s.copy(), getattr(dataset, 'frame', 0)
|
||
|
||
s += '%gx%g ' % im.shape[2:] # print string
|
||
|
||
if len(det):
|
||
# Rescale boxes from img_size to im0 size
|
||
det[:, :4] = scale_boxes(im.shape[2:], det[:, :4], im0.shape).round()
|
||
|
||
# boxes_and_imgs.append((det.cpu().numpy(), im0, frame))
|
||
## ================================================================ writed by WQG
|
||
det_tracking = Boxes(det, im0.shape).cpu().numpy()
|
||
tracks = tracker.update(det_tracking, im0)
|
||
|
||
if len(tracks):
|
||
tracks[:, 7] = seen
|
||
track_boxes = np.concatenate([track_boxes, tracks], axis=0)
|
||
feat_dict = {int(x.idx): x.curr_feat for x in tracker.tracked_stracks if x.is_activated}
|
||
frame_id = tracks[0, 7]
|
||
features_dict.update({int(frame_id): feat_dict})
|
||
|
||
return track_boxes, features_dict, frameid_img
|
||
|
||
|
||
def main():
|
||
ROOT = Path(Path.cwd())
|
||
check_requirements(ROOT / 'requirements.txt', exclude=('tensorboard', 'thop'))
|
||
|
||
optdict = {'weights': r"D:/Project/ieemoo-ai/tools/ckpts/best_158734_cls11_noaug10.pt",
|
||
'source': r"D:/Project/ieemoo-ai/testdata/88.mp4",
|
||
}
|
||
run(**optdict)
|
||
|
||
|
||
if __name__ == '__main__':
|
||
main()
|