# YOLOv5 🚀 by Ultralytics, AGPL-3.0 license import argparse import csv import os import platform import sys from pathlib import Path import glob import numpy as np import pickle import torch from tools.config import cfg sys.path.append('./ytracking') from models.common import DetectMultiBackend from utils.dataloaders import LoadImages from utils.general import (LOGGER, Profile, check_img_size, check_requirements, colorstr, cv2, increment_path, non_max_suppression, scale_boxes, strip_optimizer) from utils.torch_utils import select_device, smart_inference_mode '''集成跟踪模块,输出跟踪结果文件 .npy''' # from ultralytics.engine.results import Boxes # Results # from ultralytics.utils import IterableSimpleNamespace, yaml_load from tracking.utils.plotting import Annotator, colors from tracking.utils import Boxes, IterableSimpleNamespace, yaml_load from tracking.trackers import BOTSORT, BYTETracker from tracking.utils.showtrack import drawtracks import time def init_trackers(tracker_yaml=None, bs=1): """ Initialize trackers for object tracking during prediction. """ # tracker_yaml = r"./tracking/trackers/cfg/botsort.yaml" TRACKER_MAP = {'bytetrack': BYTETracker, 'botsort': BOTSORT} cfg = IterableSimpleNamespace(**yaml_load(tracker_yaml)) trackers = [] for _ in range(bs): tracker = TRACKER_MAP[cfg.tracker_type](args=cfg, frame_rate=30) trackers.append(tracker) return trackers @smart_inference_mode() def run( # weights=cfg.tracking_model, # model path or triton URL Model, # model path or triton URL source=None, # file/dir/URL/glob/screen/0(webcam) project=r'./runs/detect', # save results to project/name tracker_yaml=cfg.botsort, imgsz=(640, 640), # inference size (height, width) conf_thres=0.25, # confidence threshold iou_thres=0.45, # NMS IOU threshold max_det=1000, # maximum detections per image device='', # cuda device, i.e. 0 or 0,1,2,3 or cpu bs=1, # batch_size save_img=True, # do not save images/videos classes=None, # filter by class: --class 0, or --class 0 2 3 agnostic_nms=False, # class-agnostic NMS augment=False, # augmented inference visualize=False, # visualize features line_thickness=3, # bounding box thickness (pixels) half=False, # use FP16 half-precision inference dnn=False, # use OpenCV DNN for ONNX inference vid_stride=1, # video frame-rate stride ): if source is None: raise ValueError("Have to provide --source argument") # Load model # device = select_device(device) # model = DetectMultiBackend(weights, device=device, dnn=dnn, fp16=half) if Model is None: raise ValueError("Have to provide --model argument") model = Model.yoloModel print(model.stride, model.names, model.pt) stride, names, pt = model.stride, model.names, model.pt imgsz = check_img_size(imgsz, s=stride) # check image size # Run inference model.warmup(imgsz=(1 if pt or model.triton else bs, 3, *imgsz)) # warmup ##=============================生成文件夹 save_dir,存储检测跟踪图像 source = str(source) save_dir = Path(project) / Path(source).stem # Dataloader seen, dt = 0, (Profile(), Profile(), Profile()) dataset = LoadImages(source, img_size=imgsz, stride=stride, auto=pt, vid_stride=vid_stride) ## ================================================= 生成跟踪器对象 tracker = init_trackers(tracker_yaml, bs)[0] track_boxes = np.empty((0, 9), dtype=np.float32) features_dict = {} frameid_img = {} for path, im, im0s, vid_cap, s in dataset: # img preprocess with dt[0]: im = torch.from_numpy(im).to(model.device) im = im.half() if model.fp16 else im.float() # uint8 to fp16/32 im /= 255 # 0 - 255 to 0.0 - 1.0 if len(im.shape) == 3: im = im[None] # expand for batch dim # Inference with dt[1]: visualize = increment_path(save_dir / Path(path).stem, mkdir=True) if visualize else False pred = model(im, augment=augment, visualize=visualize) # NMS with dt[2]: pred = non_max_suppression(pred, conf_thres, iou_thres, classes, agnostic_nms, max_det=max_det) # Process predictions for i, det in enumerate(pred): # per image seen += 1 frameid_img[seen] = im0s.copy() p, im0, frame = path, im0s.copy(), getattr(dataset, 'frame', 0) s += '%gx%g ' % im.shape[2:] # print string if len(det): # Rescale boxes from img_size to im0 size det[:, :4] = scale_boxes(im.shape[2:], det[:, :4], im0.shape).round() # boxes_and_imgs.append((det.cpu().numpy(), im0, frame)) ## ================================================================ writed by WQG det_tracking = Boxes(det, im0.shape).cpu().numpy() tracks = tracker.update(det_tracking, im0) if len(tracks): tracks[:, 7] = seen track_boxes = np.concatenate([track_boxes, tracks], axis=0) feat_dict = {int(x.idx): x.curr_feat for x in tracker.tracked_stracks if x.is_activated} frame_id = tracks[0, 7] features_dict.update({int(frame_id): feat_dict}) return track_boxes, features_dict, frameid_img def main(): ROOT = Path(Path.cwd()) check_requirements(ROOT / 'requirements.txt', exclude=('tensorboard', 'thop')) optdict = {'weights': r"D:/Project/ieemoo-ai/tools/ckpts/best_158734_cls11_noaug10.pt", 'source': r"D:/Project/ieemoo-ai/testdata/88.mp4", } run(**optdict) if __name__ == '__main__': main()