mirror of
https://gitee.com/nanjing-yimao-information/ieemoo-ai-gift.git
synced 2025-08-18 13:20:25 +00:00
Merge branch 'master' of https://gitee.com/nanjing-yimao-information/ieemoo-ai-gift
This commit is contained in:
@ -7,6 +7,7 @@ parser = argparse.ArgumentParser()
|
|||||||
parser.add_argument('--img_path', default='/home/lc/data_center/gift/v2/images', type=str,
|
parser.add_argument('--img_path', default='/home/lc/data_center/gift/v2/images', type=str,
|
||||||
help='input xml label path') # 图片存放地址
|
help='input xml label path') # 图片存放地址
|
||||||
# 数据集的划分,地址选择自己数据下的ImageSets/Main
|
# 数据集的划分,地址选择自己数据下的ImageSets/Main
|
||||||
|
# parser.add_argument('--txt_path', default='/home/lc/data_center/gift/yolov10_data/Main', type=str, help='output txt label path')
|
||||||
parser.add_argument('--txt_path', default='/home/lc/data_center/gift/yolov10_data/Main', type=str,
|
parser.add_argument('--txt_path', default='/home/lc/data_center/gift/yolov10_data/Main', type=str,
|
||||||
help='output txt label path')
|
help='output txt label path')
|
||||||
opt = parser.parse_args()
|
opt = parser.parse_args()
|
||||||
|
@ -5,7 +5,7 @@ from os import getcwd
|
|||||||
|
|
||||||
sets = ['train', 'val', 'test']
|
sets = ['train', 'val', 'test']
|
||||||
|
|
||||||
classes = ['tag', 'bandage']
|
classes = ['tag', 'bandage', 'word', 'package']
|
||||||
|
|
||||||
|
|
||||||
def convert(size, box):
|
def convert(size, box):
|
||||||
@ -51,8 +51,9 @@ def convert_annotation(image_id, imgname_list, label_path, Annotation_path, imag
|
|||||||
cls_id = classes.index(cls)
|
cls_id = classes.index(cls)
|
||||||
xmlbox = obj.find('bndbox')
|
xmlbox = obj.find('bndbox')
|
||||||
b = (
|
b = (
|
||||||
float(xmlbox.find('xmin').text), float(xmlbox.find('xmax').text), float(xmlbox.find('ymin').text),
|
float(xmlbox.find('xmin').text), float(xmlbox.find('xmax').text),
|
||||||
float(xmlbox.find('ymax').text))
|
float(xmlbox.find('ymin').text),
|
||||||
|
float(xmlbox.find('ymax').text))
|
||||||
|
|
||||||
b1, b2, b3, b4 = b
|
b1, b2, b3, b4 = b
|
||||||
# 标注越界修正
|
# 标注越界修正
|
||||||
|
@ -2,11 +2,12 @@
|
|||||||
nc: 80 # number of classes
|
nc: 80 # number of classes
|
||||||
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'
|
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'
|
||||||
# [depth, width, max_channels]
|
# [depth, width, max_channels]
|
||||||
s: [0.33, 0.50, 1024]
|
s: [0.33, 0.50, 1024]
|
||||||
|
# s: [0.33, 0.375, 1024]
|
||||||
|
|
||||||
backbone:
|
backbone:
|
||||||
# [from, repeats, module, args]
|
# [from, repeats, module, args]
|
||||||
- [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
|
- [-1, 1, Conv, [64, 3, 2]] # 0-P1
|
||||||
- [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
|
- [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
|
||||||
- [-1, 3, C2f, [128, True]]
|
- [-1, 3, C2f, [128, True]]
|
||||||
- [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
|
- [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
|
||||||
|
@ -0,0 +1,337 @@
|
|||||||
|
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||||
|
|
||||||
|
import os
|
||||||
|
from pathlib import Path
|
||||||
|
|
||||||
|
import cv2
|
||||||
|
import numpy as np
|
||||||
|
import torch
|
||||||
|
|
||||||
|
from ultralytics.data import build_dataloader, build_yolo_dataset, converter
|
||||||
|
from ultralytics.engine.validator import BaseValidator
|
||||||
|
from ultralytics.utils import LOGGER, ops
|
||||||
|
from ultralytics.utils.checks import check_requirements
|
||||||
|
# from ultralytics.utils.metrics import ConfusionMatrix, DetMetrics, box_iou
|
||||||
|
from ultralytics.utils.metrics_confusion_visual import ConfusionMatrix, DetMetrics, box_iou
|
||||||
|
from ultralytics.utils.plotting import output_to_target, plot_images, Colors
|
||||||
|
|
||||||
|
### val时可视化图片增加
|
||||||
|
from ultralytics.utils.plotting import Annotator, Colors
|
||||||
|
colors = Colors()
|
||||||
|
|
||||||
|
|
||||||
|
class DetectionValidator(BaseValidator):
|
||||||
|
"""
|
||||||
|
A class extending the BaseValidator class for validation based on a detection model.
|
||||||
|
|
||||||
|
Example:
|
||||||
|
```python
|
||||||
|
from ultralytics.models.yolo.detect import DetectionValidator
|
||||||
|
|
||||||
|
args = dict(model='yolov8n.pt', data='coco8.yaml')
|
||||||
|
validator = DetectionValidator(args=args)
|
||||||
|
validator()
|
||||||
|
```
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self, dataloader=None, save_dir=None, pbar=None, args=None, _callbacks=None):
|
||||||
|
"""Initialize detection model with necessary variables and settings."""
|
||||||
|
super().__init__(dataloader, save_dir, pbar, args, _callbacks)
|
||||||
|
self.nt_per_class = None
|
||||||
|
self.is_coco = False
|
||||||
|
self.class_map = None
|
||||||
|
self.args.task = "detect"
|
||||||
|
self.metrics = DetMetrics(save_dir=self.save_dir, on_plot=self.on_plot)
|
||||||
|
self.iouv = torch.linspace(0.5, 0.95, 10) # IoU vector for mAP@0.5:0.95
|
||||||
|
self.niou = self.iouv.numel()
|
||||||
|
self.lb = [] # for autolabelling
|
||||||
|
|
||||||
|
def preprocess(self, batch):
|
||||||
|
"""Preprocesses batch of images for YOLO training."""
|
||||||
|
batch["img"] = batch["img"].to(self.device, non_blocking=True)
|
||||||
|
batch["img"] = (batch["img"].half() if self.args.half else batch["img"].float()) / 255
|
||||||
|
for k in ["batch_idx", "cls", "bboxes"]:
|
||||||
|
batch[k] = batch[k].to(self.device)
|
||||||
|
|
||||||
|
if self.args.save_hybrid:
|
||||||
|
height, width = batch["img"].shape[2:]
|
||||||
|
nb = len(batch["img"])
|
||||||
|
bboxes = batch["bboxes"] * torch.tensor((width, height, width, height), device=self.device)
|
||||||
|
self.lb = (
|
||||||
|
[
|
||||||
|
torch.cat([batch["cls"][batch["batch_idx"] == i], bboxes[batch["batch_idx"] == i]], dim=-1)
|
||||||
|
for i in range(nb)
|
||||||
|
]
|
||||||
|
if self.args.save_hybrid
|
||||||
|
else []
|
||||||
|
) # for autolabelling
|
||||||
|
|
||||||
|
return batch
|
||||||
|
|
||||||
|
def init_metrics(self, model):
|
||||||
|
"""Initialize evaluation metrics for YOLO."""
|
||||||
|
val = self.data.get(self.args.split, "") # validation path
|
||||||
|
self.is_coco = isinstance(val, str) and "coco" in val and val.endswith(f"{os.sep}val2017.txt") # is COCO
|
||||||
|
self.class_map = converter.coco80_to_coco91_class() if self.is_coco else list(range(1000))
|
||||||
|
self.args.save_json |= self.is_coco # run on final val if training COCO
|
||||||
|
self.names = model.names
|
||||||
|
self.nc = len(model.names)
|
||||||
|
self.metrics.names = self.names
|
||||||
|
self.metrics.plot = self.args.plots
|
||||||
|
self.confusion_matrix = ConfusionMatrix(nc=self.nc, conf=self.args.conf)
|
||||||
|
self.seen = 0
|
||||||
|
self.jdict = []
|
||||||
|
self.stats = dict(tp=[], conf=[], pred_cls=[], target_cls=[])
|
||||||
|
|
||||||
|
def get_desc(self):
|
||||||
|
"""Return a formatted string summarizing class metrics of YOLO model."""
|
||||||
|
return ("%22s" + "%11s" * 6) % ("Class", "Images", "Instances", "Box(P", "R", "mAP50", "mAP50-95)")
|
||||||
|
|
||||||
|
def postprocess(self, preds):
|
||||||
|
"""Apply Non-maximum suppression to prediction outputs."""
|
||||||
|
return ops.non_max_suppression(
|
||||||
|
preds,
|
||||||
|
self.args.conf,
|
||||||
|
self.args.iou,
|
||||||
|
labels=self.lb,
|
||||||
|
multi_label=True,
|
||||||
|
agnostic=self.args.single_cls,
|
||||||
|
max_det=self.args.max_det,
|
||||||
|
)
|
||||||
|
|
||||||
|
def _prepare_batch(self, si, batch):
|
||||||
|
"""Prepares a batch of images and annotations for validation."""
|
||||||
|
idx = batch["batch_idx"] == si
|
||||||
|
cls = batch["cls"][idx].squeeze(-1)
|
||||||
|
bbox = batch["bboxes"][idx]
|
||||||
|
ori_shape = batch["ori_shape"][si]
|
||||||
|
imgsz = batch["img"].shape[2:]
|
||||||
|
ratio_pad = batch["ratio_pad"][si]
|
||||||
|
if len(cls):
|
||||||
|
bbox = ops.xywh2xyxy(bbox) * torch.tensor(imgsz, device=self.device)[[1, 0, 1, 0]] # target boxes
|
||||||
|
ops.scale_boxes(imgsz, bbox, ori_shape, ratio_pad=ratio_pad) # native-space labels
|
||||||
|
return dict(cls=cls, bbox=bbox, ori_shape=ori_shape, imgsz=imgsz, ratio_pad=ratio_pad)
|
||||||
|
|
||||||
|
def _prepare_pred(self, pred, pbatch):
|
||||||
|
"""Prepares a batch of images and annotations for validation."""
|
||||||
|
predn = pred.clone()
|
||||||
|
ops.scale_boxes(
|
||||||
|
pbatch["imgsz"], predn[:, :4], pbatch["ori_shape"], ratio_pad=pbatch["ratio_pad"]
|
||||||
|
) # native-space pred
|
||||||
|
return predn
|
||||||
|
|
||||||
|
def update_metrics(self, preds, batch):
|
||||||
|
"""Metrics."""
|
||||||
|
for si, pred in enumerate(preds):
|
||||||
|
self.seen += 1
|
||||||
|
npr = len(pred)
|
||||||
|
stat = dict(
|
||||||
|
conf=torch.zeros(0, device=self.device),
|
||||||
|
pred_cls=torch.zeros(0, device=self.device),
|
||||||
|
tp=torch.zeros(npr, self.niou, dtype=torch.bool, device=self.device),
|
||||||
|
)
|
||||||
|
pbatch = self._prepare_batch(si, batch)
|
||||||
|
cls, bbox = pbatch.pop("cls"), pbatch.pop("bbox")
|
||||||
|
nl = len(cls)
|
||||||
|
stat["target_cls"] = cls
|
||||||
|
if npr == 0:
|
||||||
|
if nl:
|
||||||
|
for k in self.stats.keys():
|
||||||
|
self.stats[k].append(stat[k])
|
||||||
|
if self.args.plots:
|
||||||
|
self.confusion_matrix.process_batch(detections=None, gt_bboxes=bbox, gt_cls=cls)
|
||||||
|
continue
|
||||||
|
|
||||||
|
# Predictions
|
||||||
|
if self.args.single_cls:
|
||||||
|
pred[:, 5] = 0
|
||||||
|
predn = self._prepare_pred(pred, pbatch)
|
||||||
|
stat["conf"] = predn[:, 4]
|
||||||
|
stat["pred_cls"] = predn[:, 5]
|
||||||
|
|
||||||
|
# Evaluate
|
||||||
|
if nl:
|
||||||
|
stat["tp"] = self._process_batch(predn, bbox, cls)
|
||||||
|
# ####===========增加匹配结果返回==================
|
||||||
|
# stat["tp"], matches, iou_list = self._process_batch(predn, bbox, cls) ### 生成gt和pred box匹配
|
||||||
|
# colors = Colors()
|
||||||
|
# if len(matches) > 0: ## 有匹配结果
|
||||||
|
# print('len(match)', len(matches))
|
||||||
|
# indl = matches[:, 0] ## label index
|
||||||
|
# indp = matches[:, 1] ## pred index
|
||||||
|
# # print('img', img)
|
||||||
|
# # img_name = batch['im_file']
|
||||||
|
# # print('img_name', img_name[0])
|
||||||
|
# # img = cv2.imread(img_name[0])
|
||||||
|
# img = cv2.imread(batch['im_file'][0])
|
||||||
|
# # annotator = Annotator(img, line_width=3)
|
||||||
|
# annotator = Annotator(img, line_width=3, font_size=3, pil=True, example=self.names)
|
||||||
|
# for ind, (*xyxy, conf, p_cls) in enumerate(predn):
|
||||||
|
# if ind in indp:
|
||||||
|
# p_ind = list(indp).index(ind) ## ind在match中的索引
|
||||||
|
# t_ind = indl[p_ind]
|
||||||
|
# iou = iou_list[t_ind, p_ind]
|
||||||
|
# conf_c = conf.cpu().item()
|
||||||
|
# label = self.names[int(p_cls)] + str(conf_c) + '_iou' + str(f'{iou:.2f}')
|
||||||
|
# annotator.box_label(xyxy, label, color=(128, 0, 128))
|
||||||
|
#
|
||||||
|
# img = annotator.result()
|
||||||
|
# path_save = 'tp'
|
||||||
|
# os.makedirs(path_save, exist_ok=True)
|
||||||
|
# save_path1 = os.path.join(path_save, batch['im_file'][0].split('/')[-1])
|
||||||
|
# print('save_path', save_path1)
|
||||||
|
# cv2.imwrite(save_path1, img)
|
||||||
|
####==================================
|
||||||
|
if self.args.plots:
|
||||||
|
###=======修改可视化匹配框=============
|
||||||
|
# self.confusion_matrix.process_batch(predn, bbox, cls)
|
||||||
|
self.confusion_matrix.process_batch(predn, bbox, cls, batch['im_file'][0], self.names, Annotator, colors)
|
||||||
|
for k in self.stats.keys():
|
||||||
|
self.stats[k].append(stat[k])
|
||||||
|
|
||||||
|
# Save
|
||||||
|
if self.args.save_json:
|
||||||
|
self.pred_to_json(predn, batch["im_file"][si])
|
||||||
|
if self.args.save_txt:
|
||||||
|
file = self.save_dir / "labels" / f'{Path(batch["im_file"][si]).stem}.txt'
|
||||||
|
self.save_one_txt(predn, self.args.save_conf, pbatch["ori_shape"], file)
|
||||||
|
|
||||||
|
def finalize_metrics(self, *args, **kwargs):
|
||||||
|
"""Set final values for metrics speed and confusion matrix."""
|
||||||
|
self.metrics.speed = self.speed
|
||||||
|
self.metrics.confusion_matrix = self.confusion_matrix
|
||||||
|
|
||||||
|
def get_stats(self):
|
||||||
|
"""Returns metrics statistics and results dictionary."""
|
||||||
|
stats = {k: torch.cat(v, 0).cpu().numpy() for k, v in self.stats.items()} # to numpy
|
||||||
|
if len(stats) and stats["tp"].any():
|
||||||
|
self.metrics.process(**stats)
|
||||||
|
self.nt_per_class = np.bincount(
|
||||||
|
stats["target_cls"].astype(int), minlength=self.nc
|
||||||
|
) # number of targets per class
|
||||||
|
return self.metrics.results_dict
|
||||||
|
|
||||||
|
def print_results(self):
|
||||||
|
"""Prints training/validation set metrics per class."""
|
||||||
|
pf = "%22s" + "%11i" * 2 + "%11.3g" * len(self.metrics.keys) # print format
|
||||||
|
LOGGER.info(pf % ("all", self.seen, self.nt_per_class.sum(), *self.metrics.mean_results()))
|
||||||
|
if self.nt_per_class.sum() == 0:
|
||||||
|
LOGGER.warning(f"WARNING ⚠️ no labels found in {self.args.task} set, can not compute metrics without labels")
|
||||||
|
|
||||||
|
# Print results per class
|
||||||
|
if self.args.verbose and not self.training and self.nc > 1 and len(self.stats):
|
||||||
|
for i, c in enumerate(self.metrics.ap_class_index):
|
||||||
|
LOGGER.info(pf % (self.names[c], self.seen, self.nt_per_class[c], *self.metrics.class_result(i)))
|
||||||
|
|
||||||
|
if self.args.plots:
|
||||||
|
for normalize in True, False:
|
||||||
|
self.confusion_matrix.plot(
|
||||||
|
save_dir=self.save_dir, names=self.names.values(), normalize=normalize, on_plot=self.on_plot
|
||||||
|
)
|
||||||
|
|
||||||
|
def _process_batch(self, detections, gt_bboxes, gt_cls):
|
||||||
|
"""
|
||||||
|
Return correct prediction matrix.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
detections (torch.Tensor): Tensor of shape [N, 6] representing detections.
|
||||||
|
Each detection is of the format: x1, y1, x2, y2, conf, class.
|
||||||
|
labels (torch.Tensor): Tensor of shape [M, 5] representing labels.
|
||||||
|
Each label is of the format: class, x1, y1, x2, y2.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
(torch.Tensor): Correct prediction matrix of shape [N, 10] for 10 IoU levels.
|
||||||
|
"""
|
||||||
|
iou = box_iou(gt_bboxes, detections[:, :4])
|
||||||
|
return self.match_predictions(detections[:, 5], gt_cls, iou)
|
||||||
|
|
||||||
|
def build_dataset(self, img_path, mode="val", batch=None):
|
||||||
|
"""
|
||||||
|
Build YOLO Dataset.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
img_path (str): Path to the folder containing images.
|
||||||
|
mode (str): `train` mode or `val` mode, users are able to customize different augmentations for each mode.
|
||||||
|
batch (int, optional): Size of batches, this is for `rect`. Defaults to None.
|
||||||
|
"""
|
||||||
|
return build_yolo_dataset(self.args, img_path, batch, self.data, mode=mode, stride=self.stride)
|
||||||
|
|
||||||
|
def get_dataloader(self, dataset_path, batch_size):
|
||||||
|
"""Construct and return dataloader."""
|
||||||
|
dataset = self.build_dataset(dataset_path, batch=batch_size, mode="val")
|
||||||
|
return build_dataloader(dataset, batch_size, self.args.workers, shuffle=False, rank=-1) # return dataloader
|
||||||
|
|
||||||
|
def plot_val_samples(self, batch, ni):
|
||||||
|
"""Plot validation image samples."""
|
||||||
|
plot_images(
|
||||||
|
batch["img"],
|
||||||
|
batch["batch_idx"],
|
||||||
|
batch["cls"].squeeze(-1),
|
||||||
|
batch["bboxes"],
|
||||||
|
paths=batch["im_file"],
|
||||||
|
fname=self.save_dir / f"val_batch{ni}_labels.jpg",
|
||||||
|
names=self.names,
|
||||||
|
on_plot=self.on_plot,
|
||||||
|
)
|
||||||
|
|
||||||
|
def plot_predictions(self, batch, preds, ni):
|
||||||
|
"""Plots predicted bounding boxes on input images and saves the result."""
|
||||||
|
plot_images(
|
||||||
|
batch["img"],
|
||||||
|
*output_to_target(preds, max_det=self.args.max_det),
|
||||||
|
paths=batch["im_file"],
|
||||||
|
fname=self.save_dir / f"val_batch{ni}_pred.jpg",
|
||||||
|
names=self.names,
|
||||||
|
on_plot=self.on_plot,
|
||||||
|
) # pred
|
||||||
|
|
||||||
|
def save_one_txt(self, predn, save_conf, shape, file):
|
||||||
|
"""Save YOLO detections to a txt file in normalized coordinates in a specific format."""
|
||||||
|
gn = torch.tensor(shape)[[1, 0, 1, 0]] # normalization gain whwh
|
||||||
|
for *xyxy, conf, cls in predn.tolist():
|
||||||
|
xywh = (ops.xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh
|
||||||
|
line = (cls, *xywh, conf) if save_conf else (cls, *xywh) # label format
|
||||||
|
with open(file, "a") as f:
|
||||||
|
f.write(("%g " * len(line)).rstrip() % line + "\n")
|
||||||
|
|
||||||
|
def pred_to_json(self, predn, filename):
|
||||||
|
"""Serialize YOLO predictions to COCO json format."""
|
||||||
|
stem = Path(filename).stem
|
||||||
|
image_id = int(stem) if stem.isnumeric() else stem
|
||||||
|
box = ops.xyxy2xywh(predn[:, :4]) # xywh
|
||||||
|
box[:, :2] -= box[:, 2:] / 2 # xy center to top-left corner
|
||||||
|
for p, b in zip(predn.tolist(), box.tolist()):
|
||||||
|
self.jdict.append(
|
||||||
|
{
|
||||||
|
"image_id": image_id,
|
||||||
|
"category_id": self.class_map[int(p[5])],
|
||||||
|
"bbox": [round(x, 3) for x in b],
|
||||||
|
"score": round(p[4], 5),
|
||||||
|
}
|
||||||
|
)
|
||||||
|
|
||||||
|
def eval_json(self, stats):
|
||||||
|
"""Evaluates YOLO output in JSON format and returns performance statistics."""
|
||||||
|
if self.args.save_json and self.is_coco and len(self.jdict):
|
||||||
|
anno_json = self.data["path"] / "annotations/instances_val2017.json" # annotations
|
||||||
|
pred_json = self.save_dir / "predictions.json" # predictions
|
||||||
|
LOGGER.info(f"\nEvaluating pycocotools mAP using {pred_json} and {anno_json}...")
|
||||||
|
try: # https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocoEvalDemo.ipynb
|
||||||
|
check_requirements("pycocotools>=2.0.6")
|
||||||
|
from pycocotools.coco import COCO # noqa
|
||||||
|
from pycocotools.cocoeval import COCOeval # noqa
|
||||||
|
|
||||||
|
for x in anno_json, pred_json:
|
||||||
|
assert x.is_file(), f"{x} file not found"
|
||||||
|
anno = COCO(str(anno_json)) # init annotations api
|
||||||
|
pred = anno.loadRes(str(pred_json)) # init predictions api (must pass string, not Path)
|
||||||
|
eval = COCOeval(anno, pred, "bbox")
|
||||||
|
if self.is_coco:
|
||||||
|
eval.params.imgIds = [int(Path(x).stem) for x in self.dataloader.dataset.im_files] # images to eval
|
||||||
|
eval.evaluate()
|
||||||
|
eval.accumulate()
|
||||||
|
eval.summarize()
|
||||||
|
stats[self.metrics.keys[-1]], stats[self.metrics.keys[-2]] = eval.stats[:2] # update mAP50-95 and mAP50
|
||||||
|
except Exception as e:
|
||||||
|
LOGGER.warning(f"pycocotools unable to run: {e}")
|
||||||
|
return stats
|
1825
ultralytics/utils/metrics_confusion_visual.py
Normal file
1825
ultralytics/utils/metrics_confusion_visual.py
Normal file
File diff suppressed because it is too large
Load Diff
Reference in New Issue
Block a user