增加测试维度

This commit is contained in:
lee
2025-06-25 16:23:20 +08:00
parent 3d364aa0bd
commit 96a9445761
6 changed files with 141 additions and 33 deletions

View File

@ -5,7 +5,7 @@ from ultralytics import YOLOv10
import cv2
import torch
from ultralytics.utils.show_trace_pr import ShowPR
from ultralytics.utils.show_pr import ShowPR
# from trace_detect import run, _init_model
import numpy as np
image_ext = [".jpg", ".jpeg", ".webp", ".bmp", ".png"]
@ -43,7 +43,7 @@ def get_image_list(path):
def _init():
model = YOLOv10('runs/detect/train/weights/best_gift_v10n.pt')
model = YOLOv10('ckpts/20250620/best_gift_v10n.pt')
return model
@ -72,6 +72,7 @@ def get_trace_event(model, path):
def main(path):
model = _init()
tags_tmp, result_all_tmp = [], []
tags, result_all = [], []
classify = ['commodity', 'gift']
for cla in classify:
@ -79,12 +80,15 @@ def main(path):
for root, dirs, files in os.walk(pre_pth):
if not dirs:
if cla == 'commodity':
tags.append(0)
tags_tmp.append(0)
else:
tags.append(1)
tags_tmp.append(1)
res_single = get_trace_event(model, root)
result_all.append(res_single)
spr = ShowPR(tags, result_all, title_name='yolov10n')
result_all_tmp.append(res_single)
for tag, result in zip(tags_tmp, result_all_tmp):
tags += [tag]*len(result)
result_all += result
spr = ShowPR(tags, result_all, title_name='yolov10n', )
# spr.change_precValue()
spr.get_pic()

View File

@ -49,10 +49,14 @@ def read_tracking_output(filepath):
break
if start_idx != -1 and end_idx != -1:
content = []
for i in range(start_idx, end_idx):
line = lines[i].strip()
if line:
gift_data.append(line)
content.append(line)
# 将所有内容合并成一行字符串
if content:
gift_data.append(' '.join(content))
except Exception as e:
print(f"Error extracting gift data: {e}")
@ -63,28 +67,13 @@ def read_tracking_output(filepath):
def extract_data_realtime(datapath):
boxes, feats = [], []
tracker_feats = {}
with open(datapath, 'r', encoding='utf-8') as lines:
for line in lines:
line = line.strip() # 去除行尾的换行符和可能的空白字符
if not line: # 跳过空行
continue
if line.endswith(','):
line = line[:-1]
ftlist = [float(x) for x in line.split()]
if len(ftlist) != 265:
continue
boxes.append(ftlist[:9])
feats.append(ftlist[9:])
trackerboxes = np.array(boxes)
trackerfeats = np.array(feats)
if len(trackerboxes) == 0 or len(trackerboxes) != len(trackerfeats):
return np.array([]), {}
boxes, feats, gift_data = read_tracking_output(datapath)
if not boxes or not feats:
return np.array([]), {}, []
trackerboxes = boxes[0] # 因为read_tracking_output返回的是list中的numpy数组
trackerfeats = feats[0]
frmIDs = np.sort(np.unique(trackerboxes[:, 7].astype(int)))
for fid in frmIDs:
@ -373,9 +362,15 @@ for event in os.listdir(video_path):
# print('imgfile_list', imgfile_list)
for track_data in track_list:
track_path = os.path.join(event_path, track_data)
boxes, feat = extract_data_realtime(track_path)
boxes, feat, gift_data = extract_data_realtime(track_path)
camera_id = track_data.split('_')[0]
imgfile = [x for x in imgfile_list if x.split('_')[0] == camera_id][0]
# 打印gift数据
if gift_data:
print(f"\nGift data for {event}/{track_data}:")
print(gift_data[0]) # 现在gift_data只包含一个元素即合并后的字符串
if len(boxes) > 0:
if del_staticBox: ##根据距离删除box
boxes_ = compute_box_dist(boxes)

View File

@ -43,7 +43,7 @@ def get_image_list(path):
def _init():
model = YOLOv10('ckpts/20250514/best_gift_v10n.pt')
model = YOLOv10('ckpts/20250620/best_gift_v10n.pt')
return model

View File

@ -17,5 +17,5 @@ model = YOLOv10('ckpts/weights/yolov10n.pt')
#model.train(data='coco.yaml', epochs=1, batch=64, imgsz=640)
#model.train(data='coco128_cls10_0924.yaml', epochs=300, batch=64, imgsz=640, resume=False)
#model.train(data='coco128_cls10_1010.yaml', epochs=300, batch=128, imgsz=640, resume=False)
model.train(data='gift.yaml', epochs=400, batch=32, imgsz=224, resume=False, save_dir='/ckpts')
model.train(data='gift.yaml', epochs=600, batch=32, imgsz=224, resume=False, save_dir='/ckpts')
#model.train(data='coco128_cls10_1010_1205.yaml', epochs=300, batch=32, imgsz=640, resume=True)

View File

@ -0,0 +1,109 @@
import os.path
import os
import matplotlib.pyplot as plt
import numpy as np
# [tag, bandage, null]
# [0, 1, 2]
class ShowPR:
def __init__(self, tags, prec_value, title_name=None):
self.tags = tags
self.prec_value = prec_value
self.thres = [i * 0.01 for i in range(101)]
self.title_name = title_name
def change_precValue(self, thre=0.5):
values = []
for i in range(len(self.prec_value)):
value = []
for j in range(len(self.prec_value[i])):
if self.prec_value[i][j] > thre:
value.append(1)
else:
value.append(0)
values.append(value)
return values
def _calculate_pr(self, prec_value):
FN, FP, TN, TP = 0, 0, 0, 0
for output, target in zip(prec_value, self.tags):
# print("output >> {} , target >> {}".format(output, target))
if output != target:
if target == 0:
FP += 1
elif target == 1:
FN += 1
else:
if target == 0:
TN += 1
elif target == 1:
TP += 1
if TP == 0:
prec, recall = 0, 0
else:
prec = TP / (TP + FP)
recall = TP / (TP + FN)
if TN == 0:
tn_prec, tn_recall = 0, 0
else:
tn_prec = TN / (TN + FN)
tn_recall = TN / (TN + FP)
# print("TP>>{}, FP>>{}, TN>>{}, FN>>{}".format(TP, FP, TN, FN))
return prec, recall, tn_prec, tn_recall
def calculate_multiple(self):
recall, recall_TN, PrecisePos, PreciseNeg = [], [], [], []
for thre in self.thres:
# prec_value = []
# if self.prec_value >= thre:
# prec_value.append(1)
# else:
# prec_value.append(0)
prec_value = [1 if num >= thre else 0 for num in self.prec_value]
prec, recall_pos, tn_prec, tn_recall = self._calculate_pr(prec_value)
print(
f"thre>>{thre:.2f}, recall>>{recall_pos:.4f}, precise_pos>>{prec:.4f}, recall_tn>>{tn_recall:.4f}, precise_neg>>{tn_prec:4f}")
PrecisePos.append(prec)
recall.append(recall_pos)
PreciseNeg.append(tn_prec)
recall_TN.append(tn_recall)
return recall, recall_TN, PrecisePos, PreciseNeg
def write_results_to_file(self, recall, recall_TN, PrecisePos, PreciseNeg):
file_path = os.sep.join(['./ckpts/tracePR', self.title_name + '.txt'])
with open(file_path, 'w') as file:
file.write("threshold, recall, recall_TN, PrecisePos, PreciseNeg\n")
for thre, rec, rec_tn, prec_pos, prec_neg in zip(self.thres, recall, recall_TN, PrecisePos, PreciseNeg):
file.write(
f"thre>>{thre:.2f}, recall>>{rec:.4f}, precise_pos>>{prec_pos:.4f}, recall_tn>>{rec_tn:.4f}, precise_neg>>{prec_neg:4f}\n")
def show_pr(self, recall, recall_TN, PrecisePos, PreciseNeg):
# self.calculate_multiple()
x = self.thres
plt.figure(figsize=(10, 6))
plt.plot(x, recall, color='red', label='recall:TP/TPFN')
plt.plot(x, recall_TN, color='black', label='recall_TN:TN/TNFP')
plt.plot(x, PrecisePos, color='blue', label='PrecisePos:TP/TPFN')
plt.plot(x, PreciseNeg, color='green', label='PreciseNeg:TN/TNFP')
plt.legend()
plt.xlabel('threshold')
# if self.title_name is not None:
# plt.title(f"PrecisePos & Recall ratio:{ratio:.2f}", fontdict={'fontsize': 12, 'fontweight': 'black'})
# plt.grid(True, linestyle='--', alpha=0.5)
# 启用次刻度
# plt.minorticks_on()
# 设置主刻度的网格线
plt.grid(which='major', linestyle='-', alpha=0.5, color='gray')
# 设置次刻度的网格线
plt.grid(which='minor', linestyle=':', alpha=0.3, color='gray')
plt.savefig(os.sep.join(['./ckpts/tracePR', self.title_name + '.png']))
plt.show()
plt.close()
self.write_results_to_file(recall, recall_TN, PrecisePos, PreciseNeg)
def get_pic(self):
recall, recall_TN, PrecisePos, PreciseNeg = self.calculate_multiple()
self.show_pr(recall, recall_TN, PrecisePos, PreciseNeg)

View File

@ -110,7 +110,7 @@ class ShowPR:
def get_pic(self):
for ratio in self.ratios:
# ratio = 0.5
if ratio < 0.2 or ratio > 0.95:
if ratio < 0.1 or ratio > 0.95:
continue
recall, recall_TN, PrecisePos, PreciseNeg = self.calculate_multiple(ratio)
self.show_pr(recall, recall_TN, PrecisePos, PreciseNeg, ratio)