update
This commit is contained in:
@ -1,6 +1,7 @@
|
||||
import os
|
||||
os.environ['CUDA_VISIBLE_DEVICES'] = '0'
|
||||
|
||||
import time
|
||||
import numpy as np
|
||||
import cv2
|
||||
import matplotlib.pyplot as plt
|
||||
@ -127,8 +128,8 @@ if __name__ == '__main__':
|
||||
print(type(img_test))
|
||||
print('>>>>>>shape {}'.format(img_test.shape))
|
||||
|
||||
#ENCODER = 'resnet18'
|
||||
ENCODER = 'mobilenet_v2'
|
||||
ENCODER = 'resnet18'
|
||||
#ENCODER = 'mobilenet_v2'
|
||||
ENCODER_WEIGHTS = 'imagenet'
|
||||
CLASSES = ['front']
|
||||
ACTIVATION = 'sigmoid' # could be None for logits or 'softmax2d' for multiclass segmentation
|
||||
@ -160,11 +161,12 @@ if __name__ == '__main__':
|
||||
image = predict_dataset[i]
|
||||
|
||||
# 通过图像分割得到的0-1图像pr_mask
|
||||
T1 = time.time()
|
||||
x_tensor = torch.from_numpy(image).to(DEVICE).unsqueeze(0)
|
||||
pr_mask = best_model.predict(x_tensor)
|
||||
T2 = time.time()
|
||||
print('>>>>>> {}'.format(T2-T1))
|
||||
pr_mask = (pr_mask.squeeze().cpu().numpy().round())
|
||||
print('>>>>>>> pr_mask{}'.format(pr_mask.shape))
|
||||
print('>>>>>>{} {}'.format(height, weight))
|
||||
|
||||
# 恢复图片原来的分辨率
|
||||
#image_vis = cv2.resize(image_vis, (weight, height))
|
||||
|
Reference in New Issue
Block a user