diff --git a/ieemoo-ai-filtervideo.py b/ieemoo-ai-filtervideo.py index f572fdf..29acc38 100644 --- a/ieemoo-ai-filtervideo.py +++ b/ieemoo-ai-filtervideo.py @@ -20,4 +20,4 @@ def filtervideo(): return result if __name__ == '__main__': - app.run() + app.run(host='0.0.0.0', port=8085) diff --git a/segpredict.py b/segpredict.py index 8313051..4d3e869 100644 --- a/segpredict.py +++ b/segpredict.py @@ -1,6 +1,7 @@ import os os.environ['CUDA_VISIBLE_DEVICES'] = '0' +import time import numpy as np import cv2 import matplotlib.pyplot as plt @@ -127,8 +128,8 @@ if __name__ == '__main__': print(type(img_test)) print('>>>>>>shape {}'.format(img_test.shape)) - #ENCODER = 'resnet18' - ENCODER = 'mobilenet_v2' + ENCODER = 'resnet18' + #ENCODER = 'mobilenet_v2' ENCODER_WEIGHTS = 'imagenet' CLASSES = ['front'] ACTIVATION = 'sigmoid' # could be None for logits or 'softmax2d' for multiclass segmentation @@ -160,11 +161,12 @@ if __name__ == '__main__': image = predict_dataset[i] # 通过图像分割得到的0-1图像pr_mask + T1 = time.time() x_tensor = torch.from_numpy(image).to(DEVICE).unsqueeze(0) pr_mask = best_model.predict(x_tensor) + T2 = time.time() + print('>>>>>> {}'.format(T2-T1)) pr_mask = (pr_mask.squeeze().cpu().numpy().round()) - print('>>>>>>> pr_mask{}'.format(pr_mask.shape)) - print('>>>>>>{} {}'.format(height, weight)) # 恢复图片原来的分辨率 #image_vis = cv2.resize(image_vis, (weight, height)) diff --git a/segtrain.py b/segtrain.py index 4be585a..5c72e1f 100644 --- a/segtrain.py +++ b/segtrain.py @@ -107,7 +107,7 @@ def get_training_augmentation(): def get_validation_augmentation(): test_transform = [ - albu.PadIfNeeded(384, 480) + albu.PadIfNeeded(512, 512) ] return albu.Compose(test_transform) @@ -142,8 +142,8 @@ if __name__ == '__main__': y_valid_dir = os.path.join(DATA_DIR, 'valannot') #ENCODER = 'se_resnext50_32x4d' - #ENCODER = 'resnet18' - ENCODER = 'mobilenet_v2' + ENCODER = 'resnet18' + #ENCODER = 'mobilenet_v2' ENCODER_WEIGHTS = 'imagenet' CLASSES = ['front', 'background'] ACTIVATION = 'sigmoid' # could be None for logits or 'softmax2d' for multiclass segmentation