update
This commit is contained in:
BIN
.checkobject.py.swp
Normal file
BIN
.checkobject.py.swp
Normal file
Binary file not shown.
BIN
.ieemoo-ai-filtervideo.py.swp
Normal file
BIN
.ieemoo-ai-filtervideo.py.swp
Normal file
Binary file not shown.
BIN
data/1.mp4
Normal file
BIN
data/1.mp4
Normal file
Binary file not shown.
@ -1,23 +1,37 @@
|
||||
from flask import request,Flask, jsonify
|
||||
from checkobject import get_object_location
|
||||
import numpy as np
|
||||
import cv2
|
||||
import cv2, os, requests, urllib, sys,json, time
|
||||
from datetime import datetime
|
||||
|
||||
app = Flask(__name__)
|
||||
def _progress(block_num, block_size, total_size):
|
||||
'''回调函数
|
||||
@block_num: 已经下载的数据块
|
||||
@block_size: 数据块的大小
|
||||
@total_size: 远程文件的大小
|
||||
'''
|
||||
sys.stdout.write('\r>> Downloading %.1f%%' % (float(block_num * block_size) / float(total_size) * 100.0))
|
||||
sys.stdout.flush()
|
||||
|
||||
@app.route('/filtervideo', methods=['POST'])
|
||||
def filtervideo():
|
||||
videourls = request.form.get('videoUrls')
|
||||
videoid = request.form.get('id')
|
||||
videopath = os.sep.join(['data', videoid+'.mp4'])
|
||||
barcode = request.form.get('barcode')
|
||||
videourls = videourls.split(',')
|
||||
#videourls = request.form.get('videoUrls')
|
||||
dicdatas = request.get_json()
|
||||
results = []
|
||||
for name in videourls:
|
||||
videos = requests.get(url)
|
||||
videos.save(videopath)
|
||||
for dicdata in dicdatas:
|
||||
date = datetime.today()
|
||||
videourl = dicdata["videoUrls"]
|
||||
videoid = dicdata['id']
|
||||
videopath = os.sep.join(['data', videoid+'.mp4'])
|
||||
barcode = dicdata['barcode']
|
||||
|
||||
urllib.request.urlretrieve(videourl, videopath, _progress)
|
||||
|
||||
flag = get_object_location(videopath)
|
||||
results.append({'id':videoids, 'result':flags})
|
||||
return result
|
||||
results.append({'id':videoid, 'result':flag})
|
||||
print('{} >>>>{}'.format((date),(results)))
|
||||
return json.dumps(results)
|
||||
|
||||
if __name__ == '__main__':
|
||||
app.run(host='0.0.0.0', port=8085)
|
||||
|
43
tools/segpredict.py
Normal file
43
tools/segpredict.py
Normal file
@ -0,0 +1,43 @@
|
||||
import os
|
||||
os.environ['CUDA_VISIBLE_DEVICES'] = '0'
|
||||
|
||||
import time
|
||||
import numpy as np
|
||||
import cv2
|
||||
import torch
|
||||
import segmentation_models_pytorch as smp
|
||||
import imageio
|
||||
|
||||
def predict(best_model=None):
|
||||
DATA_DIR = './data/CamVid/'
|
||||
x_test_dir = os.path.join(DATA_DIR, 'abc')
|
||||
|
||||
img_test = cv2.imread('data/CamVid/abc/pic_unscan_front.jpg')
|
||||
height = img_test.shape[0]
|
||||
weight = img_test.shape[1]
|
||||
|
||||
ENCODER = 'resnet18'
|
||||
ENCODER_WEIGHTS = 'imagenet'
|
||||
CLASSES = ['front']
|
||||
ACTIVATION = 'sigmoid' # could be None for logits or 'softmax2d' for multiclass segmentation
|
||||
DEVICE = 'cuda'
|
||||
|
||||
# 加载最佳模型
|
||||
best_model = torch.load('./module/best_model.pth')
|
||||
|
||||
for imgpath in os.listdir(x_test_dir):
|
||||
img = cv2.imread(os.sep.join([x_test_dir, imgpath]))
|
||||
img = cv2.resize(img, (512,512))
|
||||
img = img.transpose((2,0,1))
|
||||
T1 = time.time()
|
||||
x_tensor = torch.from_numpy(img).float().to(DEVICE).unsqueeze(0)
|
||||
pr_mask = best_model.predict(x_tensor)
|
||||
T2 = time.time()
|
||||
print('>>>> {}'.format(T2-T1))
|
||||
pr_mask = (pr_mask.squeeze().cpu().numpy().round())
|
||||
print('>>>>>>>>> pr_mask{}'.format(pr_mask.shape))
|
||||
pr_mask = cv2.resize(pr_mask[0,:,:], (weight, height))
|
||||
imageio.imwrite('f_test_out.png', pr_mask)
|
||||
|
||||
if __name__ == '__main__':
|
||||
predict()
|
180
tools/segpredict.py.bak
Normal file
180
tools/segpredict.py.bak
Normal file
@ -0,0 +1,180 @@
|
||||
import os
|
||||
os.environ['CUDA_VISIBLE_DEVICES'] = '0'
|
||||
|
||||
import time
|
||||
import numpy as np
|
||||
import cv2
|
||||
import matplotlib.pyplot as plt
|
||||
import albumentations as albu
|
||||
import torch
|
||||
import segmentation_models_pytorch as smp
|
||||
from torch.utils.data import Dataset as BaseDataset
|
||||
import imageio
|
||||
|
||||
|
||||
# ---------------------------------------------------------------
|
||||
### Dataloader
|
||||
|
||||
class Dataset(BaseDataset):
|
||||
"""CamVid数据集。进行图像读取,图像增强增强和图像预处理.
|
||||
|
||||
Args:
|
||||
images_dir (str): 图像文件夹所在路径
|
||||
masks_dir (str): 图像分割的标签图像所在路径
|
||||
class_values (list): 用于图像分割的所有类别数
|
||||
augmentation (albumentations.Compose): 数据传输管道
|
||||
preprocessing (albumentations.Compose): 数据预处理
|
||||
"""
|
||||
# CamVid数据集中用于图像分割的所有标签类别
|
||||
#CLASSES = ['sky', 'building', 'pole', 'road', 'pavement',
|
||||
# 'tree', 'signsymbol', 'fence', 'car',
|
||||
# 'pedestrian', 'bicyclist', 'unlabelled']
|
||||
CLASSES = ['front']
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
images_dir,
|
||||
# masks_dir,
|
||||
classes=None,
|
||||
augmentation=None,
|
||||
preprocessing=None,
|
||||
):
|
||||
self.ids = os.listdir(images_dir)
|
||||
self.images_fps = [os.path.join(images_dir, image_id) for image_id in self.ids]
|
||||
|
||||
# convert str names to class values on masks
|
||||
self.class_values = [self.CLASSES.index(cls.lower()) for cls in classes]
|
||||
|
||||
self.augmentation = augmentation
|
||||
self.preprocessing = preprocessing
|
||||
|
||||
def __getitem__(self, i):
|
||||
|
||||
# read data
|
||||
image = cv2.imread(self.images_fps[i])
|
||||
image = cv2.resize(image, (512, 512)) # 改变图片分辨率
|
||||
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
||||
|
||||
# 图像增强应用
|
||||
if self.augmentation:
|
||||
sample = self.augmentation(image=image)
|
||||
image = sample['image']
|
||||
|
||||
# 图像预处理应用
|
||||
if self.preprocessing:
|
||||
sample = self.preprocessing(image=image)
|
||||
image = sample['image']
|
||||
|
||||
return image
|
||||
|
||||
def __len__(self):
|
||||
return len(self.ids)
|
||||
|
||||
# ---------------------------------------------------------------
|
||||
|
||||
def get_validation_augmentation():
|
||||
"""调整图像使得图片的分辨率长宽能被32整除"""
|
||||
test_transform = [
|
||||
albu.PadIfNeeded(384, 480)
|
||||
]
|
||||
return albu.Compose(test_transform)
|
||||
|
||||
|
||||
def to_tensor(x, **kwargs):
|
||||
return x.transpose(2, 0, 1).astype('float32')
|
||||
|
||||
|
||||
def get_preprocessing(preprocessing_fn):
|
||||
"""进行图像预处理操作
|
||||
|
||||
Args:
|
||||
preprocessing_fn (callbale): 数据规范化的函数
|
||||
(针对每种预训练的神经网络)
|
||||
Return:
|
||||
transform: albumentations.Compose
|
||||
"""
|
||||
|
||||
_transform = [
|
||||
albu.Lambda(image=preprocessing_fn),
|
||||
albu.Lambda(image=to_tensor),
|
||||
]
|
||||
return albu.Compose(_transform)
|
||||
|
||||
|
||||
# 图像分割结果的可视化展示
|
||||
def visualize(**images):
|
||||
"""PLot images in one row."""
|
||||
n = len(images)
|
||||
plt.figure(figsize=(16, 5))
|
||||
for i, (name, image) in enumerate(images.items()):
|
||||
plt.subplot(1, n, i + 1)
|
||||
plt.xticks([])
|
||||
plt.yticks([])
|
||||
plt.title(' '.join(name.split('_')).title())
|
||||
plt.imshow(image)
|
||||
plt.show()
|
||||
|
||||
|
||||
# ---------------------------------------------------------------
|
||||
if __name__ == '__main__':
|
||||
|
||||
DATA_DIR = './data/CamVid/'
|
||||
|
||||
x_test_dir = os.path.join(DATA_DIR, 'abc')
|
||||
|
||||
img_test = cv2.imread('data/CamVid/abc/pic_unscan_front.jpg')
|
||||
height = img_test.shape[0]
|
||||
weight = img_test.shape[1]
|
||||
|
||||
ENCODER = 'resnet18'
|
||||
ENCODER_WEIGHTS = 'imagenet'
|
||||
CLASSES = ['front']
|
||||
ACTIVATION = 'sigmoid' # could be None for logits or 'softmax2d' for multiclass segmentation
|
||||
DEVICE = 'cuda'
|
||||
|
||||
# 按照权重预训练的相同方法准备数据
|
||||
preprocessing_fn = smp.encoders.get_preprocessing_fn(ENCODER, ENCODER_WEIGHTS)
|
||||
|
||||
# 加载最佳模型
|
||||
best_model = torch.load('./module/best_model.pth')
|
||||
|
||||
# 创建检测数据集
|
||||
predict_dataset = Dataset(
|
||||
x_test_dir,
|
||||
augmentation=get_validation_augmentation(),
|
||||
preprocessing=get_preprocessing(preprocessing_fn),
|
||||
classes=CLASSES,
|
||||
)
|
||||
|
||||
# # 对检测图像进行图像分割并进行图像可视化展示
|
||||
# predict_dataset_vis = Dataset(
|
||||
# x_test_dir,
|
||||
# classes=CLASSES,
|
||||
# )
|
||||
|
||||
for i in range(len(predict_dataset)):
|
||||
# 原始图像image_vis
|
||||
#image_vis = predict_dataset_vis[i].astype('uint8')
|
||||
image = predict_dataset[i]
|
||||
print('>>>>> {}>>>size{}'.format(type(image), image.shape))
|
||||
|
||||
# 通过图像分割得到的0-1图像pr_mask
|
||||
T1 = time.time()
|
||||
x_tensor = torch.from_numpy(image).to(DEVICE).unsqueeze(0)
|
||||
pr_mask = best_model.predict(x_tensor)
|
||||
T2 = time.time()
|
||||
print('>>>>>> {}'.format(T2-T1))
|
||||
pr_mask = (pr_mask.squeeze().cpu().numpy().round())
|
||||
|
||||
# 恢复图片原来的分辨率
|
||||
#image_vis = cv2.resize(image_vis, (weight, height))
|
||||
#pr_mask = cv2.resize(pr_mask, (weight, height))
|
||||
pr_mask = cv2.resize(pr_mask[0,:,:], (weight, height))
|
||||
# 保存图像分割后的黑白结果图像
|
||||
imageio.imwrite('f_test_out.png', pr_mask)
|
||||
# 原始图像和图像分割结果的可视化展示
|
||||
# visualize(
|
||||
# image=image_vis,
|
||||
# predicted_mask=pr_mask
|
||||
# )
|
||||
|
Reference in New Issue
Block a user