This commit is contained in:
lee
2025-06-19 17:36:24 +08:00
parent bf9604ec29
commit 061820c34f
4 changed files with 15 additions and 11 deletions

View File

@ -14,11 +14,12 @@ base:
# 模型配置
models:
backbone: 'resnet50'
channel_ratio: 1.0
model_path: "../checkpoints/resnet50_0519/best.pth"
onnx_model: "../checkpoints/resnet50_0519/best.onnx"
rknn_model: "../checkpoints/resnet50_0519/best.rknn"
backbone: 'resnet18'
channel_ratio: 0.75
model_path: "../checkpoints/resnet18_1009/best.pth"
onnx_model: "../checkpoints/resnet18_1009/best.onnx"
rknn_model: "../checkpoints/resnet18_1009/best_rknn2.3.2.rknn"
rknn_batch_size: 1
# 日志与监控
logging:

View File

@ -22,7 +22,7 @@ data:
test_batch_size: 128 # 验证批次大小
num_workers: 32 # 数据加载线程数
half: true # 是否启用半精度数据
img_dirs_path: "/personalDocument/lic/contrast_base"
img_dirs_path: "/personalDocument/lic/base+stlib"
# img_dirs_path: "/home/lc/contrast_nettest/data/feature_json"
xlsx_pth: false # 过滤商品, 默认None不进行过滤
@ -42,7 +42,7 @@ logging:
save:
json_bin: "../search_library/yunhedian_05-09.json" # 保存整个json文件
json_path: "../feature_json/" # 保存单个json文件
json_path: "../feature_json/base+stlib/" # 保存单个json文件路径
error_barcodes: "error_barcodes.txt"
barcodes_statistics: "../search_library/barcodes_statistics.txt"
create_single_json: true
create_single_json: true # 是否保存单个json文件

View File

@ -205,7 +205,7 @@ class ResNet(nn.Module):
if norm_layer is None:
norm_layer = nn.BatchNorm2d
self._norm_layer = norm_layer
print("ResNet scale: >>>>>>>>>> ", scale)
print("通道剪枝 {}".format(scale))
self.inplanes = 64
self.dilation = 1
if replace_stride_with_dilation is None:

View File

@ -99,7 +99,8 @@ if __name__ == '__main__':
target_platform='rk3588',
model_pruning=False,
compress_weight=False,
single_core_mode=True)
single_core_mode=True,
enable_flash_attention=True)
# rknn.config(
# mean_values=[[127.5, 127.5, 127.5]], # 对于单通道图像,可以设置为 [[127.5]]
# std_values=[[127.5, 127.5, 127.5]], # 对于单通道图像,可以设置为 [[127.5]]
@ -121,7 +122,9 @@ if __name__ == '__main__':
# Build model
print('--> Building model')
ret = rknn.build(do_quantization=True, dataset='./dataset.txt')
ret = rknn.build(do_quantization=True,
dataset='./dataset.txt',
rknn_batch_size=conf['models']['rknn_batch_size'])
# ret = rknn.build(do_quantization=False, dataset='./dataset.txt')
if ret != 0:
print('Build model failed!')