增加了单帧入侵判断及yoloV10

This commit is contained in:
18262620154
2025-04-11 17:02:39 +08:00
parent 798c596acc
commit e044c85a04
197 changed files with 1863 additions and 997 deletions

Binary file not shown.

Binary file not shown.

Binary file not shown.

View File

@ -19,25 +19,6 @@ from tracking.utils.drawtracks import plot_frameID_y2, draw_all_trajectories
from utils.getsource import get_image_pairs, get_video_pairs
from tracking.utils.read_data import read_similar
class CameraEvent_:
def __init__(self):
self.cameraType = '', # "front", "back"
self.videoPath = '',
self.imagePaths = [],
self.yoloResnetTracker =[],
self.tracking = None,
class ShoppingEvent_:
def __init__(self):
self.eventPath = ''
self.eventName = ''
self.barcode = ''
self.eventType = '', # "input", "output", "other"
self.frontCamera = None
self.backCamera = None
self.one2n = []
def save_subimgs(imgdict, boxes, spath, ctype, featdict = None):
'''
@ -79,159 +60,49 @@ def save_subimgs_1(imgdict, boxes, spath, ctype, simidict = None):
cv2.imwrite(imgpath, img)
def show_result(event_tracks, yrtDict, savepath_pipe):
'''保存 Tracking 输出的运动轨迹子图,并记录相似度'''
savepath_pipe_subimgs = savepath_pipe / Path("subimgs")
if not savepath_pipe_subimgs.exists():
savepath_pipe_subimgs.mkdir(parents=True, exist_ok=True)
for CamerType, vts in event_tracks:
if len(vts.tracks)==0: continue
if CamerType == 'front':
# yolos = ShoppingDict["frontCamera"]["yoloResnetTracker"]
yolos = yrtDict["frontyrt"]
ctype = 1
if CamerType == 'back':
# yolos = ShoppingDict["backCamera"]["yoloResnetTracker"]
yolos = yrtDict["backyrt"]
ctype = 0
imgdict, featdict, simidict = {}, {}, {}
for y in yolos:
imgdict.update(y["imgs"])
featdict.update(y["feats"])
simidict.update(y["featsimi"])
for track in vts.Residual:
if isinstance(track, np.ndarray):
save_subimgs(imgdict, track, savepath_pipe_subimgs, ctype, featdict)
else:
save_subimgs(imgdict, track.slt_boxes, savepath_pipe_subimgs, ctype, featdict)
'''(3) 轨迹显示与保存'''
illus = [None, None]
for CamerType, vts in event_tracks:
if len(vts.tracks)==0: continue
if CamerType == 'front':
edgeline = cv2.imread("./tracking/shopcart/cart_tempt/board_ftmp_line.png")
h, w = edgeline.shape[:2]
# nh, nw = h//2, w//2
# edgeline = cv2.resize(edgeline, (nw, nh), interpolation=cv2.INTER_AREA)
img_tracking = draw_all_trajectories(vts, edgeline, savepath_pipe, CamerType, draw5p=True)
illus[0] = img_tracking
plt = plot_frameID_y2(vts)
plt.savefig(os.path.join(savepath_pipe, "front_y2.png"))
if CamerType == 'back':
edgeline = cv2.imread("./tracking/shopcart/cart_tempt/edgeline.png")
h, w = edgeline.shape[:2]
# nh, nw = h//2, w//2
# edgeline = cv2.resize(edgeline, (nw, nh), interpolation=cv2.INTER_AREA)
img_tracking = draw_all_trajectories(vts, edgeline, savepath_pipe, CamerType, draw5p=True)
illus[1] = img_tracking
illus = [im for im in illus if im is not None]
if len(illus):
img_cat = np.concatenate(illus, axis = 1)
if len(illus)==2:
H, W = img_cat.shape[:2]
cv2.line(img_cat, (int(W/2), 0), (int(W/2), int(H)), (128, 128, 255), 3)
trajpath = os.path.join(savepath_pipe, "trajectory.png")
cv2.imwrite(trajpath, img_cat)
def pipeline(eventpath,
def pipeline(
eventpath,
savepath,
SourceType,
weights,
DataType = "raw", #raw, pkl: images or videos, pkl, pickle file
YoloVersion="V5",
savepath = None,
saveimages = True
YoloVersion="V5"
):
'''
eventpath: 单个事件的存储路径
'''
optdict = {}
optdict["weights"] = weights
if SourceType == "video":
vpaths = get_video_pairs(eventpath)
elif SourceType == "image":
vpaths = get_image_pairs(eventpath)
event_tracks = []
## 构造购物事件字典
evtname = Path(eventpath).stem
barcode = evtname.split('_')[-1] if len(evtname.split('_'))>=2 \
and len(evtname.split('_')[-1])>=8 \
and evtname.split('_')[-1].isdigit() else ''
'''事件结果存储文件夹: savepath_pipe, savepath_pkl'''
'''事件结果存储文件夹'''
if not savepath:
savepath = Path(__file__).resolve().parents[0] / "events_result"
savepath_pipe = Path(savepath) / Path("yolos_tracking") / evtname
savepath_pipeline = Path(savepath) / Path("Yolos_Tracking") / evtname
savepath_pkl = Path(savepath) / "shopping_pkl"
if not savepath_pkl.exists():
savepath_pkl.mkdir(parents=True, exist_ok=True)
pklpath = Path(savepath_pkl) / Path(str(evtname)+".pickle")
"""ShoppingDict pickle 文件保存地址 """
savepath_spdict = Path(savepath) / "ShoppingDict_pkfile"
if not savepath_spdict.exists():
savepath_spdict.mkdir(parents=True, exist_ok=True)
pf_path = Path(savepath_spdict) / Path(str(evtname)+".pickle")
yrtDict = {}
yrt_out = []
if DataType == "raw":
### 不重复执行已经过yolo-resnet-tracker
# if pklpath.exists():
# if pf_path.exists():
# print(f"Pickle file have saved: {evtname}.pickle")
# return
if SourceType == "video":
vpaths = get_video_pairs(eventpath)
elif SourceType == "image":
vpaths = get_image_pairs(eventpath)
for vpath in vpaths:
'''================= 2. 事件结果存储文件夹 ================='''
if isinstance(vpath, list):
savepath_pipe_imgs = savepath_pipe / Path("images")
else:
savepath_pipe_imgs = savepath_pipe / Path(str(Path(vpath).stem))
if not savepath_pipe_imgs.exists():
savepath_pipe_imgs.mkdir(parents=True, exist_ok=True)
optdict = {}
optdict["weights"] = weights
optdict["source"] = vpath
optdict["save_dir"] = savepath_pipe_imgs
optdict["is_save_img"] = saveimages
optdict["is_save_video"] = True
if YoloVersion == "V5":
yrtOut = yolo_resnet_tracker(**optdict)
elif YoloVersion == "V10":
yrtOut = yolov10_resnet_tracker(**optdict)
yrt_out.append((vpath, yrtOut))
elif DataType == "pkl":
pass
else:
return
'''====================== 构造 ShoppingDict 模块 ======================='''
ShoppingDict = {"eventPath": eventpath,
"eventName": evtname,
@ -241,13 +112,16 @@ def pipeline(eventpath,
"backCamera": {},
"one2n": [] #
}
yrtDict = {}
procpath = Path(eventpath).joinpath('process.data')
if procpath.is_file():
SimiDict = read_similar(procpath)
ShoppingDict["one2n"] = SimiDict['one2n']
event_tracks = []
for vpath, yrtOut in yrt_out:
for vpath in vpaths:
'''================= 1. 构造相机事件字典 ================='''
CameraEvent = {"cameraType": '', # "front", "back"
"videoPath": '',
@ -267,9 +141,33 @@ def pipeline(eventpath,
if bname.split('_')[0] == "1" or bname.find('front')>=0:
CameraEvent["cameraType"] = "front"
'''================= 2. 事件结果存储文件夹 ================='''
if isinstance(vpath, list):
savepath_pipeline_imgs = savepath_pipeline / Path("images")
else:
savepath_pipeline_imgs = savepath_pipeline / Path(str(Path(vpath).stem))
if not savepath_pipeline_imgs.exists():
savepath_pipeline_imgs.mkdir(parents=True, exist_ok=True)
savepath_pipeline_subimgs = savepath_pipeline / Path("subimgs")
if not savepath_pipeline_subimgs.exists():
savepath_pipeline_subimgs.mkdir(parents=True, exist_ok=True)
'''================= 3. Yolo + Resnet + Tracker ================='''
optdict["source"] = vpath
optdict["save_dir"] = savepath_pipeline_imgs
optdict["is_save_img"] = True
optdict["is_save_video"] = True
if YoloVersion == "V5":
yrtOut = yolo_resnet_tracker(**optdict)
elif YoloVersion == "V10":
yrtOut = yolov10_resnet_tracker(**optdict)
'''2种保存方式: (1) save images, (2) no save images'''
### (1) save images
yrtOut_save = []
for frdict in yrtOut:
fr_dict = {}
@ -279,7 +177,6 @@ def pipeline(eventpath,
yrtOut_save.append(fr_dict)
CameraEvent["yoloResnetTracker"] = yrtOut_save
### (2) no save images
# CameraEvent["yoloResnetTracker"] = yrtOut
'''================= 4. tracking ================='''
@ -322,58 +219,108 @@ def pipeline(eventpath,
yrtDict["frontyrt"] = yrtOut
'''========================== 保存模块 ================================='''
# 保存 ShoppingDict
with open(str(pklpath), 'wb') as f:
'''(1) 保存 ShoppingDict 事件'''
with open(str(pf_path), 'wb') as f:
pickle.dump(ShoppingDict, f)
# 绘制并保存轨迹图
show_result(event_tracks, yrtDict, savepath_pipe)
'''(2) 保存 Tracking 输出的运动轨迹子图,并记录相似度'''
for CamerType, vts in event_tracks:
if len(vts.tracks)==0: continue
if CamerType == 'front':
# yolos = ShoppingDict["frontCamera"]["yoloResnetTracker"]
yolos = yrtDict["frontyrt"]
ctype = 1
if CamerType == 'back':
# yolos = ShoppingDict["backCamera"]["yoloResnetTracker"]
yolos = yrtDict["backyrt"]
ctype = 0
imgdict, featdict, simidict = {}, {}, {}
for y in yolos:
imgdict.update(y["imgs"])
featdict.update(y["feats"])
simidict.update(y["featsimi"])
for track in vts.Residual:
if isinstance(track, np.ndarray):
save_subimgs(imgdict, track, savepath_pipeline_subimgs, ctype, featdict)
else:
save_subimgs(imgdict, track.slt_boxes, savepath_pipeline_subimgs, ctype, featdict)
'''(3) 轨迹显示与保存'''
illus = [None, None]
for CamerType, vts in event_tracks:
if len(vts.tracks)==0: continue
if CamerType == 'front':
edgeline = cv2.imread("./tracking/shopcart/cart_tempt/board_ftmp_line.png")
h, w = edgeline.shape[:2]
# nh, nw = h//2, w//2
# edgeline = cv2.resize(edgeline, (nw, nh), interpolation=cv2.INTER_AREA)
img_tracking = draw_all_trajectories(vts, edgeline, savepath_pipeline, CamerType, draw5p=True)
illus[0] = img_tracking
plt = plot_frameID_y2(vts)
plt.savefig(os.path.join(savepath_pipeline, "front_y2.png"))
if CamerType == 'back':
edgeline = cv2.imread("./tracking/shopcart/cart_tempt/edgeline.png")
h, w = edgeline.shape[:2]
# nh, nw = h//2, w//2
# edgeline = cv2.resize(edgeline, (nw, nh), interpolation=cv2.INTER_AREA)
img_tracking = draw_all_trajectories(vts, edgeline, savepath_pipeline, CamerType, draw5p=True)
illus[1] = img_tracking
illus = [im for im in illus if im is not None]
if len(illus):
img_cat = np.concatenate(illus, axis = 1)
if len(illus)==2:
H, W = img_cat.shape[:2]
cv2.line(img_cat, (int(W/2), 0), (int(W/2), int(H)), (128, 128, 255), 3)
trajpath = os.path.join(savepath_pipeline, "trajectory.png")
cv2.imwrite(trajpath, img_cat)
def execute_pipeline(evtdir = r"D:\datasets\ym\后台数据\unzip",
DataType = "raw", # raw, pkl
save_path = r"D:\work\result_pipeline",
kk=1,
source_type = "video", # video, image,
save_path = r"D:\work\result_pipeline",
yolo_ver = "V10", # V10, V5
weight_yolo_v5 = r'./ckpts/best_cls10_0906.pt' ,
weight_yolo_v10 = r'./ckpts/best_v10s_width0375_1205.pt',
saveimages = True
k=0
):
'''
运行函数 pipeline()遍历事件文件夹每个文件夹是一个事件
'''
parmDict = {}
parmDict["DataType"] = DataType
parmDict["savepath"] = save_path
parmDict["SourceType"] = source_type
parmDict["savepath"] = save_path
parmDict["YoloVersion"] = yolo_ver
if parmDict["YoloVersion"] == "V5":
parmDict["weights"] = weight_yolo_v5
elif parmDict["YoloVersion"] == "V10":
parmDict["weights"] = weight_yolo_v10
parmDict["saveimages"] = saveimages
evtdir = Path(evtdir)
errEvents = []
k = 0
for item in evtdir.iterdir():
if item.is_dir():
item = evtdir/Path("20250310-175352-741")
parmDict["eventpath"] = item
pipeline(**parmDict)
# try:
# pipeline(**parmDict)
# except Exception as e:
# errEvents.append(str(item))
k+=1
if kk is not None and k==kk:
if k==1:
break
errfile = os.path.join(parmDict["savepath"], 'error_events.txt')
@ -389,6 +336,23 @@ if __name__ == "__main__":
# execute_pipeline(save_path=spath_v10, yolo_ver="V10")
# execute_pipeline(save_path=spath_v5, yolo_ver="V5")
datapath = r'/home/wqg/dataset/test_dataset/base_dataset/single_event/source/'
savepath = r'/home/wqg/dataset/pipeline/contrast/single_event_V5'
execute_pipeline(evtdir = datapath,
DataType = "raw", # raw, pkl
kk=1,
source_type = "video", # video, image,
save_path = savepath,
yolo_ver = "V10", # V10, V5
weight_yolo_v5 = r'./ckpts/best_cls10_0906.pt' ,
weight_yolo_v10 = r'./ckpts/best_v10s_width0375_1205.pt',
saveimages = False
)

Binary file not shown.

Binary file not shown.

Binary file not shown.

View File

@ -9,17 +9,19 @@ import cv2
import json
import numpy as np
import matplotlib.pyplot as plt
from pathlib import Path
from matplotlib import rcParams
from matplotlib.font_manager import FontProperties
from scipy.spatial.distance import cdist
from utils.event import ShoppingEvent, save_data
from utils.calsimi import calsimi_vs_stdfeat_new, get_topk_percent, cluster
from utils.tools import get_evtList
import pickle
rcParams['font.sans-serif'] = ['SimHei'] # 用黑体显示中文
rcParams['axes.unicode_minus'] = False # 正确显示负号
'''*********** USearch ***********'''
def read_usearch():
stdFeaturePath = r"D:\contrast\stdlib\v11_test.json"
@ -35,13 +37,12 @@ def read_usearch():
return stdlib
def get_eventlist():
def get_eventlist_errortxt(evtpaths):
'''
读取一次测试中的错误事件
'''
evtpaths = r"\\192.168.1.28\share\测试视频数据以及日志\算法全流程测试\202412\images"
text1 = "one2n_Error.txt"
text2 = "one2SN_Error.txt"
text1 = "one_2_Small_n_Error.txt"
text2 = "one_2_Big_N_Error.txt"
events = []
text = (text1, text2)
for txt in text:
@ -54,15 +55,15 @@ def get_eventlist():
fpath=os.path.join(evtpaths, line)
events.append(fpath)
events = list(set(events))
return events
def single_event():
events = get_eventlist()
def save_eventdata():
evtpaths = r"/home/wqg/dataset/test_dataset/performence_dataset/"
events = get_eventlist_errortxt(evtpaths)
'''定义当前事件存储地址及生成相应文件件'''
resultPath = r"\\192.168.1.28\share\测试视频数据以及日志\算法全流程测试\202412\result\single_event"
@ -74,121 +75,148 @@ def single_event():
def get_topk_percent(data, k):
"""
获取数据中最大的 k% 的元素
"""
# 将数据转换为 NumPy 数组
if isinstance(data, list):
data = np.array(data)
# def get_topk_percent(data, k):
# """
# 获取数据中最大的 k% 的元素
# """
# # 将数据转换为 NumPy 数组
# if isinstance(data, list):
# data = np.array(data)
percentile = np.percentile(data, 100-k)
top_k_percent = data[data >= percentile]
# percentile = np.percentile(data, 100-k)
# top_k_percent = data[data >= percentile]
return top_k_percent
def cluster(data, thresh=0.15):
# data = np.array([0.1, 0.13, 0.7, 0.2, 0.8, 0.52, 0.3, 0.7, 0.85, 0.58])
# data = np.array([0.1, 0.13, 0.2, 0.3])
# data = np.array([0.1])
# return top_k_percent
# def cluster(data, thresh=0.15):
# # data = np.array([0.1, 0.13, 0.7, 0.2, 0.8, 0.52, 0.3, 0.7, 0.85, 0.58])
# # data = np.array([0.1, 0.13, 0.2, 0.3])
# # data = np.array([0.1])
if isinstance(data, list):
data = np.array(data)
# if isinstance(data, list):
# data = np.array(data)
data1 = np.sort(data)
cluter, Cluters, = [data1[0]], []
for i in range(1, len(data1)):
if data1[i] - data1[i-1]< thresh:
cluter.append(data1[i])
else:
Cluters.append(cluter)
cluter = [data1[i]]
Cluters.append(cluter)
# data1 = np.sort(data)
# cluter, Cluters, = [data1[0]], []
# for i in range(1, len(data1)):
# if data1[i] - data1[i-1]< thresh:
# cluter.append(data1[i])
# else:
# Cluters.append(cluter)
# cluter = [data1[i]]
# Cluters.append(cluter)
clt_center = []
for clt in Cluters:
## 是否应该在此处限制一个聚类中的最小轨迹样本数,应该将该因素放在轨迹分析中
# if len(clt)>=3:
# clt_center.append(np.mean(clt))
clt_center.append(np.mean(clt))
# clt_center = []
# for clt in Cluters:
# ## 是否应该在此处限制一个聚类中的最小轨迹样本数,应该将该因素放在轨迹分析中
# # if len(clt)>=3:
# # clt_center.append(np.mean(clt))
# clt_center.append(np.mean(clt))
# print(clt_center)
# # print(clt_center)
return clt_center
# return clt_center
def calc_simil(event, stdfeat):
'''事件与标准库的对比策略
该比对策略是否可以拓展到事件与事件的比对?
'''
# def calsimi_vs_stdfeat_new(event, stdfeat):
# '''事件与标准库的对比策略
# 该比对策略是否可以拓展到事件与事件的比对?
# '''
def calsiml(feat1, feat2, topkp=75, cluth=0.15):
'''轨迹样本和标准特征集样本相似度的选择策略'''
matrix = 1 - cdist(feat1, feat2, 'cosine')
simi_max = []
for i in range(len(matrix)):
sim = np.mean(get_topk_percent(matrix[i, :], topkp))
simi_max.append(sim)
cltc_max = cluster(simi_max, cluth)
Simi = max(cltc_max)
# def calsiml(feat1, feat2, topkp=75, cluth=0.15):
# '''轨迹样本和标准特征集样本相似度的选择策略'''
# matrix = 1 - cdist(feat1, feat2, 'cosine')
# simi_max = []
# for i in range(len(matrix)):
# sim = np.mean(get_topk_percent(matrix[i, :], topkp))
# simi_max.append(sim)
# cltc_max = cluster(simi_max, cluth)
# Simi = max(cltc_max)
## cltc_max为空属于编程考虑不周应予以排查解决
# if len(cltc_max):
# Simi = max(cltc_max)
# else:
# Simi = 0 #不应该走到该处
# ## cltc_max为空属于编程考虑不周应予以排查解决
# # if len(cltc_max):
# # Simi = max(cltc_max)
# # else:
# # Simi = 0 #不应该走到该处
return Simi
# return Simi
front_boxes = np.empty((0, 9), dtype=np.float64) ##和类doTracks兼容
front_feats = np.empty((0, 256), dtype=np.float64) ##和类doTracks兼容
for i in range(len(event.front_boxes)):
front_boxes = np.concatenate((front_boxes, event.front_boxes[i]), axis=0)
front_feats = np.concatenate((front_feats, event.front_feats[i]), axis=0)
# front_boxes = np.empty((0, 9), dtype=np.float64) ##和类doTracks兼容
# front_feats = np.empty((0, 256), dtype=np.float64) ##和类doTracks兼容
# for i in range(len(event.front_boxes)):
# front_boxes = np.concatenate((front_boxes, event.front_boxes[i]), axis=0)
# front_feats = np.concatenate((front_feats, event.front_feats[i]), axis=0)
back_boxes = np.empty((0, 9), dtype=np.float64) ##和类doTracks兼容
back_feats = np.empty((0, 256), dtype=np.float64) ##和类doTracks兼容
for i in range(len(event.back_boxes)):
back_boxes = np.concatenate((back_boxes, event.back_boxes[i]), axis=0)
back_feats = np.concatenate((back_feats, event.back_feats[i]), axis=0)
# back_boxes = np.empty((0, 9), dtype=np.float64) ##和类doTracks兼容
# back_feats = np.empty((0, 256), dtype=np.float64) ##和类doTracks兼容
# for i in range(len(event.back_boxes)):
# back_boxes = np.concatenate((back_boxes, event.back_boxes[i]), axis=0)
# back_feats = np.concatenate((back_feats, event.back_feats[i]), axis=0)
if len(front_feats):
front_simi = calsiml(front_feats, stdfeat)
if len(back_feats):
back_simi = calsiml(back_feats, stdfeat)
# if len(front_feats):
# front_simi = calsiml(front_feats, stdfeat)
# if len(back_feats):
# back_simi = calsiml(back_feats, stdfeat)
# '''前后摄相似度融合策略'''
# if len(front_feats) and len(back_feats):
# diff_simi = abs(front_simi - back_simi)
# if diff_simi>0.15:
# Similar = max([front_simi, back_simi])
# else:
# Similar = (front_simi+back_simi)/2
# elif len(front_feats) and len(back_feats)==0:
# Similar = front_simi
# elif len(front_feats)==0 and len(back_feats):
# Similar = back_simi
# else:
# Similar = None # 在event.front_feats和event.back_feats同时为空时
# return Similar
'''前后摄相似度融合策略'''
if len(front_feats) and len(back_feats):
diff_simi = abs(front_simi - back_simi)
if diff_simi>0.15:
Similar = max([front_simi, back_simi])
else:
Similar = (front_simi+back_simi)/2
elif len(front_feats) and len(back_feats)==0:
Similar = front_simi
elif len(front_feats)==0 and len(back_feats):
Similar = back_simi
else:
Similar = None # 在event.front_feats和event.back_feats同时为空时
return Similar
def simi_matrix():
resultPath = r"\\192.168.1.28\share\测试视频数据以及日志\算法全流程测试\202412\result\single_event"
evtpaths = r"/home/wqg/dataset/pipeline/contrast/single_event_V10/evtobjs/"
stdlib = read_usearch()
events = get_eventlist()
for evtpath in events:
evtname = os.path.basename(evtpath)
_, barcode = evtname.split("_")
stdfeatPath = r"/home/wqg/dataset/test_dataset/total_barcode/features_json/v11_barcode_0304/"
resultPath = r"/home/wqg/dataset/performence_dataset/result/"
# 生成事件与相应标准特征集
event = ShoppingEvent(evtpath)
stdfeat = stdlib[barcode]
evt_paths, bcdSet = get_evtList(evtpaths)
Similar = calc_simil(event, stdfeat)
## read std features
stdDict={}
evtDict = {}
for barcode in bcdSet:
stdpath = os.path.join(stdfeatPath, f"{barcode}.json")
if not os.path.isfile(stdpath):
continue
with open(stdpath, 'r', encoding='utf-8') as f:
stddata = json.load(f)
feat = np.array(stddata["value"])
stdDict[barcode] = feat
for evtpath in evt_paths:
barcode = Path(evtpath).stem.split("_")[-1]
if barcode not in stdDict.keys():
continue
# try:
# with open(evtpath, 'rb') as f:
# evtdata = pickle.load(f)
# except Exception as e:
# print(evtname)
with open(evtpath, 'rb') as f:
event = pickle.load(f)
stdfeat = stdDict[barcode]
Similar = calsimi_vs_stdfeat_new(event, stdfeat)
# 构造 boxes 子图存储路径
subimgpath = os.path.join(resultPath, f"{event.evtname}", "subimg")
@ -217,9 +245,9 @@ def simi_matrix():
evtfeat = np.concatenate((evtfeat, event.back_feats[i]), axis=0)
imgpaths = event.back_imgpaths
assert len(boxes)==len(evtfeat), f"Please check the Event: {evtname}"
assert len(boxes)==len(evtfeat), f"Please check the Event: {event.evtname}"
if len(boxes)==0: continue
print(evtname)
print(event.evtname)
matrix = 1 - cdist(evtfeat, stdfeat, 'cosine')
simi_1d = matrix.flatten()
@ -309,8 +337,8 @@ def simi_matrix():
mean_diff = abs(mean_values[1]-mean_values[0])
ax[0, 1].set_title(f"mean diff: {mean_diff:.3f}")
if len(max_values)==2:
max_values = abs(max_values[1]-max_values[0])
ax[0, 2].set_title(f"max diff: {max_values:.3f}")
max_diff = abs(max_values[1]-max_values[0])
ax[0, 2].set_title(f"max diff: {max_diff:.3f}")
try:
fig.suptitle(f"Similar: {Similar:.3f}", fontsize=16)
except Exception as e:
@ -319,19 +347,14 @@ def simi_matrix():
pltpath = os.path.join(subimgpath, f"hist_max_{kpercent}%_.png")
plt.savefig(pltpath)
pltpath1 = os.path.join(histpath, f"{evtname}_.png")
pltpath1 = os.path.join(histpath, f"{event.evtname}_.png")
plt.savefig(pltpath1)
plt.close()
def main():
simi_matrix()

View File

@ -38,13 +38,13 @@ def get_std_barcodeDict(bcdpath, savepath, bcdSet):
'''
inputs:
bcdpath: 已清洗的barcode样本图像如果barcode下有'base'文件夹,只选用该文件夹下图像
(default = r'\\192.168.1.28\share\已标注数据备份\对比数据\barcode\barcode_1771')
(default = r'\\\\192.168.1.28\\share\\已标注数据备份\\对比数据\\barcode\\barcode_1771')
功能:
生成并保存只有一个key值的字典 {barcode: [imgpath1, imgpath1, ...]}
savepath: 字典存储地址文件名格式barcode.pickle
'''
# savepath = r'\\192.168.1.28\share\测试_202406\contrast\std_barcodes'
# savepath = r'\\\\192.168.1.28\\share\\测试_202406\\contrast\\std_barcodes'
'''读取数据集中 barcode 列表'''
stdBarcodeList = []

View File

@ -6,57 +6,11 @@ Created on Wed Dec 18 11:49:01 2024
"""
import os
import pickle
import copy
import numpy as np
from pathlib import Path
import matplotlib.pyplot as plt
from scipy.spatial.distance import cdist
from utils.event import ShoppingEvent
def init_eventDict(sourcePath, eventDataPath, stype="data"):
'''stype: str,
'source': 由 videos 或 images 生成的 pickle 文件
'data': 从 data 文件中读取的现场运行数据
"realtime": 全实时数据,从 data 文件中读取的现场运行数据
sourcePath:事件文件夹事件类型包含2种
(1) pipeline生成的 pickle 文件
(2) 直接采集的事件文件夹
'''
k, errEvents = 0, []
for evtname in os.listdir(sourcePath):
bname, ext = os.path.splitext(evtname)
source_path = os.path.join(sourcePath, evtname)
if stype=="source" and ext not in ['.pkl', '.pickle']: continue
if stype=="data" and os.path.isfile(source_path): continue
if stype=="realtime" and os.path.isfile(source_path): continue
evt = bname.split('_')
condt = len(evt)>=2 and evt[-1].isdigit() and len(evt[-1])>=10
if not condt: continue
pickpath = os.path.join(eventDataPath, f"{bname}.pickle")
if os.path.isfile(pickpath): continue
# event = ShoppingEvent(source_path, stype)
try:
event = ShoppingEvent(source_path, stype)
with open(pickpath, 'wb') as f:
pickle.dump(event, f)
print(evtname)
except Exception as e:
errEvents.append(source_path)
print(f"Error: {evtname}, {e}")
# k += 1
# if k==1:
# break
errfile = Path(eventDataPath).parent / 'error_events.txt'
with open(str(errfile), 'a', encoding='utf-8') as f:
for line in errEvents:
f.write(line + '\n')
from utils.tools import init_eventDict
def read_eventdict(eventDataPath):
evtDict = {}

View File

@ -27,188 +27,24 @@ Created on Fri Aug 30 17:53:03 2024
"""
import numpy as np
import cv2
import os
import sys
import random
import pickle
import json
import random
import copy
import sys
# import torch
import time
# import json
from pathlib import Path
from scipy.spatial.distance import cdist
import matplotlib.pyplot as plt
import shutil
from datetime import datetime
# from openpyxl import load_workbook, Workbook
# from config import config as conf
# from model import resnet18 as resnet18
# from feat_inference import inference_image
FILE = Path(__file__).resolve()
ROOT = FILE.parents[1] # YOLOv5 root directory
if str(ROOT) not in sys.path:
sys.path.append(str(ROOT))
sys.path.append(r"D:\DetectTracking")
from tracking.utils.read_data import extract_data, read_tracking_output, read_similar, read_deletedBarcode_file
from tracking.utils.plotting import Annotator, colors
from feat_extract.config import config as conf
from feat_extract.inference import FeatsInterface
from utils.event import ShoppingEvent, save_data
from utils.calsimi import calsimi_vs_stdfeat, calsimi_vs_stdfeat_new
from utils.tools import get_evtList, init_eventDict
from utils.databits import data_precision_compare
from genfeats import gen_bcd_features
from event_test import calc_simil
from one2n_contrast import init_eventDict
def int8_to_ft16(arr_uint8, amin, amax):
arr_ft16 = (arr_uint8 / 255 * (amax-amin) + amin).astype(np.float16)
return arr_ft16
def ft16_to_uint8(arr_ft16):
# pickpath = r"\\192.168.1.28\share\测试_202406\contrast\std_features_ft32vsft16\6902265587712_ft16.pickle"
# with open(pickpath, 'rb') as f:
# edict = pickle.load(f)
# arr_ft16 = edict['feats']
amin = np.min(arr_ft16)
amax = np.max(arr_ft16)
arr_ft255 = (arr_ft16 - amin) * 255 / (amax-amin)
arr_uint8 = arr_ft255.astype(np.uint8)
arr_ft16_ = int8_to_ft16(arr_uint8, amin, amax)
arrDistNorm = np.linalg.norm(arr_ft16_ - arr_ft16) / arr_ft16_.size
return arr_uint8, arr_ft16_
def data_precision_compare(stdfeat, evtfeat, evtMessage, save=True):
evt, stdbcd, label = evtMessage
rltdata, rltdata_ft16, rltdata_ft16_ = [], [], []
matrix = 1 - cdist(stdfeat, evtfeat, 'cosine')
simi_mean = np.mean(matrix)
simi_max = np.max(matrix)
stdfeatm = np.mean(stdfeat, axis=0, keepdims=True)
evtfeatm = np.mean(evtfeat, axis=0, keepdims=True)
simi_mfeat = 1- np.maximum(0.0, cdist(stdfeatm, evtfeatm, 'cosine'))
rltdata = [label, stdbcd, evt, simi_mean, simi_max, simi_mfeat[0,0]]
##================================================================= float16
stdfeat_ft16 = stdfeat.astype(np.float16)
evtfeat_ft16 = evtfeat.astype(np.float16)
stdfeat_ft16 /= np.linalg.norm(stdfeat_ft16, axis=1)[:, None]
evtfeat_ft16 /= np.linalg.norm(evtfeat_ft16, axis=1)[:, None]
matrix_ft16 = 1 - cdist(stdfeat_ft16, evtfeat_ft16, 'cosine')
simi_mean_ft16 = np.mean(matrix_ft16)
simi_max_ft16 = np.max(matrix_ft16)
stdfeatm_ft16 = np.mean(stdfeat_ft16, axis=0, keepdims=True)
evtfeatm_ft16 = np.mean(evtfeat_ft16, axis=0, keepdims=True)
simi_mfeat_ft16 = 1- np.maximum(0.0, cdist(stdfeatm_ft16, evtfeatm_ft16, 'cosine'))
rltdata_ft16 = [label, stdbcd, evt, simi_mean_ft16, simi_max_ft16, simi_mfeat_ft16[0,0]]
'''****************** uint8 is ok!!!!!! ******************'''
##=================================================================== uint8
# stdfeat_uint8, stdfeat_ft16_ = ft16_to_uint8(stdfeat_ft16)
# evtfeat_uint8, evtfeat_ft16_ = ft16_to_uint8(evtfeat_ft16)
stdfeat_uint8 = (stdfeat_ft16*128).astype(np.int8)
evtfeat_uint8 = (evtfeat_ft16*128).astype(np.int8)
stdfeat_ft16_ = stdfeat_uint8.astype(np.float16)/128
evtfeat_ft16_ = evtfeat_uint8.astype(np.float16)/128
absdiff = np.linalg.norm(stdfeat_ft16_ - stdfeat) / stdfeat.size
matrix_ft16_ = 1 - cdist(stdfeat_ft16_, evtfeat_ft16_, 'cosine')
simi_mean_ft16_ = np.mean(matrix_ft16_)
simi_max_ft16_ = np.max(matrix_ft16_)
stdfeatm_ft16_ = np.mean(stdfeat_ft16_, axis=0, keepdims=True)
evtfeatm_ft16_ = np.mean(evtfeat_ft16_, axis=0, keepdims=True)
simi_mfeat_ft16_ = 1- np.maximum(0.0, cdist(stdfeatm_ft16_, evtfeatm_ft16_, 'cosine'))
rltdata_ft16_ = [label, stdbcd, evt, simi_mean_ft16_, simi_max_ft16_, simi_mfeat_ft16_[0,0]]
if not save:
return
##========================================================= save as float32
rppath = os.path.join(similPath, f'{evt}_ft32.pickle')
with open(rppath, 'wb') as f:
pickle.dump(rltdata, f)
rtpath = os.path.join(similPath, f'{evt}_ft32.txt')
with open(rtpath, 'w', encoding='utf-8') as f:
for result in rltdata:
part = [f"{x:.3f}" if isinstance(x, float) else str(x) for x in result]
line = ', '.join(part)
f.write(line + '\n')
##========================================================= save as float16
rppath_ft16 = os.path.join(similPath, f'{evt}_ft16.pickle')
with open(rppath_ft16, 'wb') as f:
pickle.dump(rltdata_ft16, f)
rtpath_ft16 = os.path.join(similPath, f'{evt}_ft16.txt')
with open(rtpath_ft16, 'w', encoding='utf-8') as f:
for result in rltdata_ft16:
part = [f"{x:.3f}" if isinstance(x, float) else str(x) for x in result]
line = ', '.join(part)
f.write(line + '\n')
##=========================================================== save as uint8
rppath_uint8 = os.path.join(similPath, f'{evt}_uint8.pickle')
with open(rppath_uint8, 'wb') as f:
pickle.dump(rltdata_ft16_, f)
rtpath_uint8 = os.path.join(similPath, f'{evt}_uint8.txt')
with open(rtpath_uint8, 'w', encoding='utf-8') as f:
for result in rltdata_ft16_:
part = [f"{x:.3f}" if isinstance(x, float) else str(x) for x in result]
line = ', '.join(part)
f.write(line + '\n')
def simi_calc(event, stdfeat):
evtfeat = event.feats_compose
if isinstance(event.feats_select, list):
if len(event.feats_select) and len(event.feats_select[0]):
evtfeat = event.feats_select[0]
else:
return None, None, None
else:
evtfeat = event.feats_select
if len(evtfeat)==0 or len(stdfeat)==0:
return None, None, None
evtfeat /= np.linalg.norm(evtfeat, axis=1)[:, None]
stdfeat /= np.linalg.norm(stdfeat, axis=1)[:, None]
matrix = 1 - cdist(evtfeat, stdfeat, 'cosine')
matrix[matrix < 0] = 0
simi_mean = np.mean(matrix)
simi_max = np.max(matrix)
stdfeatm = np.mean(stdfeat, axis=0, keepdims=True)
evtfeatm = np.mean(evtfeat, axis=0, keepdims=True)
simi_mfeat = 1- np.maximum(0.0, cdist(stdfeatm, evtfeatm, 'cosine'))
return simi_mean, simi_max, simi_mfeat[0,0]
def build_std_evt_dict():
@ -219,18 +55,6 @@ def build_std_evt_dict():
stdBarcode = [p.stem for p in Path(stdFeaturePath).iterdir() if p.is_file() and (p.suffix=='.json' or p.suffix=='.pickle')]
'''*********** USearch ***********'''
# stdFeaturePath = r"D:\contrast\stdlib\v11_test.json"
# stdBarcode = []
# stdlib = {}
# with open(stdFeaturePath, 'r', encoding='utf-8') as f:
# data = json.load(f)
# for dic in data['total']:
# barcode = dic['key']
# feature = np.array(dic['value'])
# stdBarcode.append(barcode)
# stdlib[barcode] = feature
'''======1. 购物事件列表,该列表中的 Barcode 存在于标准的 stdBarcode 内 ==='''
evtList = [(p.stem, p.stem.split('_')[-1]) for p in Path(eventDataPath).iterdir()
if p.is_file()
@ -260,9 +84,6 @@ def build_std_evt_dict():
feat = stddata["feats_ft32"]
stdDict[barcode] = feat
'''*********** USearch ***********'''
# stdDict = {}
# for barcode in barcodes:
@ -282,7 +103,7 @@ def build_std_evt_dict():
return evtList, evtDict, stdDict
def one2SN_pr(evtList, evtDict, stdDict):
def one2SN_pr(evtList, evtDict, stdDict, simType="simple"):
std_barcodes = set([bcd for _, bcd in evtList])
@ -312,8 +133,14 @@ def one2SN_pr(evtList, evtDict, stdDict):
barcodes, similars = [], []
for stdbcd in bcd_selected:
stdfeat = stdDict[stdbcd]
simi_mean, simi_max, simi_mfeat = simi_calc(event, stdfeat)
# simi_mean = calc_simil(event, stdfeat)
if simType=="typea":
simi_mean, simi_max, simi_mfeat = calsimi_vs_stdfeat(event, stdfeat)
elif simType=="typeb":
pass
else:
simi_mean, simi_1, simi_2 = calsimi_vs_stdfeat_new(event, stdfeat)
## 在event.front_feats和event.back_feats同时为空时此处不需要保护
# if simi_mean==None:
@ -376,6 +203,10 @@ def one2SN_pr(evtList, evtDict, stdDict):
ax.set_xlabel(f"Event Num: {len(tp_events) + len(fn_events)}")
ax.legend()
plt.show()
rltpath = os.path.join(similPath, f'pr_1toSN_{simType}.png')
plt.savefig(rltpath)
## ============================= 1:N 展厅 直方图'''
fig, axes = plt.subplots(2, 2)
axes[0, 0].hist(tp_simi, bins=60, range=(-0.2, 1), edgecolor='black')
@ -392,10 +223,13 @@ def one2SN_pr(evtList, evtDict, stdDict):
axes[1, 1].set_title(f'FN({len(fn_simi)})')
plt.show()
rltpath = os.path.join(similPath, f'hist_1toSN_{simType}.png')
plt.savefig(rltpath)
def one2one_simi(evtList, evtDict, stdDict):
def one2one_simi(evtList, evtDict, stdDict, simType):
barcodes = set([bcd for _, bcd in evtList])
'''======1 构造 3 个事件对: 扫 A 放 A, 扫 A 放 B, 合并 ===================='''
@ -422,31 +256,50 @@ def one2one_simi(evtList, evtDict, stdDict):
stdfeat = stdDict[stdbcd] # float32
simi_mean, simi_max, simi_mfeat = simi_calc(event, stdfeat)
if simType=="typea":
simi_mean, simi_1, simi_2 = calsimi_vs_stdfeat_new(event, stdfeat)
elif simType=="typeb":
pass
else:
simi_mean, simi_1, simi_2 = calsimi_vs_stdfeat(event, stdfeat)
if simi_mean is None:
continue
rltdata.append((label, stdbcd, evtname, simi_mean, simi_max, simi_mfeat))
rltdata.append((label, stdbcd, evtname, simi_mean, simi_1, simi_2))
'''================ float32、16、int8 精度比较与存储 ============='''
# data_precision_compare(stdfeat, evtfeat, mergePairs[i], save=True)
# data_precision_compare(stdfeat, evtfeat, mergePairs[i], similPath, save=True)
errorFile_one2one = list(set(errorFile_one2one))
return rltdata, errorFile_one2one
def one2one_pr(evtList, evtDict, stdDict):
def one2one_pr(evtList, evtDict, stdDict, simType="simple"):
rltdata, errorFile_one2one = one2one_simi(evtList, evtDict, stdDict)
rltdata, errorFile_one2one = one2one_simi(evtList, evtDict, stdDict, simType)
Same, Cross = [], []
for label, stdbcd, evtname, simi_mean, simi_max, simi_mft in rltdata:
if label == "same":
if simType=="simple" and label == "same":
Same.append(simi_max)
if label == "diff":
if simType=="simple" and label == "diff":
Cross.append(simi_max)
if simType=="typea" and label == "same":
Same.append(simi_mean)
if simType=="typea" and label == "diff":
Cross.append(simi_mean)
# for label, stdbcd, evtname, simi_mean, simi_max, simi_mft in rltdata:
# if label == "same":
# Same.append(simi_mean)
# if label == "diff":
# Cross.append(simi_mean)
Same = np.array(Same)
Cross = np.array(Cross)
TPFN = len(Same)
@ -508,7 +361,7 @@ def one2one_pr(evtList, evtDict, stdDict):
ax.legend()
plt.show()
rltpath = os.path.join(similPath, 'pr.png')
rltpath = os.path.join(similPath, f'pr_1to1_{simType}.png')
plt.savefig(rltpath) # svg, png, pdf
@ -521,7 +374,7 @@ def one2one_pr(evtList, evtDict, stdDict):
axes[1].set_xlim([-0.2, 1])
axes[1].set_title(f'TN({len(Cross)})')
rltpath = os.path.join(similPath, 'hist.png')
rltpath = os.path.join(similPath, f'hist_1to1_{simType}.png')
plt.savefig(rltpath)
@ -529,158 +382,25 @@ def one2one_pr(evtList, evtDict, stdDict):
def gen_eventdict(sourcePath, saveimg=True):
k, errEvents = 0, []
for source_path in sourcePath:
evtpath, bname = os.path.split(source_path)
## 兼容事件的两种情况:文件夹 和 Yolo-Resnet-Tracker 的输出
if os.path.isfile(source_path):
bname, ext = os.path.splitext(bname)
# evt = bname.split("_")
evt = bname.split('_')
condt = len(evt)>=2 and evt[-1].isdigit() and len(evt[-1])>=10
if not condt: continue
# 如果已完成事件生成,则不执行
pickpath = os.path.join(eventDataPath, f"{bname}.pickle")
if os.path.isfile(pickpath): continue
try:
event = ShoppingEvent(source_path, stype=source_type)
# save_data(event, resultPath)
with open(pickpath, 'wb') as f:
pickle.dump(event, f)
print(bname)
except Exception as e:
errEvents.append(source_path)
print(e)
# k += 1
# if k==1:
# break
errfile = os.path.join(resultPath, 'error_events.txt')
# with open(errfile, 'w', encoding='utf-8') as f:
# for line in errEvents:
# f.write(line + '\n')
# def init_std_evt_dict():
# '''==== 0. 生成事件列表和对应的 Barcodes列表 ==========='''
# bcdList, event_spath = [], []
# for evtname in os.listdir(eventSourcePath):
# bname, ext = os.path.splitext(evtname)
# ## 处理事件的两种情况:文件夹 和 Yolo-Resnet-Tracker 的输出
# fpath = os.path.join(eventSourcePath, evtname)
# if os.path.isfile(fpath) and (ext==".pkl" or ext==".pickle"):
# evt = bname.split('_')
# elif os.path.isdir(fpath):
# evt = evtname.split('_')
# else:
# continue
# if len(evt)>=2 and evt[-1].isdigit() and len(evt[-1])>=10:
# bcdList.append(evt[-1])
# event_spath.append(fpath)
# '''==== 1. 生成标准特征集, 只需运行一次, 在 genfeats.py 中实现 ==========='''
# bcdSet = set(bcdList)
# gen_bcd_features(stdSamplePath, stdBarcodePath, stdFeaturePath, bcdSet)
# print("stdFeats have generated and saved!")
# '''==== 2. 生成事件字典, 只需运行一次 ==============='''
# gen_eventdict(event_spath)
# print("eventList have generated and saved!")
def get_evtList():
'''==== 0. 生成事件列表和对应的 Barcodes 集合 ==========='''
bcdList, evtpaths = [], []
for evtname in os.listdir(eventSourcePath):
bname, ext = os.path.splitext(evtname)
## 处理事件的两种情况:文件夹 和 Yolo-Resnet-Tracker 的输出
fpath = os.path.join(eventSourcePath, evtname)
if os.path.isfile(fpath) and (ext==".pkl" or ext==".pickle"):
evt = bname.split('_')
elif os.path.isdir(fpath):
evt = evtname.split('_')
else:
continue
if len(evt)>=2 and evt[-1].isdigit() and len(evt[-1])>=10:
bcdList.append(evt[-1])
evtpaths.append(fpath)
bcdSet = set(bcdList)
return evtpaths, bcdSet
# def init_stdDict():
# evtpaths, bcdSet = get_evtList()
# gen_bcd_features(stdSamplePath, stdBarcodePath, stdFeaturePath, bcdSet)
# print("stdFeats have generated and saved!")
# def init_evtDict():
# '''==== 0. 生成事件列表和对应的 Barcodes列表 ==========='''
# bcdList, event_spath = [], []
# for evtname in os.listdir(eventSourcePath):
# bname, ext = os.path.splitext(evtname)
# ## 处理事件的两种情况:文件夹 和 Yolo-Resnet-Tracker 的输出
# fpath = os.path.join(eventSourcePath, evtname)
# if os.path.isfile(fpath) and (ext==".pkl" or ext==".pickle"):
# evt = bname.split('_')
# elif os.path.isdir(fpath):
# evt = evtname.split('_')
# else:
# continue
# if len(evt)>=2 and evt[-1].isdigit() and len(evt[-1])>=10:
# bcdList.append(evt[-1])
# event_spath.append(fpath)
# '''==== 2. 生成事件字典, 只需运行一次 ==============='''
# gen_eventdict(event_spath)
# print("eventList have generated and saved!")
def test_one2one_one2SN():
def test_one2one_one2SN(simType):
'''1:1性能评估'''
# evtpaths, bcdSet = get_evtList()
# evtpaths, bcdSet = get_evtList(eventSourcePath)
'''=== 1. 只需运行一次,生成事件对应的标准特征库字典,如已生成,无需运行 ===='''
# gen_bcd_features(stdSamplePath, stdBarcodePath, stdFeaturePath, eventSourcePath)
'''==== 2. 生成事件字典, 只需运行一次 ===================='''
# init_eventDict(eventSourcePath, eventDataPath, source_type)
# date_ = ['2025-3-4_1', '2025-3-5_1', '2025-3-5_2']
# for dt in date_:
# evtpaths = os.path.join(eventSourcePath, dt)
# init_eventDict(evtpaths, eventDataPath, source_type)
init_eventDict(eventSourcePath, eventDataPath, source_type)
'''==== 2. 基于事件barcode集和标准库barcode交集构造事件集合 ========='''
'''==== 3. 基于事件barcode集和标准库barcode交集构造事件集合 ========='''
evtList, evtDict, stdDict = build_std_evt_dict()
one2one_pr(evtList, evtDict, stdDict)
one2one_pr(evtList, evtDict, stdDict, simType)
one2SN_pr(evtList, evtDict, stdDict)
one2SN_pr(evtList, evtDict, stdDict, simType)
if __name__ == '__main__':
'''
@ -694,20 +414,9 @@ if __name__ == '__main__':
(7) similPath: 1:1比对结果存储地址(事件级)在resultPath下
'''
# stdSamplePath = r"\\192.168.1.28\share\数据\已完成数据\展厅数据\v1.0\比对数据\整理\zhantingBase"
# stdBarcodePath = r"D:\exhibition\dataset\bcdpath"
# stdFeaturePath = r"\\192.168.1.28\share\数据\已完成数据\比对数据\barcode\all_totalBarocde\features_json\v11_barcode_11592"
# eventSourcePath = r'D:\exhibition\images\20241202'
# eventSourcePath = r"\\192.168.1.28\share\测试视频数据以及日志\各模块测试记录\展厅测试\1129_展厅模型v801测试组测试"
# stdSamplePath = r"\\192.168.1.28\share\数据\已完成数据\展厅数据\v2.0_abroad\比对数据\all_base_二筛"
# stdBarcodePath = r"\\192.168.1.28\share\测试视频数据以及日志\海外展厅测试数据\比对测试数据20250121_testing\bcdpath"
# stdFeaturePath = r"\\192.168.1.28\share\测试视频数据以及日志\海外展厅测试数据\比对测试数据20250121_testing\stdfeats"
stdSamplePath = r"\\192.168.1.28\share\数据\已完成数据\比对数据\barcode\all_totalBarocde\totalBarcode"
stdBarcodePath = r"\\192.168.1.28\share\测试视频数据以及日志\全实时测试\testing\bcdpath"
stdFeaturePath = r"\\192.168.1.28\share\数据\已完成数据\比对数据\barcode\all_totalBarocde\features_json\v11_barcode_0304"
stdSamplePath = "/home/wqg/dataset/total_barcode/totalBarcode"
stdBarcodePath = "/home/wqg/dataset/total_barcode/bcdpath"
stdFeaturePath = "/home/wqg/dataset/test_dataset/total_barcode/features_json/v11_barcode_0304/"
if not os.path.exists(stdBarcodePath):
os.makedirs(stdBarcodePath)
@ -719,18 +428,24 @@ if __name__ == '__main__':
"data": 基于事件切分的原 data 文件版本
"realtime": 全实时生成的 data 文件
'''
source_type = 'realtime' # 'source', 'data', 'realtime'
eventSourcePath = r"\\192.168.1.28\share\测试视频数据以及日志\全实时测试\V12\基准数据集\2025-3-4_1"
resultPath = r"\\192.168.1.28\share\测试视频数据以及日志\全实时测试\testing"
source_type = 'source' # 'source', 'data', 'realtime'
simType = "typea" # "simple", "typea", "typeb"
eventDataPath = os.path.join(resultPath, "evtobjs_0304_1")
similPath = os.path.join(resultPath, "simidata_0304_1")
evttype = "single_event_V10"
# evttype = "single_event_V5"
# evttype = "performence_V10"
# evttype = "performence_V5"
eventSourcePath = "/home/wqg/dataset/pipeline/yrt/{}/shopping_pkl".format(evttype)
resultPath = "/home/wqg/dataset/pipeline/contrast/{}".format(evttype)
eventDataPath = os.path.join(resultPath, "evtobjs")
similPath = os.path.join(resultPath, "simidata")
if not os.path.exists(eventDataPath):
os.makedirs(eventDataPath)
if not os.path.exists(similPath):
os.makedirs(similPath)
test_one2one_one2SN()
test_one2one_one2SN(simType)

View File

@ -16,7 +16,11 @@ from pathlib import Path
import matplotlib.pyplot as plt
import sys
sys.path.append(r"D:\DetectTracking")
FILE = Path(__file__).resolve()
ROOT = FILE.parents[1] # YOLOv5 root directory
if str(ROOT) not in sys.path:
sys.path.append(str(ROOT))
from tracking.utils.read_data import read_similar
def read_one2one_data(filepath):
@ -531,21 +535,23 @@ def contrast_pr(evtPaths):
# bcdSet = set(bcdList)
one2nErrFile = os.path.join(evtPaths, "one_2_Small_n_Error.txt")
with open(one2nErrFile, "w") as file:
for item in fnevents:
file.write(item + "\n")
one2NErrFile = os.path.join(evtPaths, "one_2_Big_N_Error.txt")
with open(one2NErrFile, "w") as file:
for item in fn_events:
file.write(item + "\n")
# one2nErrFile = os.path.join(evtPaths, "one_2_Small_n_Error.txt")
# with open(one2nErrFile, "w") as file:
# for item in fnevents:
# file.write(item + "\n")
# one2NErrFile = os.path.join(evtPaths, "one_2_Big_N_Error.txt")
# with open(one2NErrFile, "w") as file:
# for item in fn_events:
# file.write(item + "\n")
print('Done!')
if __name__ == "__main__":
evtpaths = r"\\192.168.1.28\share\测试视频数据以及日志\全实时测试\V12\2025-3-3"
evtpaths = r"/home/wqg/dataset/test_base_dataset/single_event/source"
contrast_pr(evtpaths)

172
contrast/trail2trail.py Normal file
View File

@ -0,0 +1,172 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
取出再放回场景下商品轨迹特征比对方式与性能分析
Created on Tue Apr 1 17:17:47 2025
@author: wqg
"""
import os
import pickle
import random
import numpy as np
from pathlib import Path
import matplotlib.pyplot as plt
from scipy.spatial.distance import cdist
from utils.calsimi import calsiml, calsimi_vs_evts
def read_eventdict(evtpaths):
evtDict = {}
for filename in os.listdir(evtpaths):
evtname, ext = os.path.splitext(filename)
if ext != ".pickle": continue
evtpath = os.path.join(evtpaths, filename)
with open(evtpath, 'rb') as f:
evtdata = pickle.load(f)
evtDict[evtname] = evtdata
return evtDict
def compute_show_pr(Same, Cross):
TPFN = len(Same)
TNFP = len(Cross)
Recall_Pos, Recall_Neg = [], []
Precision_Pos, Precision_Neg = [], []
Correct = []
Thresh = np.linspace(-0.2, 1, 100)
for th in Thresh:
TP = np.sum(Same >= th)
FN = np.sum(Same < th)
# FN = TPFN - TP
TN = np.sum(Cross < th)
FP = np.sum(Cross >= th)
# FP = TNFP - TN
Precision_Pos.append(TP/(TP+FP+1e-6))
Precision_Neg.append(TN/(TN+FN+1e-6))
Recall_Pos.append(TP/(TP+FN+1e-6))
Recall_Neg.append(TN/(TN+FP+1e-6))
# Recall_Pos.append(TP/TPFN)
# Recall_Neg.append(TN/TNFP)
Correct.append((TN+TP)/(TPFN+TNFP))
fig, ax = plt.subplots()
ax.plot(Thresh, Precision_Pos, 'r', label='Precision_Pos: TP/(TP+FP)')
ax.plot(Thresh, Recall_Pos, 'b', label='Recall_Pos: TP/TPFN')
ax.plot(Thresh, Recall_Neg, 'g', label='Recall_Neg: TN/TNFP')
ax.plot(Thresh, Correct, 'c', label='Correct: (TN+TP)/(TPFN+TNFP)')
ax.plot(Thresh, Precision_Neg, 'm', label='Precision_Neg: TN/(TN+FN)')
ax.set_xlim([0, 1])
ax.set_ylim([0, 1])
ax.set_xticks(np.arange(0, 1, 0.1))
ax.set_yticks(np.arange(0, 1, 0.1))
ax.grid(True, linestyle='--')
ax.set_title('PrecisePos & PreciseNeg')
ax.set_xlabel(f"Same Num: {TPFN}, Cross Num: {TNFP}")
ax.legend()
plt.show()
# rltpath = os.path.join(similPath, f'pr_1to1_{simType}.png')
# plt.savefig(rltpath) # svg, png, pdf
fig, axes = plt.subplots(2,1)
axes[0].hist(Same, bins=60, range=(-0.2, 1), edgecolor='black')
axes[0].set_xlim([-0.2, 1])
axes[0].set_title(f'TP({len(Same)})')
axes[1].hist(Cross, bins=60, range=(-0.2, 1), edgecolor='black')
axes[1].set_xlim([-0.2, 1])
axes[1].set_title(f'TN({len(Cross)})')
# rltpath = os.path.join(similPath, f'hist_1to1_{simType}.png')
# plt.savefig(rltpath)
plt.show()
def trail_to_trail(evtpaths, rltpaths):
# select the method type of how to calculate the feat similarity of trail
simType = 2
##1. read all the ShoppingEvent object in the dir 'evtpaths'
evtDicts = read_eventdict(evtpaths)
##2. Combine event object with the same barcode
barcodes, evtpairDict = [], {}
for k in evtDicts.keys():
evt = k.split('_')
condt = len(evt)>=2 and evt[-1].isdigit() and len(evt[-1])>=10
if not condt: continue
barcode = evt[-1]
if barcode not in evtpairDict.keys():
evtpairDict[barcode] = []
barcodes.append(barcode)
evtpairDict[barcode].append(evtDicts[k])
barcodes = set(barcodes)
AA_list, AB_list = [], []
for barcode in evtpairDict.keys():
events = evtpairDict[barcode]
if len(events)>1:
evta, evtb = random.sample(events, 2)
AA_list.append((evta, evtb, "same"))
evtc = random.sample(events, 1)[0]
dset = list(barcodes.symmetric_difference(set([barcode])))
bcd = random.sample(dset, 1)[0]
evtd = random.sample(evtpairDict[bcd], 1)[0]
AB_list.append((evtc, evtd, "diff"))
mergePairs = AA_list + AB_list
##3. calculate the similar of two event: evta, evtb
new_pirs = []
for evta, evtb, label in mergePairs:
similar = calsimi_vs_evts(evta, evtb, simType)
if similar is None:
continue
new_pirs.append((label, round(similar, 3), evta.evtname[:15], evtb.evtname[:15]))
##4. compute PR and showing
Same = np.array([s for label, s, _, _ in new_pirs if label=="same"])
Cross = np.array([s for label, s, _, _ in new_pirs if label=="diff"])
compute_show_pr(Same, Cross)
def main():
evttypes = ["single_event_V10", "single_event_V5", "performence_V10", "performence_V5"]
# evttypes = ["single_event_V10"]
for evttype in evttypes:
evtpaths = "/home/wqg/dataset/pipeline/contrast/{}/evtobjs/".format(evttype)
rltpaths = "/home/wqg/dataset/pipeline/yrt/{}/yolos_tracking".format(evttype)
trail_to_trail(evtpaths, rltpaths)
if __name__ == '__main__':
main()

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

216
contrast/utils/calsimi.py Normal file
View File

@ -0,0 +1,216 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Mon Mar 31 16:25:43 2025
@author: wqg
"""
import numpy as np
from scipy.spatial.distance import cdist
def get_topk_percent(data, k):
"""
获取数据中最大的 k% 的元素
"""
# 将数据转换为 NumPy 数组
if isinstance(data, list):
data = np.array(data)
percentile = np.percentile(data, 100-k)
top_k_percent = data[data >= percentile]
return top_k_percent
def cluster(data, thresh=0.15):
# data = np.array([0.1, 0.13, 0.7, 0.2, 0.8, 0.52, 0.3, 0.7, 0.85, 0.58])
# data = np.array([0.1, 0.13, 0.2, 0.3])
# data = np.array([0.1])
if isinstance(data, list):
data = np.array(data)
data1 = np.sort(data)
cluter, Cluters, = [data1[0]], []
for i in range(1, len(data1)):
if data1[i] - data1[i-1]< thresh:
cluter.append(data1[i])
else:
Cluters.append(cluter)
cluter = [data1[i]]
Cluters.append(cluter)
clt_center = []
for clt in Cluters:
## 是否应该在此处限制一个聚类中的最小轨迹样本数,应该将该因素放在轨迹分析中
# if len(clt)>=3:
# clt_center.append(np.mean(clt))
clt_center.append(np.mean(clt))
# print(clt_center)
return clt_center
def calsiml(feat1, feat2, topkp=75, cluth=0.15):
'''轨迹样本和标准特征集样本相似度的选择策略'''
matrix = 1 - cdist(feat1, feat2, 'cosine')
simi_max = []
for i in range(len(matrix)):
sim = np.mean(get_topk_percent(matrix[i, :], topkp))
simi_max.append(sim)
cltc_max = cluster(simi_max, cluth)
Simi = max(cltc_max)
## cltc_max为空属于编程考虑不周应予以排查解决
# if len(cltc_max):
# Simi = max(cltc_max)
# else:
# Simi = 0 #不应该走到该处
return Simi
def calsimi_vs_stdfeat_new(event, stdfeat):
'''事件与标准库的对比策略
该比对策略是否可以拓展到事件与事件的比对?
'''
front_boxes = np.empty((0, 9), dtype=np.float64) ##和类doTracks兼容
front_feats = np.empty((0, 256), dtype=np.float64) ##和类doTracks兼容
for i in range(len(event.front_boxes)):
front_boxes = np.concatenate((front_boxes, event.front_boxes[i]), axis=0)
front_feats = np.concatenate((front_feats, event.front_feats[i]), axis=0)
back_boxes = np.empty((0, 9), dtype=np.float64) ##和类doTracks兼容
back_feats = np.empty((0, 256), dtype=np.float64) ##和类doTracks兼容
for i in range(len(event.back_boxes)):
back_boxes = np.concatenate((back_boxes, event.back_boxes[i]), axis=0)
back_feats = np.concatenate((back_feats, event.back_feats[i]), axis=0)
front_simi, back_simi = None, None
if len(front_feats):
front_simi = calsiml(front_feats, stdfeat)
if len(back_feats):
back_simi = calsiml(back_feats, stdfeat)
'''前后摄相似度融合策略'''
if len(front_feats) and len(back_feats):
diff_simi = abs(front_simi - back_simi)
if diff_simi>0.15:
Similar = max([front_simi, back_simi])
else:
Similar = (front_simi+back_simi)/2
elif len(front_feats) and len(back_feats)==0:
Similar = front_simi
elif len(front_feats)==0 and len(back_feats):
Similar = back_simi
else:
Similar = None # 在event.front_feats和event.back_feats同时为空时
return Similar, front_simi, back_simi
def calsimi_vs_stdfeat(event, stdfeat):
evtfeat = event.feats_compose
if isinstance(event.feats_select, list):
if len(event.feats_select) and len(event.feats_select[0]):
evtfeat = event.feats_select[0]
else:
return None, None, None
else:
evtfeat = event.feats_select
if len(evtfeat)==0 or len(stdfeat)==0:
return None, None, None
evtfeat /= np.linalg.norm(evtfeat, axis=1)[:, None]
stdfeat /= np.linalg.norm(stdfeat, axis=1)[:, None]
matrix = 1 - cdist(evtfeat, stdfeat, 'cosine')
matrix[matrix < 0] = 0
simi_mean = np.mean(matrix)
simi_max = np.max(matrix)
stdfeatm = np.mean(stdfeat, axis=0, keepdims=True)
evtfeatm = np.mean(evtfeat, axis=0, keepdims=True)
simi_mfeat = 1- np.maximum(0.0, cdist(stdfeatm, evtfeatm, 'cosine'))
return simi_mean, simi_max, simi_mfeat[0,0]
def calsimi_vs_evts(evta, evtb, simType=1):
if simType==1:
if len(evta.feats_compose) and len(evtb.feats_compose):
feata = evta.feats_compose
featb = evtb.feats_compose
matrix = 1 - cdist(feata, featb, 'cosine')
similar = np.mean(matrix)
else:
similar = None
return similar
if simType==2:
if len(evta.feats_compose) and len(evtb.feats_compose):
feata = evta.feats_compose
featb = evtb.feats_compose
matrix = 1 - cdist(feata, featb, 'cosine')
similar = np.max(matrix)
else:
similar = None
return similar
if simType==3:
if len(evta.feats_compose) and len(evtb.feats_compose):
feata = evta.feats_compose
featb = evtb.feats_compose
similar = calsiml(feata, featb)
else:
similar = None
return similar
##1. the front feats of evta, evtb
fr_feata = np.empty((0, 256), dtype=np.float64) ##和类doTracks兼容
for i in range(len(evta.front_feats)):
fr_feata = np.concatenate((fr_feata, evta.front_feats[i]), axis=0)
fr_featb = np.empty((0, 256), dtype=np.float64) ##和类doTracks兼容
for i in range(len(evtb.front_feats)):
fr_featb = np.concatenate((fr_featb, evtb.front_feats[i]), axis=0)
##2. the back feats of evta, evtb
bk_feata = np.empty((0, 256), dtype=np.float64) ##和类doTracks兼容
for i in range(len(evta.back_feats)):
bk_feata = np.concatenate((bk_feata, evta.back_feats[i]), axis=0)
bk_featb = np.empty((0, 256), dtype=np.float64) ##和类doTracks兼容
for i in range(len(evtb.back_feats)):
bk_featb = np.concatenate((bk_featb, evtb.back_feats[i]), axis=0)
front_simi, back_simi = None, None
if len(fr_feata) and len(fr_featb):
front_simi = calsiml(fr_feata, fr_featb)
if len(bk_feata) and len(bk_featb):
back_simi = calsiml(bk_feata, bk_featb)
'''前后摄相似度融合策略'''
if front_simi is not None and back_simi is not None:
diff_simi = abs(front_simi - back_simi)
if diff_simi>0.15:
similar = max([front_simi, back_simi])
else:
similar = (front_simi+back_simi)/2
elif front_simi is not None and back_simi is None:
similar = front_simi
elif front_simi is None and back_simi is not None:
similar = back_simi
else:
similar = None # 在event.front_feats和event.back_feats同时为空时
return similar

127
contrast/utils/databits.py Normal file
View File

@ -0,0 +1,127 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Tue Apr 1 16:43:04 2025
@author: wqg
"""
import os
import pickle
import numpy as np
from scipy.spatial.distance import cdist
def int8_to_ft16(arr_uint8, amin, amax):
arr_ft16 = (arr_uint8 / 255 * (amax-amin) + amin).astype(np.float16)
return arr_ft16
def ft16_to_uint8(arr_ft16):
# pickpath = r"\\192.168.1.28\share\测试_202406\contrast\std_features_ft32vsft16\6902265587712_ft16.pickle"
# with open(pickpath, 'rb') as f:
# edict = pickle.load(f)
# arr_ft16 = edict['feats']
amin = np.min(arr_ft16)
amax = np.max(arr_ft16)
arr_ft255 = (arr_ft16 - amin) * 255 / (amax-amin)
arr_uint8 = arr_ft255.astype(np.uint8)
arr_ft16_ = int8_to_ft16(arr_uint8, amin, amax)
arrDistNorm = np.linalg.norm(arr_ft16_ - arr_ft16) / arr_ft16_.size
return arr_uint8, arr_ft16_
def data_precision_compare(stdfeat, evtfeat, evtMessage, similPath='', save=True):
evt, stdbcd, label = evtMessage
rltdata, rltdata_ft16, rltdata_ft16_ = [], [], []
matrix = 1 - cdist(stdfeat, evtfeat, 'cosine')
simi_mean = np.mean(matrix)
simi_max = np.max(matrix)
stdfeatm = np.mean(stdfeat, axis=0, keepdims=True)
evtfeatm = np.mean(evtfeat, axis=0, keepdims=True)
simi_mfeat = 1- np.maximum(0.0, cdist(stdfeatm, evtfeatm, 'cosine'))
rltdata = [label, stdbcd, evt, simi_mean, simi_max, simi_mfeat[0,0]]
##================================================================= float16
stdfeat_ft16 = stdfeat.astype(np.float16)
evtfeat_ft16 = evtfeat.astype(np.float16)
stdfeat_ft16 /= np.linalg.norm(stdfeat_ft16, axis=1)[:, None]
evtfeat_ft16 /= np.linalg.norm(evtfeat_ft16, axis=1)[:, None]
matrix_ft16 = 1 - cdist(stdfeat_ft16, evtfeat_ft16, 'cosine')
simi_mean_ft16 = np.mean(matrix_ft16)
simi_max_ft16 = np.max(matrix_ft16)
stdfeatm_ft16 = np.mean(stdfeat_ft16, axis=0, keepdims=True)
evtfeatm_ft16 = np.mean(evtfeat_ft16, axis=0, keepdims=True)
simi_mfeat_ft16 = 1- np.maximum(0.0, cdist(stdfeatm_ft16, evtfeatm_ft16, 'cosine'))
rltdata_ft16 = [label, stdbcd, evt, simi_mean_ft16, simi_max_ft16, simi_mfeat_ft16[0,0]]
'''****************** uint8 is ok!!!!!! ******************'''
##=================================================================== uint8
# stdfeat_uint8, stdfeat_ft16_ = ft16_to_uint8(stdfeat_ft16)
# evtfeat_uint8, evtfeat_ft16_ = ft16_to_uint8(evtfeat_ft16)
stdfeat_uint8 = (stdfeat_ft16*128).astype(np.int8)
evtfeat_uint8 = (evtfeat_ft16*128).astype(np.int8)
stdfeat_ft16_ = stdfeat_uint8.astype(np.float16)/128
evtfeat_ft16_ = evtfeat_uint8.astype(np.float16)/128
absdiff = np.linalg.norm(stdfeat_ft16_ - stdfeat) / stdfeat.size
matrix_ft16_ = 1 - cdist(stdfeat_ft16_, evtfeat_ft16_, 'cosine')
simi_mean_ft16_ = np.mean(matrix_ft16_)
simi_max_ft16_ = np.max(matrix_ft16_)
stdfeatm_ft16_ = np.mean(stdfeat_ft16_, axis=0, keepdims=True)
evtfeatm_ft16_ = np.mean(evtfeat_ft16_, axis=0, keepdims=True)
simi_mfeat_ft16_ = 1- np.maximum(0.0, cdist(stdfeatm_ft16_, evtfeatm_ft16_, 'cosine'))
rltdata_ft16_ = [label, stdbcd, evt, simi_mean_ft16_, simi_max_ft16_, simi_mfeat_ft16_[0,0]]
if not save:
return
##========================================================= save as float32
rppath = os.path.join(similPath, f'{evt}_ft32.pickle')
with open(rppath, 'wb') as f:
pickle.dump(rltdata, f)
rtpath = os.path.join(similPath, f'{evt}_ft32.txt')
with open(rtpath, 'w', encoding='utf-8') as f:
for result in rltdata:
part = [f"{x:.3f}" if isinstance(x, float) else str(x) for x in result]
line = ', '.join(part)
f.write(line + '\n')
##========================================================= save as float16
rppath_ft16 = os.path.join(similPath, f'{evt}_ft16.pickle')
with open(rppath_ft16, 'wb') as f:
pickle.dump(rltdata_ft16, f)
rtpath_ft16 = os.path.join(similPath, f'{evt}_ft16.txt')
with open(rtpath_ft16, 'w', encoding='utf-8') as f:
for result in rltdata_ft16:
part = [f"{x:.3f}" if isinstance(x, float) else str(x) for x in result]
line = ', '.join(part)
f.write(line + '\n')
##=========================================================== save as uint8
rppath_uint8 = os.path.join(similPath, f'{evt}_uint8.pickle')
with open(rppath_uint8, 'wb') as f:
pickle.dump(rltdata_ft16_, f)
rtpath_uint8 = os.path.join(similPath, f'{evt}_uint8.txt')
with open(rtpath_uint8, 'w', encoding='utf-8') as f:
for result in rltdata_ft16_:
part = [f"{x:.3f}" if isinstance(x, float) else str(x) for x in result]
line = ', '.join(part)
f.write(line + '\n')

View File

@ -5,19 +5,25 @@ Created on Tue Nov 26 17:35:05 2024
@author: ym
"""
import os
import sys
import cv2
import pickle
import numpy as np
from pathlib import Path
import sys
sys.path.append(r"D:\DetectTracking")
FILE = Path(__file__).resolve()
ROOT = FILE.parents[2] # YOLOv5 root directory
if str(ROOT) not in sys.path:
sys.path.append(str(ROOT))
from tracking.utils.plotting import Annotator, colors
from tracking.utils.drawtracks import drawTrack
from tracking.utils.read_data import extract_data, read_tracking_output, read_similar
from tracking.utils.read_data import extract_data_realtime, read_tracking_output_realtime
# import platform
# import pathlib
# plt = platform.system()

View File

@ -4,8 +4,81 @@ Created on Thu Oct 31 15:17:01 2024
@author: ym
"""
import os
import numpy as np
import pickle
from pathlib import Path
import matplotlib.pyplot as plt
from .event import ShoppingEvent
def init_eventDict(sourcePath, eventDataPath, stype="data"):
'''
stype: str,
'source': 由 videos 或 images 生成的 pickle 文件
'data': 从 data 文件中读取的现场运行数据
"realtime": 全实时数据,从 data 文件中读取的现场运行数据
sourcePath:事件文件夹事件类型包含2种
(1) pipeline生成的 pickle 文件
(2) 直接采集的事件文件夹
'''
k, errEvents = 0, []
for evtname in os.listdir(sourcePath):
bname, ext = os.path.splitext(evtname)
source_path = os.path.join(sourcePath, evtname)
if stype=="source" and ext not in ['.pkl', '.pickle']: continue
if stype=="data" and os.path.isfile(source_path): continue
if stype=="realtime" and os.path.isfile(source_path): continue
evt = bname.split('_')
condt = len(evt)>=2 and evt[-1].isdigit() and len(evt[-1])>=10
if not condt: continue
pickpath = os.path.join(eventDataPath, f"{bname}.pickle")
if os.path.isfile(pickpath): continue
# event = ShoppingEvent(source_path, stype)
try:
event = ShoppingEvent(source_path, stype)
with open(pickpath, 'wb') as f:
pickle.dump(event, f)
print(evtname)
except Exception as e:
errEvents.append(source_path)
print(f"Error: {evtname}, {e}")
# k += 1
# if k==1:
# break
errfile = Path(eventDataPath).parent / 'error_events.txt'
with open(str(errfile), 'a', encoding='utf-8') as f:
for line in errEvents:
f.write(line + '\n')
def get_evtList(evtpath):
'''==== 0. 生成事件列表和对应的 Barcodes 集合 ==========='''
bcdList, evtpaths = [], []
for evtname in os.listdir(evtpath):
bname, ext = os.path.splitext(evtname)
## 处理事件的两种情况:文件夹 和 Yolo-Resnet-Tracker 的输出
fpath = os.path.join(evtpath, evtname)
if os.path.isfile(fpath) and (ext==".pkl" or ext==".pickle"):
evt = bname.split('_')
elif os.path.isdir(fpath):
evt = evtname.split('_')
else:
continue
if len(evt)>=2 and evt[-1].isdigit() and len(evt[-1])>=10:
bcdList.append(evt[-1])
evtpaths.append(fpath)
bcdSet = set(bcdList)
return evtpaths, bcdSet

View File

@ -5,27 +5,37 @@ Created on Fri Mar 28 11:35:28 2025
@author: ym
"""
from pipeline_01 import execute_pipeline
from pipeline import execute_pipeline
execute_pipeline(evtdir = r"D:\datasets\ym\后台数据\unzip",
def execute(datapath, savepath_v5, savepath_v10):
execute_pipeline(evtdir = datapath,
DataType = "raw", # raw, pkl
kk=1,
kk=None,
source_type = "video", # video, image,
save_path = r"D:\work\result_pipeline_V5",
save_path = savepath_v5,
yolo_ver = "V5", # V10, V5
weight_yolo_v5 = r'./ckpts/best_cls10_0906.pt' ,
weight_yolo_v10 = r'./ckpts/best_v10s_width0375_1205.pt',
saveimages = False
)
execute_pipeline(evtdir = r"D:\datasets\ym\后台数据\unzip",
execute_pipeline(evtdir = datapath,
DataType = "raw", # raw, pkl
kk=1,
kk=None,
source_type = "video", # video, image,
save_path = r"D:\work\result_pipeline_V10",
save_path = savepath_v10,
yolo_ver = "V10", # V10, V5
weight_yolo_v5 = r'./ckpts/best_cls10_0906.pt' ,
weight_yolo_v10 = r'./ckpts/best_v10s_width0375_1205.pt',
saveimages = False
)
datapath = r'/home/wqg/dataset/test_dataset/base_dataset/single_event/source/'
savepath_v5 = r'/home/wqg/dataset/pipeline/contrast/single_event_V5'
savepath_v10 = r'/home/wqg/dataset/pipeline/contrast/single_event_V10'
execute(datapath, savepath_v5, savepath_v10)
datapath = r'/home/wqg/dataset/test_performence_dataset/'
savepath_v5 = r'/home/wqg/dataset/pipeline/contrast/performence_V5'
savepath_v10 = r'/home/wqg/dataset/pipeline/contrast/performence_V10'
execute(datapath, savepath_v5, savepath_v10)

View File

@ -60,48 +60,158 @@ def save_subimgs_1(imgdict, boxes, spath, ctype, simidict = None):
cv2.imwrite(imgpath, img)
def show_result(event_tracks, yrtDict, savepath_pipe):
'''保存 Tracking 输出的运动轨迹子图,并记录相似度'''
def pipeline(
eventpath,
savepath,
savepath_pipe_subimgs = savepath_pipe / Path("subimgs")
if not savepath_pipe_subimgs.exists():
savepath_pipe_subimgs.mkdir(parents=True, exist_ok=True)
for CamerType, vts in event_tracks:
if len(vts.tracks)==0: continue
if CamerType == 'front':
# yolos = ShoppingDict["frontCamera"]["yoloResnetTracker"]
yolos = yrtDict["frontyrt"]
ctype = 1
if CamerType == 'back':
# yolos = ShoppingDict["backCamera"]["yoloResnetTracker"]
yolos = yrtDict["backyrt"]
ctype = 0
imgdict, featdict, simidict = {}, {}, {}
for y in yolos:
imgdict.update(y["imgs"])
featdict.update(y["feats"])
simidict.update(y["featsimi"])
for track in vts.Residual:
if isinstance(track, np.ndarray):
save_subimgs(imgdict, track, savepath_pipe_subimgs, ctype, featdict)
else:
save_subimgs(imgdict, track.slt_boxes, savepath_pipe_subimgs, ctype, featdict)
'''(3) 轨迹显示与保存'''
illus = [None, None]
for CamerType, vts in event_tracks:
if len(vts.tracks)==0: continue
if CamerType == 'front':
edgeline = cv2.imread("./tracking/shopcart/cart_tempt/board_ftmp_line.png")
h, w = edgeline.shape[:2]
# nh, nw = h//2, w//2
# edgeline = cv2.resize(edgeline, (nw, nh), interpolation=cv2.INTER_AREA)
img_tracking = draw_all_trajectories(vts, edgeline, savepath_pipe, CamerType, draw5p=True)
illus[0] = img_tracking
plt = plot_frameID_y2(vts)
plt.savefig(os.path.join(savepath_pipe, "front_y2.png"))
if CamerType == 'back':
edgeline = cv2.imread("./tracking/shopcart/cart_tempt/edgeline.png")
h, w = edgeline.shape[:2]
# nh, nw = h//2, w//2
# edgeline = cv2.resize(edgeline, (nw, nh), interpolation=cv2.INTER_AREA)
img_tracking = draw_all_trajectories(vts, edgeline, savepath_pipe, CamerType, draw5p=True)
illus[1] = img_tracking
illus = [im for im in illus if im is not None]
if len(illus):
img_cat = np.concatenate(illus, axis = 1)
if len(illus)==2:
H, W = img_cat.shape[:2]
cv2.line(img_cat, (int(W/2), 0), (int(W/2), int(H)), (128, 128, 255), 3)
trajpath = os.path.join(savepath_pipe, "trajectory.png")
cv2.imwrite(trajpath, img_cat)
def pipeline(eventpath,
SourceType,
weights,
YoloVersion="V5"
DataType = "raw", #raw, pkl: images or videos, pkl, pickle file
YoloVersion="V5",
savepath = None,
saveimages = True
):
'''
eventpath: 单个事件的存储路径
'''
optdict = {}
optdict["weights"] = weights
if SourceType == "video":
vpaths = get_video_pairs(eventpath)
elif SourceType == "image":
vpaths = get_image_pairs(eventpath)
event_tracks = []
## 构造购物事件字典
evtname = Path(eventpath).stem
barcode = evtname.split('_')[-1] if len(evtname.split('_'))>=2 \
and len(evtname.split('_')[-1])>=8 \
and evtname.split('_')[-1].isdigit() else ''
'''事件结果存储文件夹'''
'''事件结果存储文件夹: savepath_pipe, savepath_pkl'''
if not savepath:
savepath = Path(__file__).resolve().parents[0] / "events_result"
savepath_pipeline = Path(savepath) / Path("Yolos_Tracking") / evtname
savepath_pipe = Path(savepath) / Path("yolos_tracking") / evtname
"""ShoppingDict pickle 文件保存地址 """
savepath_spdict = Path(savepath) / "ShoppingDict_pkfile"
if not savepath_spdict.exists():
savepath_spdict.mkdir(parents=True, exist_ok=True)
pf_path = Path(savepath_spdict) / Path(str(evtname)+".pickle")
savepath_pkl = Path(savepath) / "shopping_pkl"
if not savepath_pkl.exists():
savepath_pkl.mkdir(parents=True, exist_ok=True)
pklpath = Path(savepath_pkl) / Path(str(evtname)+".pickle")
yrt_out = []
if DataType == "raw":
### 不重复执行已经过yolo-resnet-tracker
if pklpath.exists():
print(f"Pickle file have saved: {evtname}.pickle")
return
if SourceType == "video":
vpaths = get_video_pairs(eventpath)
elif SourceType == "image":
vpaths = get_image_pairs(eventpath)
for vpath in vpaths:
'''================= 2. 事件结果存储文件夹 ================='''
if isinstance(vpath, list):
savepath_pipe_imgs = savepath_pipe / Path("images")
else:
savepath_pipe_imgs = savepath_pipe / Path(str(Path(vpath).stem))
if not savepath_pipe_imgs.exists():
savepath_pipe_imgs.mkdir(parents=True, exist_ok=True)
optdict = {}
optdict["weights"] = weights
optdict["source"] = vpath
optdict["save_dir"] = savepath_pipe_imgs
optdict["is_save_img"] = saveimages
optdict["is_save_video"] = True
if YoloVersion == "V5":
yrtOut = yolo_resnet_tracker(**optdict)
elif YoloVersion == "V10":
yrtOut = yolov10_resnet_tracker(**optdict)
yrt_out.append((vpath, yrtOut))
elif DataType == "pkl":
pass
else:
return
# if pf_path.exists():
# print(f"Pickle file have saved: {evtname}.pickle")
# return
'''====================== 构造 ShoppingDict 模块 ======================='''
ShoppingDict = {"eventPath": eventpath,
@ -112,16 +222,14 @@ def pipeline(
"backCamera": {},
"one2n": [] #
}
yrtDict = {}
procpath = Path(eventpath).joinpath('process.data')
if procpath.is_file():
SimiDict = read_similar(procpath)
ShoppingDict["one2n"] = SimiDict['one2n']
for vpath in vpaths:
yrtDict = {}
event_tracks = []
for vpath, yrtOut in yrt_out:
'''================= 1. 构造相机事件字典 ================='''
CameraEvent = {"cameraType": '', # "front", "back"
"videoPath": '',
@ -141,33 +249,9 @@ def pipeline(
if bname.split('_')[0] == "1" or bname.find('front')>=0:
CameraEvent["cameraType"] = "front"
'''================= 2. 事件结果存储文件夹 ================='''
if isinstance(vpath, list):
savepath_pipeline_imgs = savepath_pipeline / Path("images")
else:
savepath_pipeline_imgs = savepath_pipeline / Path(str(Path(vpath).stem))
if not savepath_pipeline_imgs.exists():
savepath_pipeline_imgs.mkdir(parents=True, exist_ok=True)
savepath_pipeline_subimgs = savepath_pipeline / Path("subimgs")
if not savepath_pipeline_subimgs.exists():
savepath_pipeline_subimgs.mkdir(parents=True, exist_ok=True)
'''================= 3. Yolo + Resnet + Tracker ================='''
optdict["source"] = vpath
optdict["save_dir"] = savepath_pipeline_imgs
optdict["is_save_img"] = True
optdict["is_save_video"] = True
if YoloVersion == "V5":
yrtOut = yolo_resnet_tracker(**optdict)
elif YoloVersion == "V10":
yrtOut = yolov10_resnet_tracker(**optdict)
'''2种保存方式: (1) no save subimg, (2) save img'''
###(1) save images
yrtOut_save = []
for frdict in yrtOut:
fr_dict = {}
@ -177,6 +261,7 @@ def pipeline(
yrtOut_save.append(fr_dict)
CameraEvent["yoloResnetTracker"] = yrtOut_save
###(2) no save images
# CameraEvent["yoloResnetTracker"] = yrtOut
'''================= 4. tracking ================='''
@ -219,108 +304,58 @@ def pipeline(
yrtDict["frontyrt"] = yrtOut
'''========================== 保存模块 ================================='''
'''(1) 保存 ShoppingDict 事件'''
with open(str(pf_path), 'wb') as f:
# 保存 ShoppingDict
with open(str(pklpath), 'wb') as f:
pickle.dump(ShoppingDict, f)
'''(2) 保存 Tracking 输出的运动轨迹子图,并记录相似度'''
for CamerType, vts in event_tracks:
if len(vts.tracks)==0: continue
if CamerType == 'front':
# yolos = ShoppingDict["frontCamera"]["yoloResnetTracker"]
# 绘制并保存轨迹图
show_result(event_tracks, yrtDict, savepath_pipe)
yolos = yrtDict["frontyrt"]
ctype = 1
if CamerType == 'back':
# yolos = ShoppingDict["backCamera"]["yoloResnetTracker"]
yolos = yrtDict["backyrt"]
ctype = 0
imgdict, featdict, simidict = {}, {}, {}
for y in yolos:
imgdict.update(y["imgs"])
featdict.update(y["feats"])
simidict.update(y["featsimi"])
for track in vts.Residual:
if isinstance(track, np.ndarray):
save_subimgs(imgdict, track, savepath_pipeline_subimgs, ctype, featdict)
else:
save_subimgs(imgdict, track.slt_boxes, savepath_pipeline_subimgs, ctype, featdict)
'''(3) 轨迹显示与保存'''
illus = [None, None]
for CamerType, vts in event_tracks:
if len(vts.tracks)==0: continue
if CamerType == 'front':
edgeline = cv2.imread("./tracking/shopcart/cart_tempt/board_ftmp_line.png")
h, w = edgeline.shape[:2]
# nh, nw = h//2, w//2
# edgeline = cv2.resize(edgeline, (nw, nh), interpolation=cv2.INTER_AREA)
img_tracking = draw_all_trajectories(vts, edgeline, savepath_pipeline, CamerType, draw5p=True)
illus[0] = img_tracking
plt = plot_frameID_y2(vts)
plt.savefig(os.path.join(savepath_pipeline, "front_y2.png"))
if CamerType == 'back':
edgeline = cv2.imread("./tracking/shopcart/cart_tempt/edgeline.png")
h, w = edgeline.shape[:2]
# nh, nw = h//2, w//2
# edgeline = cv2.resize(edgeline, (nw, nh), interpolation=cv2.INTER_AREA)
img_tracking = draw_all_trajectories(vts, edgeline, savepath_pipeline, CamerType, draw5p=True)
illus[1] = img_tracking
illus = [im for im in illus if im is not None]
if len(illus):
img_cat = np.concatenate(illus, axis = 1)
if len(illus)==2:
H, W = img_cat.shape[:2]
cv2.line(img_cat, (int(W/2), 0), (int(W/2), int(H)), (128, 128, 255), 3)
trajpath = os.path.join(savepath_pipeline, "trajectory.png")
cv2.imwrite(trajpath, img_cat)
def execute_pipeline(evtdir = r"D:\datasets\ym\后台数据\unzip",
source_type = "video", # video, image,
DataType = "raw", # raw, pkl
save_path = r"D:\work\result_pipeline",
kk=1,
source_type = "video", # video, image,
yolo_ver = "V10", # V10, V5
weight_yolo_v5 = r'./ckpts/best_cls10_0906.pt' ,
weight_yolo_v10 = r'./ckpts/best_v10s_width0375_1205.pt',
k=0
saveimages = True
):
'''
运行函数 pipeline(),遍历事件文件夹,每个文件夹是一个事件
'''
parmDict = {}
parmDict["SourceType"] = source_type
parmDict["DataType"] = DataType
parmDict["savepath"] = save_path
parmDict["SourceType"] = source_type
parmDict["YoloVersion"] = yolo_ver
if parmDict["YoloVersion"] == "V5":
parmDict["weights"] = weight_yolo_v5
elif parmDict["YoloVersion"] == "V10":
parmDict["weights"] = weight_yolo_v10
parmDict["saveimages"] = saveimages
evtdir = Path(evtdir)
errEvents = []
k = 0
for item in evtdir.iterdir():
if item.is_dir():
item = evtdir/Path("20250310-175352-741")
# item = evtdir/Path("20241212-171505-f0afe929-fdfe-4efa-94d0-2fa748d65fbb_6907992518930")
parmDict["eventpath"] = item
pipeline(**parmDict)
# try:
# pipeline(**parmDict)
# except Exception as e:
# errEvents.append(str(item))
k+=1
if k==1:
if kk is not None and k==kk:
break
errfile = os.path.join(parmDict["savepath"], 'error_events.txt')
@ -329,12 +364,20 @@ def execute_pipeline(evtdir = r"D:\datasets\ym\后台数据\unzip",
f.write(line + '\n')
if __name__ == "__main__":
execute_pipeline()
datapath = r'/home/wqg/dataset/test_dataset/base_dataset/single_event/source/'
savepath = r'/home/wqg/dataset/pipeline/test_result/single_event_V10'
execute_pipeline(evtdir = datapath,
DataType = "raw", # raw, pkl
kk=1,
source_type = "video", # video, image,
save_path = savepath,
yolo_ver = "V10", # V10, V5
weight_yolo_v5 = r'./ckpts/best_cls10_0906.pt' ,
weight_yolo_v10 = r'./ckpts/best_v10s_width0375_1205.pt',
saveimages = False
)
# spath_v10 = r"D:\work\result_pipeline_v10"
# spath_v5 = r"D:\work\result_pipeline_v5"
# execute_pipeline(save_path=spath_v10, yolo_ver="V10")
# execute_pipeline(save_path=spath_v5, yolo_ver="V5")

Binary file not shown.

View File

@ -123,25 +123,28 @@ def devide_motion_state(tboxes, width):
'''
periods = []
if len(tboxes) < width:
return periods
fboxes, frameTstamp = array2frame(tboxes)
fnum = len(frameTstamp)
if fnum < width: return periods
state = np.zeros((fnum, 2), dtype=np.int64)
frameState = np.concatenate((frameTstamp, state), axis = 1).astype(np.int64)
handState = np.concatenate((frameTstamp, state), axis = 1).astype(np.int64)
if fnum < width:
return frameState, handState
mtrackFid = {}
handFid = {}
'''frameState 标记由图像判断的购物车状态0: 静止1: 运动'''
for idx in range(width, fnum+1):
idx0 = idx-width
# if idx == 40:
# print("123")
lboxes = np.concatenate(fboxes[idx0:idx], axis = 0)
md = MoveDetect(lboxes)
md.classify()

420
realtime/intrude_detect.py Normal file
View File

@ -0,0 +1,420 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Tue Apr 8 10:07:17 2025
@author: wqg
"""
import csv
import os
import platform
import sys
import pickle
import cv2
import numpy as np
from pathlib import Path
import matplotlib.pyplot as plt
import matplotlib.pyplot as plt
from typing import List, Tuple
from scipy.spatial.distance import cdist
from scipy.spatial import ConvexHull
from shapely.geometry import Point, Polygon
##################################################### for method: run_yrt()
FILE = Path(__file__).resolve()
ROOT = FILE.parents[1]
if str(ROOT) not in sys.path:
sys.path.insert(0, str(ROOT))
from track_reid import yolov10_resnet_tracker
from event_time_specify import devide_motion_state
def cross(o: Tuple[float, float], a: Tuple[float, float], b: Tuple[float, float]) -> float:
""" 计算向量 OA × OB 的叉积 """
return (a[0] - o[0]) * (b[1] - o[1]) - (a[1] - o[1]) * (b[0] - o[0])
def compute_convex_hull(points: List[Tuple[float, float]]) -> List[Tuple[float, float]]:
""" 使用 Andrew's Monotone Chain 算法求二维点集的凸包 """
points = sorted(set(points)) # 排序并去重
if len(points) <= 1:
return points
lower = []
for p in points:
while len(lower) >= 2 and cross(lower[-2], lower[-1], p) <= 0:
lower.pop()
lower.append(p)
upper = []
for p in reversed(points):
while len(upper) >= 2 and cross(upper[-2], upper[-1], p) <= 0:
upper.pop()
upper.append(p)
# 去掉重复的连接点
return lower[:-1] + upper[:-1]
def is_point_in_convex_hull(point: Tuple[float, float], hull: List[Tuple[float, float]]) -> bool:
""" 判断一个点是否在凸包(含边界)内 """
n = len(hull)
if n < 3:
# 对于点或线段,直接判断是否共线或在线段上
if n == 1:
return point == hull[0]
if n == 2:
a, b = hull
return abs(cross(a, b, point)) < 1e-10 and min(a[0], b[0]) <= point[0] <= max(a[0], b[0]) and min(a[1], b[1]) <= point[1] <= max(a[1], b[1])
return False
for i in range(n):
a = hull[i]
b = hull[(i + 1) % n]
if cross(a, b, point) < -1e-10: # 必须全部在左边或边上
return False
return True
def plot_convex_hull(points: List[Tuple[float, float]], hull: List[Tuple[float, float]], test_points: List[Tuple[float, float]] = None):
x_all, y_all = zip(*points)
fig, ax = plt.subplots()
ax.set_xlim(0, 1024)
ax.set_ylim(1280, 0)
ax.plot(x_all, y_all, 'o', label='Points')
# 凸包闭环线
hull_loop = hull + [hull[0]]
hx, hy = zip(*hull_loop)
ax.plot(hx, hy, 'r-', linewidth=2, label='Convex Hull')
# 如果有测试点
if test_points:
for pt in test_points:
color = 'green' if is_point_in_convex_hull(pt, hull) else 'black'
ax.plot(pt[0], pt[1], 's', color=color, markersize=8)
ax.text(pt[0] + 0.05, pt[1], f'{pt}', fontsize=9)
ax.legend()
ax.grid(True)
plt.title("Convex Hull Visualization")
plt.show()
def convex_scipy():
points = np.array([
[0, 0],
[2, 0],
[1, 1],
[2, 2],
[0, 2],
[1, 0.5]])
hull = ConvexHull(points)
# 凸包顶点的索引
print("凸包顶点索引:{}".format(hull.vertices))
print("凸包顶点坐标:")
for i in hull.vertices:
print(points[i])
# 将凸包坐标构造成 Polygon
hull_points = points[hull.vertices]
polygon = Polygon(hull_points)
# 判断一个点是否在凸包内
p = Point(1, 1) # 示例点
print("是否在凸包内:", polygon.contains(p)) # True or False
def test_convex():
# 测试数据
sample_points = [(0, 0), (1, 1), (2, 2), (2, 0), (0, 2), (1, 0.5)]
convex_hull = compute_convex_hull(sample_points)
# 测试点在凸包内
test_point_inside = (1, 1)
test_point_outside = (3, 3)
test_point_on_edge = (1, 0)
inside = is_point_in_convex_hull(test_point_inside, convex_hull)
outside = is_point_in_convex_hull(test_point_outside, convex_hull)
on_edge = is_point_in_convex_hull(test_point_on_edge, convex_hull)
convex_hull, inside, outside, on_edge
# 展示图像
plot_convex_hull(sample_points, convex_hull, [test_point_inside, test_point_outside, test_point_on_edge])
def array2frame(tboxes):
"tboxes: [x1, y1, x2, y2, track_id, score, cls, frame_index, box_index]"
idx = np.where(tboxes[:, 6] != 0)[0]
bboxes = tboxes[idx, :]
frameID = np.sort(np.unique(bboxes[:, 7].astype(int)))
fboxes = []
for fid in frameID:
idx = np.where(bboxes[:, 7] == fid)[0]
box = bboxes[idx, :]
fboxes.append(box)
return fboxes
def convex_based(tboxes, width, TH=40):
fboxes = array2frame(tboxes)
fnum = len(fboxes)
fids = np.array([i+1 for i in range(fnum)])[:, np.newaxis]
state = np.zeros((fnum, 1), dtype=np.int64)
frameState = np.concatenate((fids, state), axis = 1).astype(np.int64)
if fnum < width:
return frameState
for idx1 in range(width, fnum+1):
idx0 = idx1 - width
idx = idx1 - width//2 - 1
iboxes = fboxes[:idx]
cboxes = fboxes[idx][:, 0:4]
cur_xy = np.zeros((len(cboxes), 2))
cur_xy[:, 0] = (fboxes[idx][:, 0]+fboxes[idx][:, 2])/2
cur_xy[:, 1] = (fboxes[idx][:, 1]+fboxes[idx][:, 3])/2
for i in range(width//2):
x1, y1, x2, y2 = iboxes[i][:, 0], iboxes[i][:, 1], iboxes[i][:, 2], iboxes[i][:, 3]
boxes = np.array([(x1, y1), (x1, y2), (x2, y1), (x2, y2)]).transpose(0, 2, 1).reshape(-1, 2)
box1 = [(x, y) for x, y in boxes]
convex_hull = compute_convex_hull(box1)
for pt in cur_xy:
inside = is_point_in_convex_hull(pt, convex_hull)
if not inside:
break
if not inside:
break
# Based on the distance between the four corners of the current frame boxes
# and adjacent frame boxes
iboxes = fboxes[idx0:idx] + fboxes[idx+1:idx1]
cboxes = fboxes[idx][:, 0:4]
cx1, cy1, cx2, cy2 = cboxes[:, 0], cboxes[:, 1], cboxes[:, 2], cboxes[:, 3]
cxy = np.array([(cx1, cy1), (cx1, cy2), (cx2, cy1), (cx2, cy2)]).transpose(0, 2, 1).reshape(-1, 2)
iiboxes = np.concatenate(iboxes, axis=0)
ix1, iy1, ix2, iy2 = iiboxes[:, 0], iiboxes[:, 1], iiboxes[:, 2], iiboxes[:, 3]
ixy = np.array([(ix1, iy1), (ix1, iy2), (ix2, iy1), (ix2, iy2)]).transpose(0, 2, 1).reshape(-1, 2)
Dist = cdist(cxy, ixy).round(2)
max_dist = np.max(np.min(Dist, axis=1))
if max_dist > TH and not inside:
frameState[idx, 1] = 1
# plot_convex_hull(boxes, convex_hull, [pt])
frameState[idx, 1] = 1
return frameState
def single_point(tboxes, width, TH=60):
"""width: window width, >=2"""
fboxes = array2frame(tboxes)
fnum = len(fboxes)
fids = np.array([i+1 for i in range(fnum)])[:, np.newaxis]
state = np.zeros((fnum, 1), dtype=np.int64)
frameState = np.concatenate((fids, state), axis = 1).astype(np.int64)
if fnum < width:
return frameState
for idx1 in range(width, fnum+1):
idx0 = idx1 - width
idx = idx1 - width//2 - 1
iboxe1 = fboxes[idx0:idx]
iboxe2 = fboxes[idx+1:idx1]
iboxes = fboxes[idx0:idx] + fboxes[idx+1:idx1]
cboxes = fboxes[idx][:, 0:4]
cur_xy = np.zeros((len(cboxes), 2))
cur_xy[:, 0] = (fboxes[idx][:, 0]+fboxes[idx][:, 2])/2
cur_xy[:, 1] = (fboxes[idx][:, 1]+fboxes[idx][:, 3])/2
Dist = np.empty((len(cboxes), 0))
for i in range(width-1):
boxes = iboxes[i][:, 0:4]
box_xy = np.zeros((len(boxes), 2))
box_xy[:, 0] = (boxes[:, 0]+boxes[:, 2])/2
box_xy[:, 1] = (boxes[:, 1]+boxes[:, 3])/2
dist2 = cdist(cur_xy, box_xy).round(2)
Dist = np.concatenate((Dist, dist2), axis=1)
max_dist = np.max(np.min(Dist, axis=1))
if max_dist > TH:
frameState[idx, 1] = 1
return frameState
def intrude():
pkpath = Path("/home/wqg/dataset/small-goods/pkfiles")
savepath = Path("/home/wqg/dataset/small-goods/illustration_convex")
if not savepath.exists():
savepath.mkdir(parents=True, exist_ok=True)
err_trail, err_single, err_all = [], [], []
num = 0
for pth in pkpath.iterdir():
# item = r"69042386_20250407-145737_front_returnGood_b82d28427666_15_17700000001.pickle"
# pth = pkpath/item
with open(str(pth), 'rb') as f:
yrt = pickle.load(f)
evtname = pth.stem
bboxes = []
trackerboxes = np.empty((0, 10), dtype=np.float64)
for frameDict in yrt:
boxes = frameDict["bboxes"]
tboxes = frameDict["tboxes"]
tboxes = np.concatenate((tboxes, tboxes[:,7][:, None]), axis=1)
bboxes.append(boxes)
trackerboxes = np.concatenate((trackerboxes, np.array(tboxes)), axis=0)
'''single-points based for intrusion detection'''
# wd =5
# fstate1 = single_point(trackerboxes, wd)
'''convex-based '''
width = 5
fstate = convex_based(trackerboxes, width, TH=60)
# fstate = np.zeros(fstate1.shape)
# fstate[:, 0] = fstate1[:, 0]
# fstate[:, 1] = fstate1[:, 1] * fstate2[:, 1]
'''trajectory based for intrusion detection
period: 0 1 2 3
fid timestamp(fid) 基于滑动窗的tid扩展 滑动窗覆盖的运动区间
'''
win_width = 12
period, handState = devide_motion_state(trackerboxes, win_width)
num += 1
if np.all(period[:,2:4]==0):
err_trail.append(evtname)
if np.all(fstate[:,1]==0):
err_single.append(evtname)
if np.all(period[:,2:4]==0) and np.all(fstate[:,1]==0):
err_all.append(evtname)
fig, (ax1, ax2) = plt.subplots(2, 1)
ax1.plot(period[:, 1], period[:, 2], 'bo-', linewidth=1, markersize=4)
ax1.plot(period[:, 1], period[:, 3], 'rx-', linewidth=1, markersize=8)
ax2.plot(fstate[:, 0], fstate[:, 1], 'rx-', linewidth=1, markersize=8)
plt.savefig(os.path.join(str(savepath), f"{evtname}.png"))
plt.close()
# if num==1:
# break
rate_trail = 1 - len(err_trail)/num
rate_single = 1 - len(err_single)/num
rate_all = 1 - len(err_all)/num
print(f"rate_trail: {rate_trail}")
print(f"rate_single: {rate_single}")
print(f"rate_all: {rate_all}")
txtpath = savepath.parents[0] / "error.txt"
with open(str(txtpath), "w") as f:
f.write(f"rate_trail: {rate_trail}" + "\n")
f.write(f"rate_single: {rate_single}" + "\n")
f.write(f"rate_all: {rate_all}" + "\n")
f.write("\n" + "err_trail" + "\n")
for line in err_trail:
f.write(line + "\n")
f.write("\n" + "err_single" + "\n")
for line in err_single:
f.write(line + "\n")
f.write("\n" + "err_all" + "\n")
for line in err_all:
f.write(line + "\n")
print("Done!")
def run_yrt():
datapath = Path("/home/wqg/dataset/small-goods/videos/")
savepath = Path("/home/wqg/dataset/small-goods/result/")
pkpath = Path("/home/wqg/dataset/small-goods/pkfiles/")
if not savepath.exists():
savepath.mkdir(parents=True, exist_ok=True)
if not pkpath.exists():
pkpath.mkdir(parents=True, exist_ok=True)
optdict = {}
optdict["weights"] = ROOT / 'ckpts/best_v10s_width0375_1205.pt'
optdict["is_save_img"] = False
optdict["is_save_video"] = True
k = 0
for pth in datapath.iterdir():
item = "69042386_20250407-145819_back_returnGood_b82d28427666_15_17700000001.mp4"
pth = pth.parents[0] /item
optdict["source"] = pth
optdict["save_dir"] = savepath
# try:
yrtOut = yolov10_resnet_tracker(**optdict)
pkpath_ = pkpath / f"{Path(pth).stem}.pickle"
with open(str(pkpath_), 'wb') as f:
pickle.dump(yrtOut, f)
k += 1
if k==1:
break
# except Exception as e:
# print("abc")
if __name__ == '__main__':
# run_yrt()
intrude()
# test_convex()

View File

@ -19,7 +19,18 @@ from collections import OrderedDict
from event_time_specify import devide_motion_state #, state_measure
import sys
sys.path.append(r"D:\DetectTracking")
FILE = Path(__file__).resolve()
ROOT = FILE.parents[1] # YOLOv5 root directory
if str(ROOT) not in sys.path:
sys.path.append(str(ROOT)) # add ROOT to PATH
from imgs_inference import run_yolo
from tracking.utils.read_data import read_weight_sensor

View File

@ -128,6 +128,8 @@ def init_trackers(tracker_yaml = None, bs=1):
"""
# tracker_yaml = r"./tracking/trackers/cfg/botsort.yaml"
tracker_yaml = str(tracker_yaml)
TRACKER_MAP = {'bytetrack': BYTETracker, 'botsort': BOTSORT}
cfg = IterableSimpleNamespace(**yaml_load(tracker_yaml))
@ -149,7 +151,7 @@ def yolov10_resnet_tracker(
is_save_img = True,
is_save_video = True,
tracker_yaml = "./tracking/trackers/cfg/botsort.yaml",
tracker_yaml = ROOT / "tracking/trackers/cfg/botsort.yaml",
line_thickness=3, # bounding box thickness (pixels)
hide_labels=False, # hide labels
):
@ -157,7 +159,7 @@ def yolov10_resnet_tracker(
## load a custom model
model = YOLOv10(weights)
custom = {"conf": 0.25, "batch": 1, "save": False, "mode": "predict"}
custom = {"conf": 0.1, "batch": 1, "save": False, "mode": "predict"}
kwargs = {"save": True, "imgsz": 640, "conf": 0.1}
args = {**model.overrides, **custom, **kwargs}
predictor = model.task_map[model.task]["predictor"](overrides=args, _callbacks=model.callbacks)
@ -294,7 +296,7 @@ def yolo_resnet_tracker(
is_save_img = True,
is_save_video = True,
tracker_yaml = "./tracking/trackers/cfg/botsort.yaml",
tracker_yaml = ROOT / "tracking/trackers/cfg/botsort.yaml",
imgsz=(640, 640), # inference size (height, width)
conf_thres=0.25, # confidence threshold
iou_thres=0.45, # NMS IOU threshold
@ -359,6 +361,7 @@ def yolo_resnet_tracker(
# Process predictions
for i, det in enumerate(pred): # per image
im0 = im0s.copy()
annotator = Annotator(im0.copy(), line_width=line_thickness, example=str(names))
s += '%gx%g ' % im.shape[2:] # print string
if len(det):
@ -461,6 +464,7 @@ def yolo_resnet_tracker(
else: # stream
fps, w, h = 25, im0.shape[1], im0.shape[0]
## for image rotating in dataloader.LoadImages.__next__()
w, h = im0.shape[1], im0.shape[0]
vdieo_path = str(Path(vdieo_path).with_suffix('.mp4')) # force *.mp4 suffix on results videos
@ -484,7 +488,7 @@ def run(
project=ROOT / 'runs/detect', # save results to project/name
name='exp', # save results to project/name
tracker_yaml = "./tracking/trackers/cfg/botsort.yaml",
tracker_yaml = ROOT / "tracking/trackers/cfg/botsort.yaml",
imgsz=(640, 640), # inference size (height, width)
conf_thres=0.25, # confidence threshold
iou_thres=0.45, # NMS IOU threshold

View File

@ -7,9 +7,19 @@ Created on Mon Mar 4 18:36:31 2024
import numpy as np
import cv2
import copy
from tracking.utils.mergetrack import track_equal_track
from scipy.spatial.distance import cdist
import sys
from pathlib import Path
FILE = Path(__file__).resolve()
ROOT = FILE.parents[2] # YOLOv5 root directory
if str(ROOT) not in sys.path:
sys.path.append(str(ROOT))
from tracking.utils.mergetrack import track_equal_track
from scipy.spatial.distance import cdist
curpath = Path(__file__).resolve().parents[0]
curpath = Path(curpath)
parpath = curpath.parent

View File

@ -11,49 +11,89 @@ import pickle
import numpy as np
from pathlib import Path
from scipy.spatial.distance import cdist
import copy
from .dotrack.dotracks_back import doBackTracks
from .dotrack.dotracks_front import doFrontTracks
from .utils.drawtracks import plot_frameID_y2, draw_all_trajectories
from .utils.read_data import read_similar
from dotrack.dotracks_back import doBackTracks
from dotrack.dotracks_front import doFrontTracks
from utils.drawtracks import plot_frameID_y2, draw_all_trajectories
from utils.read_data import read_similar
def get_trail(ShoppingDict, ppath):
evtname = ShoppingDict["eventName"]
back_yrt = ShoppingDict["backCamera"]["yoloResnetTracker"]
front_yrt = ShoppingDict["frontCamera"]["yoloResnetTracker"]
back_vts = ShoppingDict["frontCamera"]["tracking"]
front_vts = ShoppingDict["backCamera"]["tracking"]
class CameraEvent_:
def __init__(self):
self.cameraType = '', # "front", "back"
self.videoPath = '',
self.imagePaths = [],
self.yoloResnetTracker =[],
self.tracking = None,
event_tracks = [("back", back_yrt, back_vts), ("front", front_yrt, front_vts)]
class ShoppingEvent_:
def __init__(self):
self.eventPath = ''
self.eventName = ''
self.barcode = ''
self.eventType = '', # "input", "output", "other"
self.frontCamera = None
self.backCamera = None
self.one2n = []
savepath = ppath / "alltrail"
if not savepath.exists():
savepath.mkdir()
savepath = str(savepath)
evtime = evtname[:15]
illus = [None, None]
for camera_type, yrtOut, vts in event_tracks:
if len(vts.Residual)==1: continue
if camera_type == 'front':
edgeline = cv2.imread("./shopcart/cart_tempt/board_ftmp_line.png")
img_tracking = draw_all_trajectories(vts, edgeline, savepath, camera_type, draw5p=False)
illus[0] = img_tracking
plt = plot_frameID_y2(vts)
plt.savefig(os.path.join(savepath, f"{evtime}_front.png"))
if camera_type == 'back':
edgeline = cv2.imread("./shopcart/cart_tempt/edgeline.png")
img_tracking = draw_all_trajectories(vts, edgeline, savepath, camera_type, draw5p=False)
illus[1] = img_tracking
illus = [im for im in illus if im is not None]
if len(illus):
img_cat = np.concatenate(illus, axis = 1)
if len(illus)==2:
H, W = img_cat.shape[:2]
cv2.line(img_cat, (int(W/2), 0), (int(W/2), int(H)), (128, 128, 255), 3)
trajpath = os.path.join(savepath, f"{evtime}.png")
cv2.imwrite(trajpath, img_cat)
return evtime
return None
def main():
def track_opt(ShoppingDict, ppath):
'''
将一个对象读取,修改其中一个属性
'''
evtname = ShoppingDict["eventName"]
shopping = copy.deepcopy(ShoppingDict)
evt_pkfile = 'path.pickle'
with open(evt_pkfile, 'rb') as f:
ShoppingDict = pickle.load(f)
savepath = ""
## only need to init item: tracking for each Camera
shopping["frontCamera"]["tracking"] = []
shopping["backCamera"]["tracking"] = []
back_camera = ShoppingDict["backCamera"]["cameraType"]
back_yrt = ShoppingDict["backCamera"]["yoloResnetTracker"]
@ -61,120 +101,132 @@ def main():
front_yrt = ShoppingDict["frontCamera"]["yoloResnetTracker"]
yrts = [(back_camera, back_yrt), (front_camera, front_yrt)]
shopping_event = ShoppingEvent_()
shopping_event.eventPath = ShoppingDict["eventPath"]
shopping_event.eventName = ShoppingDict["eventName"]
shopping_event.barcode = ShoppingDict["barcode"]
yrtDict = {}
event_tracks = []
errtrail = ''
for camera_type, yrtOut in yrts:
'''
inputs:
yrtOut
camera_type
outputs:
CameraEvent
'''
camera_event = CameraEvent_()
'''================= 4. tracking ================='''
'''================= 1. tracking ================='''
'''(1) 生成用于 tracking 模块的 boxes、feats'''
bboxes = np.empty((0, 6), dtype=np.float64)
# bboxes = np.empty((0, 6), dtype=np.float64)
trackerboxes = np.empty((0, 9), dtype=np.float64)
trackefeats = {}
for frameDict in yrtOut:
tboxes = frameDict["tboxes"]
ffeats = frameDict["feats"]
boxes = frameDict["bboxes"]
bboxes = np.concatenate((bboxes, np.array(boxes)), axis=0)
# boxes = frameDict["bboxes"]
# bboxes = np.concatenate((bboxes, np.array(boxes)), axis=0)
trackerboxes = np.concatenate((trackerboxes, np.array(tboxes)), axis=0)
for i in range(len(tboxes)):
fid, bid = int(tboxes[i, 7]), int(tboxes[i, 8])
trackefeats.update({f"{fid}_{bid}": ffeats[f"{fid}_{bid}"]})
'''(2) tracking, 后摄'''
if CameraEvent["cameraType"] == "back":
if camera_type == "back":
vts = doBackTracks(trackerboxes, trackefeats)
vts.classify()
event_tracks.append(("back", vts))
shopping["backCamera"]["tracking"] = vts
if len(vts.Residual)!=1:
errtrail = evtname
camera_event.camera_type = camera_type
camera_event.yoloResnetTracker = yrtOut
camera_event.tracking = vts
camera_event.videoPath = ShoppingDict["backCamera"]["videoPath"]
camera_event.imagePaths = ShoppingDict["backCamera"]["imagePaths"]
shopping_event.backCamera = camera_event
yrtDict["backyrt"] = yrtOut
'''(2) tracking, 前摄'''
if CameraEvent["cameraType"] == "front":
'''(3) tracking, 前摄'''
if camera_type == "front":
vts = doFrontTracks(trackerboxes, trackefeats)
vts.classify()
event_tracks.append(("front", vts))
shopping["frontCamera"]["tracking"] = vts
camera_event.camera_type = camera_type
camera_event.yoloResnetTracker = yrtOut
camera_event.tracking = vts
camera_event.videoPath = ShoppingDict["frontCamera"]["videoPath"]
camera_event.imagePaths = ShoppingDict["frontCamera"]["imagePaths"]
shopping_event.backCamera = camera_event
if len(vts.Residual)!=1:
errtrail = evtname
yrtDict["frontyrt"] = yrtOut
event_tracks.append((camera_type, yrtOut, vts))
name = Path(evt_pkfile).stem
pf_path = os.path.join(savepath, name+"_new.pickle")
with open(str(pf_path), 'wb') as f:
pickle.dump(shopping_event, f)
pckpath = ppath / "track_optim"
if not pckpath.exists():
pckpath.mkdir()
fpath = pckpath / "{}_new.pickle".format(evtname)
with open(str(fpath), 'wb') as f:
pickle.dump(shopping, f)
savepath = ppath / "yolos_tracking" / evtname
illus = [None, None]
for CamerType, vts in event_tracks:
for camera_type, yrtOut, vts in event_tracks:
if len(vts.tracks)==0: continue
if CamerType == 'front':
edgeline = cv2.imread("./tracking/shopcart/cart_tempt/board_ftmp_line.png")
if camera_type == 'front':
edgeline = cv2.imread("./shopcart/cart_tempt/board_ftmp_line.png")
h, w = edgeline.shape[:2]
# nh, nw = h//2, w//2
# edgeline = cv2.resize(edgeline, (nw, nh), interpolation=cv2.INTER_AREA)
img_tracking = draw_all_trajectories(vts, edgeline, savepath_pipeline, CamerType, draw5p=True)
img_tracking = draw_all_trajectories(vts, edgeline, savepath, camera_type, draw5p=False)
illus[0] = img_tracking
plt = plot_frameID_y2(vts)
plt.savefig(os.path.join(savepath_pipeline, "front_y2.png"))
plt.savefig(os.path.join(savepath, "front_y2_new.png"))
if CamerType == 'back':
edgeline = cv2.imread("./tracking/shopcart/cart_tempt/edgeline.png")
if camera_type == 'back':
edgeline = cv2.imread("./shopcart/cart_tempt/edgeline.png")
h, w = edgeline.shape[:2]
# nh, nw = h//2, w//2
# edgeline = cv2.resize(edgeline, (nw, nh), interpolation=cv2.INTER_AREA)
img_tracking = draw_all_trajectories(vts, edgeline, savepath_pipeline, CamerType, draw5p=True)
img_tracking = draw_all_trajectories(vts, edgeline, savepath, camera_type, draw5p=False)
illus[1] = img_tracking
illus = [im for im in illus if im is not None]
if len(illus):
img_cat = np.concatenate(illus, axis = 1)
if len(illus)==2:
H, W = img_cat.shape[:2]
cv2.line(img_cat, (int(W/2), 0), (int(W/2), int(H)), (128, 128, 255), 3)
trajpath = os.path.join(savepath, "trajectory_new.png")
cv2.imwrite(trajpath, img_cat)
return errtrail
def main():
# evttypes = ["single_event_V10", "single_event_V5", "performence_V10", "performence_V5"]
evttypes = ["single_event_V10"]
k = 0
error_trail = []
for evttype in evttypes:
ppath = Path("/home/wqg/dataset/pipeline/yrt/{}".format(evttype))
pkpath = ppath / "shopping_pkl"
for fp in pkpath.iterdir():
# fp = pkpath / "{}.pickle".format("20250305-152917-635_6970209860221_6970209860221")
print(fp)
if fp.suffix != '.pickle': continue
with open(str(fp), 'rb') as f:
ShoppingDict = pickle.load(f)
# errtrail = track_opt(ShoppingDict, ppath)
# error_trail.append(errtrail)
errtrail = get_trail(ShoppingDict, ppath)
if errtrail is not None:
error_trail.append(errtrail)
# k+=1
# if k==100:
# break
errfile = ppath / 'error_trail.txt'
with open(errfile, 'w', encoding='utf-8') as f:
for line in error_trail:
f.write(line + '\n')
if __name__ == "__main__":
main()

View File

@ -19,6 +19,8 @@ from ultralytics.data.utils import IMG_FORMATS, VID_FORMATS
from ultralytics.utils import LOGGER, is_colab, is_kaggle, ops
from ultralytics.utils.checks import check_requirements
import subprocess
import json
@dataclass
class SourceTypes:
@ -340,6 +342,12 @@ class LoadImagesAndVideos:
if success:
success, im0 = self.cap.retrieve()
##======================
'''判断视频是否含旋转信息'''
rotation = self.get_rotation(path)
if rotation == 270:
im0 = cv2.rotate(im0, cv2.ROTATE_90_COUNTERCLOCKWISE)
###======================
if success:
self.frame += 1
paths.append(path)
@ -355,6 +363,7 @@ class LoadImagesAndVideos:
self.cap.release()
if self.count < self.nf:
self._new_video(self.files[self.count])
else:
self.mode = "image"
im0 = cv2.imread(path) # BGR
@ -378,6 +387,23 @@ class LoadImagesAndVideos:
raise FileNotFoundError(f"Failed to open video {path}")
self.frames = int(self.cap.get(cv2.CAP_PROP_FRAME_COUNT) / self.vid_stride)
def get_rotation(self, filename):
cmd = [
"ffprobe", # 注意是 ffprobe不是 ffmpeg
"-v", "error",
"-select_streams", "v:0",
"-show_entries", "stream_tags=rotate",
"-of", "json",
filename
]
result = subprocess.run(cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
if result.returncode == 0:
metadata = json.loads(result.stdout)
rotation = metadata.get("streams", [{}])[0].get("tags", {}).get("rotate", 0)
return int(rotation)
else:
return 0
def __len__(self):
"""Returns the number of batches in the object."""
return math.ceil(self.nf / self.bs) # number of files

Some files were not shown because too many files have changed in this diff Show More