Files
detecttracking/contrast/one2n_contrast.py
2025-04-11 17:02:39 +08:00

255 lines
8.2 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# -*- coding: utf-8 -*-
"""
Created on Wed Dec 18 11:49:01 2024
@author: ym
"""
import os
import pickle
import numpy as np
from pathlib import Path
import matplotlib.pyplot as plt
from scipy.spatial.distance import cdist
from utils.tools import init_eventDict
def read_eventdict(eventDataPath):
evtDict = {}
for filename in os.listdir(eventDataPath):
evtname, ext = os.path.splitext(filename)
if ext != ".pickle": continue
evtpath = os.path.join(eventDataPath, filename)
with open(evtpath, 'rb') as f:
evtdata = pickle.load(f)
evtDict[evtname] = evtdata
return evtDict
def simi_calc(event, o2nevt, pattern, typee=None):
if pattern==1 or pattern==2:
if typee == "11":
boxes1 = event.front_boxes
boxes2 = o2nevt.front_boxes
feat1 = event.front_feats
feat2 = o2nevt.front_feats
if typee == "10":
boxes1 = event.front_boxes
boxes2 = o2nevt.back_boxes
feat1 = event.front_feats
feat2 = o2nevt.back_feats
if typee == "00":
boxes1 = event.back_boxes
boxes2 = o2nevt.back_boxes
feat1 = event.back_feats
feat2 = o2nevt.back_feats
if typee == "01":
boxes1 = event.back_boxes
boxes2 = o2nevt.front_boxes
feat1 = event.back_feats
feat2 = o2nevt.front_feats
'''自定义事件特征选择'''
if pattern==3 and len(event.feats_compose) and len(o2nevt.feats_compose):
feat1 = [event.feats_compose]
feat2 = [o2nevt.feats_compose]
if len(feat1) and len(feat2):
matrix = 1 - cdist(feat1[0], feat2[0], 'cosine')
simi = np.mean(matrix)
else:
simi = None
return simi
def one2n_pr(evtDicts, pattern=1):
'''
pattern:
1: process.data 中记录的相似度
2: 根据 process.data 中标记的 type 选择特征组合方式计算相似度
3: 利用 process.data 中的轨迹特征,以其它方式计算相似度
'''
tpevents, fnevents, fpevents, tnevents = [], [], [], []
tpsimi, fnsimi, tnsimi, fpsimi = [], [], [], []
one2nFile, errorFile_one2n = [], []
errorFile_one2n_ = []
evts_output = []
for evtname, event in evtDicts.items():
evt_names, evt_barcodes, evt_similars, evt_types = [], [], [], []
if len(event.one2n)==0 or len(event.barcode)==0:
continue
evts_output.append(evtname)
for ndict in event.one2n:
nname = ndict["event"]
barcode = ndict["barcode"]
similar = ndict["similar"]
typee = ndict["type"].strip()
if len(barcode)==0:
continue
if typee.find(",") >=0:
typee = typee.split(",")[-1]
if pattern==1:
evt_similars.append(similar)
if pattern==2 or pattern==3:
o2n_evt = [evt for name, evt in evtDicts.items() if name.find(nname[:15])==0]
if len(o2n_evt)!=1:
continue
simival = simi_calc(event, o2n_evt[0], pattern, typee)
if simival==None:
continue
evt_similars.append(simival)
evt_names.append(nname)
evt_barcodes.append(barcode)
evt_types.append(typee)
# if evtname == "20250226-170321-327_6903244678377":
# print("evtname")
## process.data的oneTon的各项中均不包括当前事件的barcode
if event.barcode not in evt_barcodes:
errorFile_one2n.append(evtname)
continue
else:
one2nFile.append(evtname)
if len(evt_names)==len(evt_barcodes)==len(evt_similars)==len(evt_types) and len(evt_names)>0:
# maxsim = evt_similars[evt_similars.index(max(evt_similars))]
maxsim = max(evt_similars)
for i in range(len(evt_names)):
bcd, simi = evt_barcodes[i], evt_similars[i]
if bcd==event.barcode and simi==maxsim:
tpsimi.append(simi)
tpevents.append(evtname)
elif bcd==event.barcode and simi!=maxsim:
fnsimi.append(simi)
fnevents.append(evtname)
elif bcd!=event.barcode and simi!=maxsim:
tnsimi.append(simi)
tnevents.append(evtname)
elif bcd!=event.barcode and simi==maxsim and event.barcode in evt_barcodes:
fpsimi.append(simi)
fpevents.append(evtname)
else:
errorFile_one2n_.append(evtname)
''' 1:n 数据存储,需根据相似度排序'''
PPrecise, PRecall = [], []
NPrecise, NRecall = [], []
Thresh = np.linspace(-0.2, 1, 100)
for th in Thresh:
'''============================= 1:n 计算'''
TP = sum(np.array(tpsimi) >= th)
FP = sum(np.array(fpsimi) >= th)
FN = sum(np.array(fnsimi) < th)
TN = sum(np.array(tnsimi) < th)
PPrecise.append(TP/(TP+FP+1e-6))
PRecall.append(TP/(TP+FN+1e-6))
NPrecise.append(TN/(TN+FN+1e-6))
NRecall.append(TN/(TN+FP+1e-6))
'''4. ============================= 1:n 曲线,'''
fig, ax = plt.subplots()
ax.plot(Thresh, PPrecise, 'r', label='Precise_Pos: TP/TPFP')
ax.plot(Thresh, PRecall, 'b', label='Recall_Pos: TP/TPFN')
ax.plot(Thresh, NPrecise, 'g', label='Precise_Neg: TN/TNFP')
ax.plot(Thresh, NRecall, 'c', label='Recall_Neg: TN/TNFN')
ax.set_xlim([0, 1])
ax.set_ylim([0, 1])
ax.set_xticks(np.arange(0, 1, 0.1))
ax.set_yticks(np.arange(0, 1, 0.1))
ax.grid(True, linestyle='--')
ax.set_title('1:n Precise & Recall')
ax.set_xlabel(f"Event Num: {len(one2nFile)}")
ax.legend()
plt.show()
## ============================= 1:n 直方图'''
fig, axes = plt.subplots(2, 2)
axes[0, 0].hist(tpsimi, bins=60, range=(-0.2, 1), edgecolor='black')
axes[0, 0].set_xlim([-0.2, 1])
axes[0, 0].set_title(f'TP: {len(tpsimi)}')
axes[0, 1].hist(fpsimi, bins=60, range=(-0.2, 1), edgecolor='black')
axes[0, 1].set_xlim([-0.2, 1])
axes[0, 1].set_title(f'FP: {len(fpsimi)}')
axes[1, 0].hist(tnsimi, bins=60, range=(-0.2, 1), edgecolor='black')
axes[1, 0].set_xlim([-0.2, 1])
axes[1, 0].set_title(f'TN: {len(tnsimi)}')
axes[1, 1].hist(fnsimi, bins=60, range=(-0.2, 1), edgecolor='black')
axes[1, 1].set_xlim([-0.2, 1])
axes[1, 1].set_title(f'FN: {len(fnsimi)}')
plt.show()
return fpevents
def main():
'''1. 生成事件字典并保存至 eventDataPath, 只需运行一次 '''
init_eventDict(eventSourcePath, eventDataPath, stype="realtime") # 'source', 'data', 'realtime'
# for pfile in os.listdir(eventDataPath):
# evt = os.path.splitext(pfile)[0].split('_')
# cont = len(evt)>=2 and evt[-1].isdigit() and len(evt[-1])>=10
# if not cont:
# continue
'''2. 读取事件字典 '''
evtDicts = read_eventdict(eventDataPath)
'''3. 1:n 比对事件评估 '''
fpevents = one2n_pr(evtDicts, pattern=1)
fpErrFile = str(Path(resultPath).joinpath("one2n_fp_Error.txt"))
with open(fpErrFile, "w") as file:
for item in fpevents:
file.write(item + "\n")
if __name__ == '__main__':
eventSourcePath = r"\\192.168.1.28\share\测试视频数据以及日志\全实时测试\V12\2025-3-4_2"
resultPath = r"\\192.168.1.28\share\测试视频数据以及日志\全实时测试\testing"
eventDataPath = os.path.join(resultPath, "evtobjs_wang")
if not os.path.exists(eventDataPath):
os.makedirs(eventDataPath)
# similPath = os.path.join(resultPath, "simidata")
# if not os.path.exists(similPath):
# os.makedirs(similPath)
main()