update 20240902

This commit is contained in:
王庆刚
2024-09-02 18:39:12 +08:00
parent 0cc36ba920
commit e00fb46847
22 changed files with 1105 additions and 3 deletions

8
contrast/.idea/.gitignore generated vendored Normal file
View File

@ -0,0 +1,8 @@
# 默认忽略的文件
/shelf/
/workspace.xml
# 基于编辑器的 HTTP 客户端请求
/httpRequests/
# Datasource local storage ignored files
/dataSources/
/dataSources.local.xml

12
contrast/.idea/contrastInference.iml generated Normal file
View File

@ -0,0 +1,12 @@
<?xml version="1.0" encoding="UTF-8"?>
<module type="PYTHON_MODULE" version="4">
<component name="NewModuleRootManager">
<content url="file://$MODULE_DIR$" />
<orderEntry type="jdk" jdkName="Python 3.8 (my_env)" jdkType="Python SDK" />
<orderEntry type="sourceFolder" forTests="false" />
</component>
<component name="PyDocumentationSettings">
<option name="format" value="PLAIN" />
<option name="myDocStringFormat" value="Plain" />
</component>
</module>

14
contrast/.idea/deployment.xml generated Normal file
View File

@ -0,0 +1,14 @@
<?xml version="1.0" encoding="UTF-8"?>
<project version="4">
<component name="PublishConfigData" remoteFilesAllowedToDisappearOnAutoupload="false">
<serverData>
<paths name="lc@192.168.1.142:22 password">
<serverdata>
<mappings>
<mapping local="$PROJECT_DIR$" web="/" />
</mappings>
</serverdata>
</paths>
</serverData>
</component>
</project>

View File

@ -0,0 +1,12 @@
<component name="InspectionProjectProfileManager">
<profile version="1.0">
<option name="myName" value="Project Default" />
<inspection_tool class="PyPep8NamingInspection" enabled="true" level="WEAK WARNING" enabled_by_default="true">
<option name="ignoredErrors">
<list>
<option value="N803" />
</list>
</option>
</inspection_tool>
</profile>
</component>

View File

@ -0,0 +1,6 @@
<component name="InspectionProjectProfileManager">
<settings>
<option name="USE_PROJECT_PROFILE" value="false" />
<version value="1.0" />
</settings>
</component>

7
contrast/.idea/misc.xml generated Normal file
View File

@ -0,0 +1,7 @@
<?xml version="1.0" encoding="UTF-8"?>
<project version="4">
<component name="Black">
<option name="sdkName" value="Python 3.8 (my_env)" />
</component>
<component name="ProjectRootManager" version="2" project-jdk-name="Python 3.8 (my_env)" project-jdk-type="Python SDK" />
</project>

8
contrast/.idea/modules.xml generated Normal file
View File

@ -0,0 +1,8 @@
<?xml version="1.0" encoding="UTF-8"?>
<project version="4">
<component name="ProjectModuleManager">
<modules>
<module fileurl="file://$PROJECT_DIR$/.idea/contrastInference.iml" filepath="$PROJECT_DIR$/.idea/contrastInference.iml" />
</modules>
</component>
</project>

1
contrast/__init__.py Normal file
View File

@ -0,0 +1 @@
# from .config import config

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

84
contrast/config.py Normal file
View File

@ -0,0 +1,84 @@
import torch
import torchvision.transforms as T
class Config:
# network settings
backbone = 'vit' # [resnet18, mobilevit_s, mobilenet_v2, mobilenetv3_small, mobilenetv3_large, mobilenet_v1, PPLCNET_x1_0, PPLCNET_x0_5, PPLCNET_x2_5]
metric = 'softmax' # [cosface, arcface, softmax]
cbam = True
embedding_size = 256 # 256
drop_ratio = 0.5
img_size = 224
teacher = 'vit' # [resnet18, mobilevit_s, mobilenet_v2, mobilenetv3_small, mobilenetv3_large, mobilenet_v1, PPLCNET_x1_0, PPLCNET_x0_5, PPLCNET_x2_5]
student = 'resnet'
# data preprocess
# input_shape = [1, 128, 128]
"""transforms.RandomCrop(size),
transforms.RandomVerticalFlip(p=0.5),
transforms.RandomHorizontalFlip(),
RandomRotate(15, 0.3),
# RandomGaussianBlur()"""
train_transform = T.Compose([
T.ToTensor(),
T.Resize((img_size, img_size)),
# T.RandomCrop(img_size*4//5),
# T.RandomHorizontalFlip(p=0.5),
T.RandomRotation(180),
T.ColorJitter(brightness=0.5),
T.ConvertImageDtype(torch.float32),
T.Normalize(mean=[0.5], std=[0.5]),
])
test_transform = T.Compose([
T.ToTensor(),
T.Resize((img_size, img_size)),
T.ConvertImageDtype(torch.float32),
T.Normalize(mean=[0.5], std=[0.5]),
])
# dataset
train_root = './data/2250_train/train' # 初始筛选过一次的数据集
# train_root = './data/0625_train/train'
test_root = "./data/2250_train/val/"
# test_root = "./data/0625_train/val"
test_list = "./data/2250_train/val_pair.txt"
test_group_json = "./data/2250_train/cross_same.json"
# test_group_json = "./data/0625_train/cross_same.json"
# test_list = "./data/test_data_100/val_pair.txt"
# training settings
checkpoints = "checkpoints/vit_b_16_0815/" # [resnet18, mobilevit_s, mobilenet_v2, mobilenetv3]
restore = True
# restore_model = "checkpoints/renet18_2250_0315/best_resnet18_2250_0315.pth" # best_resnet18_1491_0306.pth
restore_model = "checkpoints/vit_b_16_0730/best.pth" # best_resnet18_1491_0306.pth
# test_model = "./checkpoints/renet18_1887_0311/best_resnet18_1887_0311.pth"
testbackbone = 'resnet18' # [resnet18, mobilevit_s, mobilenet_v2, mobilenetv3_small, mobilenetv3_large, mobilenet_v1, PPLCNET_x1_0, PPLCNET_x0_5]
# test_val = "./data/2250_train"
test_val = "./data/0625_train"
test_model = "checkpoints/resnet18_0721/best.pth"
train_batch_size = 128 # 256
test_batch_size = 256 # 256
epoch = 300
optimizer = 'adamw' # ['sgd', 'adam' 'adamw']
lr = 1e-3 # 1e-2
lr_step = 10 # 10
lr_decay = 0.95 # 0.98
weight_decay = 5e-4
loss = 'focal_loss' # ['focal_loss', 'cross_entropy']
device = torch.device('cuda:1' if torch.cuda.is_available() else 'cpu')
# device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
pin_memory = True # if memory is large, set it True to speed up a bit
num_workers = 4 # dataloader
group_test = True
# group_test = False
config = Config()

View File

@ -0,0 +1,380 @@
# -*- coding: utf-8 -*-
"""
Created on Fri Aug 30 17:53:03 2024
1. 确认在相同CamerType下track.data 中 CamerID 项数量 = 图像数 = 帧ID数 = 最大帧ID
2. 读取0/1_tracking_output.data 中数据boxes、featslen(boxes)=len(feats)
帧ID约束
3. 优先选择前摄
4. 保存图像数据
5. 一次购物事件类型
shopEvent: {barcode:
type: getout, input
front_traj:[{imgpath: str,
box: arrar(1, 9),
feat: array(1, 256)
}]
back_traj: [{imgpath: str,
box: arrar(1, 9),
feat: array(1, 256)
}]
}
@author: ym
"""
import numpy as np
import cv2
import os
import sys
import pickle
import torch
import time
import json
from config import config as conf
from model import resnet18
from inference import load_contrast_model
from inference import featurize
sys.path.append(r"D:\DetectTracking")
from tracking.utils.read_data import extract_data, read_tracking_output, read_deletedBarcode_file
IMG_FORMAT = ['.bmp', '.jpg', '.jpeg', '.png']
model = load_contrast_model()
def creat_shopping_event(basepath):
eventList = []
'''一、构造放入商品事件列表'''
k = 0
for filename in os.listdir(basepath):
# filename = "20240723-155413_6904406215720"
'''filename下为一次购物事件'''
filepath = os.path.join(basepath, filename)
'''================ 0. 检查 filename 及 filepath 正确性和有效性 ================'''
nmlist = filename.split('_')
if filename.find('2024')<0 or len(nmlist)!=2 or len(nmlist[0])!=15 or len(nmlist[1])<11:
continue
if not os.path.isdir(filepath): continue
print(f"Event name: {filename}")
'''================ 1. 构造事件描述字典,暂定 9 items ==============='''
event = {}
event['barcode'] = nmlist[1]
event['type'] = 'input'
event['filepath'] = filepath
event['back_imgpaths'] = []
event['front_imgpaths'] = []
event['back_boxes'] = np.empty((0, 9), dtype=np.float64)
event['front_boxes'] = np.empty((0, 9), dtype=np.float64)
event['back_feats'] = np.empty((0, 256), dtype=np.float64)
event['front_feats'] = np.empty((0, 256), dtype=np.float64)
# event['feats_compose'] = np.empty((0, 256), dtype=np.float64)
# event['feats_select'] = np.empty((0, 256), dtype=np.float64)
'''================= 1. 读取 data 文件 ============================='''
for dataname in os.listdir(filepath):
# filename = '1_track.data'
datapath = os.path.join(filepath, dataname)
if not os.path.isfile(datapath): continue
CamerType = dataname.split('_')[0]
''' 3.1 读取 0/1_track.data 中数据,暂不考虑'''
# if dataname.find("_track.data")>0:
# bboxes, ffeats, trackerboxes, tracker_feat_dict, trackingboxes, tracking_feat_dict = extract_data(datapath)
''' 3.2 读取 0/1_tracking_output.data 中数据'''
if dataname.find("_tracking_output.data")>0:
tracking_output_boxes, tracking_output_feats = read_tracking_output(datapath)
if len(tracking_output_boxes) != len(tracking_output_feats): continue
if CamerType == '0':
event['back_boxes'] = tracking_output_boxes
event['back_feats'] = tracking_output_feats
elif CamerType == '1':
event['front_boxes'] = tracking_output_boxes
event['front_feats'] = tracking_output_feats
# '''1.1 事件的特征表征方式选择'''
# bk_feats = event['back_feats']
# ft_feats = event['front_feats']
# feats_compose = np.empty((0, 256), dtype=np.float64)
# if len(ft_feats):
# feats_compose = np.concatenate((feats_compose, ft_feats), axis=0)
# if len(bk_feats):
# feats_compose = np.concatenate((feats_compose, bk_feats), axis=0)
# event['feats_compose'] = feats_compose
# '''3. 构造前摄特征'''
# if len(ft_feats):
# event['feats_select'] = ft_feats
'''================ 2. 读取图像文件地址并按照帧ID排序 ============='''
frontImgs, frontFid = [], []
backImgs, backFid = [], []
for imgname in os.listdir(filepath):
name, ext = os.path.splitext(imgname)
if ext not in IMG_FORMAT or name.find('frameId')<0: continue
CamerType = name.split('_')[0]
frameId = int(name.split('_')[3])
imgpath = os.path.join(filepath, imgname)
if CamerType == '0':
backImgs.append(imgpath)
backFid.append(frameId)
if CamerType == '1':
frontImgs.append(imgpath)
frontFid.append(frameId)
frontIdx = np.argsort(np.array(frontFid))
backIdx = np.argsort(np.array(backFid))
'''2.1 生成依据帧 ID 排序的前后摄图像地址列表'''
frontImgs = [frontImgs[i] for i in frontIdx]
backImgs = [backImgs[i] for i in backIdx]
'''2.2 将前、后摄图像路径添加至事件字典'''
bfid = event['back_boxes'][:, 7].astype(np.int64)
ffid = event['front_boxes'][:, 7].astype(np.int64)
if len(bfid) and max(bfid) <= len(backImgs):
event['back_imgpaths'] = [backImgs[i-1] for i in bfid]
if len(ffid) and max(ffid) <= len(frontImgs):
event['front_imgpaths'] = [frontImgs[i-1] for i in ffid]
'''================ 3. 判断当前事件有效性,并添加至事件列表 =========='''
condt1 = len(event['back_imgpaths'])==0 or len(event['front_imgpaths'])==0
condt2 = len(event['front_feats'])==0 and len(event['back_feats'])==0
if condt1 or condt2:
print(f" Error, condt1: {condt1}, condt2: {condt2}")
continue
eventList.append(event)
# k += 1
# if k==1:
# continue
'''一、构造放入商品事件列表,暂不处理'''
# delepath = os.path.join(basepath, 'deletedBarcode.txt')
# bcdList = read_deletedBarcode_file(delepath)
# for slist in bcdList:
# getoutFold = slist['SeqDir'].strip()
# getoutPath = os.path.join(basepath, getoutFold)
# '''取出事件文件夹不存在,跳出循环'''
# if not os.path.exists(getoutPath) and not os.path.isdir(getoutPath):
# continue
# ''' 生成取出事件字典 '''
# event = {}
# event['barcode'] = slist['Deleted'].strip()
# event['type'] = 'getout'
# event['basepath'] = getoutPath
return eventList
def get_std_barcodeDict(bcdpath):
stdBlist = []
for filename in os.listdir(bcdpath):
filepath = os.path.join(bcdpath, filename)
if not os.path.isdir(filepath) or not filename.isdigit(): continue
stdBlist.append(filename)
bcdpaths = [(barcode, os.path.join(bcdpath, barcode)) for barcode in stdBlist]
k = 0
for barcode, bpath in bcdpaths:
stdBarcodeDict = {}
stdBarcodeDict[barcode] = []
for root, dirs, files in os.walk(bpath):
imgpaths = []
if "base" in dirs:
broot = os.path.join(root, "base")
for imgname in os.listdir(broot):
imgpath = os.path.join(broot, imgname)
_, ext = os.path.splitext(imgpath)
if ext not in IMG_FORMAT: continue
imgpaths.append(imgpath)
stdBarcodeDict[barcode].extend(imgpaths)
break
else:
for imgname in files:
imgpath = os.path.join(root, imgname)
_, ext = os.path.splitext(imgpath)
if ext not in IMG_FORMAT: continue
imgpaths.append(imgpath)
stdBarcodeDict[barcode].extend(imgpaths)
jsonpath = os.path.join(r'\\192.168.1.28\share\测试_202406\contrast\barcodes', f"{barcode}.pickle")
with open(jsonpath, 'wb') as f:
pickle.dump(stdBarcodeDict, f)
print(f"Barcode: {barcode}")
k += 1
if k == 10:
break
return stdBarcodeDict
def one2one_test(filepath):
savepath = r'\\192.168.1.28\share\测试_202406\contrast'
'''获得 Barcode 列表'''
bcdpath = r'\\192.168.1.28\share\已标注数据备份\对比数据\barcode\barcode_1771'
stdBarcodeDict = get_std_barcodeDict(bcdpath)
eventList = creat_shopping_event(filepath)
print("=========== eventList have generated! ===========")
barcodeDict = {}
for event in eventList:
'''9 items: barcode, type, filepath, back_imgpaths, front_imgpaths,
back_boxes, front_boxes, back_feats, front_feats
'''
barcode = event['barcode']
if barcode not in stdBarcodeDict.keys():
continue
if len(event['feats_select']):
event_feats = event['feats_select']
elif len(event['back_feats']):
event_feats = event['back_feats']
else:
continue
std_bcdpath = os.path.join(bcdpath, barcode)
for root, dirs, files in os.walk(std_bcdpath):
if "base" in files:
std_bcdpath = os.path.join(root, "base")
break
'''保存一次购物事件的轨迹子图'''
basename = os.path.basename(event['filepath'])
spath = os.path.join(savepath, basename)
if not os.path.exists(spath):
os.makedirs(spath)
cameras = ('front', 'back')
for camera in cameras:
if camera == 'front':
boxes = event['front_boxes']
imgpaths = event['front_imgpaths']
else:
boxes = event['back_boxes']
imgpaths = event['back_imgpaths']
for i, box in enumerate(boxes):
x1, y1, x2, y2, tid, score, cls, fid, bid = box
imgpath = imgpaths[i]
image = cv2.imread(imgpath)
subimg = image[int(y1/2):int(y2/2), int(x1/2):int(x2/2), :]
camerType, timeTamp, _, frameID = os.path.basename(imgpath).split('.')[0].split('_')
subimgName = f"{camerType}_{tid}_fid({fid}, {frameID}).png"
subimgPath = os.path.join(spath, subimgName)
cv2.imwrite(subimgPath, subimg)
print(f"Image saved: {basename}")
def batch_inference(imgpaths, batch):
size = len(imgpaths)
groups = []
for i in range(0, size, batch):
end = min(batch + i, size)
groups.append(imgpaths[i: end])
features = []
for group in groups:
feature = featurize(group, conf.test_transform, model, conf.device)
features.append(feature)
return features
def main_infer():
bpath = r"\\192.168.1.28\share\测试_202406\contrast\barcodes"
for filename in os.listdir(bpath):
filepath = os.path.join(bpath, filename)
with open(filepath, 'rb') as f:
bpDict = pickle.load(f)
for barcode, imgpaths in bpDict.items():
feature = batch_inference(imgpaths, 8)
print("Done!!!")
def main():
fplist = [#r'\\192.168.1.28\share\测试_202406\0723\0723_1',
#r'\\192.168.1.28\share\测试_202406\0723\0723_2',
r'\\192.168.1.28\share\测试_202406\0723\0723_3',
#r'\\192.168.1.28\share\测试_202406\0722\0722_01',
#r'\\192.168.1.28\share\测试_202406\0722\0722_02'
]
for filepath in fplist:
one2one_test(filepath)
# for filepath in fplist:
# try:
# one2one_test(filepath)
# except Exception as e:
# print(f'{filepath}, Error: {e}')
if __name__ == '__main__':
# main()
main_infer()

103
contrast/inference.py Normal file
View File

@ -0,0 +1,103 @@
import os
import os.path as osp
import torch
import numpy as np
from model import resnet18
from PIL import Image
from torch.nn.functional import softmax
from config import config as conf
import time
embedding_size = conf.embedding_size
img_size = conf.img_size
device = conf.device
def load_contrast_model():
model = resnet18().to(conf.device)
model.load_state_dict(torch.load(conf.test_model, map_location=conf.device))
model.eval()
print('load model {} '.format(conf.testbackbone))
return model
def group_image(imageDirs, batch) -> list:
images = []
"""Group image paths by batch size"""
with os.scandir(imageDirs) as entries:
for imgpth in entries:
print(imgpth)
images.append(os.sep.join([imageDirs, imgpth.name]))
print(f"{len(images)} images in {imageDirs}")
size = len(images)
res = []
for i in range(0, size, batch):
end = min(batch + i, size)
res.append(images[i: end])
return res
def test_preprocess(images: list, transform) -> torch.Tensor:
res = []
for img in images:
# print(img)
im = Image.open(img)
im = transform(im)
res.append(im)
# data = torch.cat(res, dim=0) # shape: (batch, 128, 128)
# data = data[:, None, :, :] # shape: (batch, 1, 128, 128)
data = torch.stack(res)
return data
def featurize(images: list, transform, net, device) -> dict:
"""featurize each image and save into a dictionary
Args:
images: image paths
transform: test transform
net: pretrained model
device: cpu or cuda
Returns:
Dict (key: imagePath, value: feature)
"""
data = test_preprocess(images, transform)
data = data.to(device)
net = net.to(device)
with torch.no_grad():
features = net(data)
# res = {img: feature for (img, feature) in zip(images, features)}
return features
if __name__ == '__main__':
# Network Setup
if conf.testbackbone == 'resnet18':
model = resnet18().to(device)
else:
raise ValueError('Have not model {}'.format(conf.backbone))
print('load model {} '.format(conf.testbackbone))
# model = nn.DataParallel(model).to(conf.device)
model.load_state_dict(torch.load(conf.test_model, map_location=conf.device))
model.eval()
# images = unique_image(conf.test_list)
# images = [osp.join(conf.test_val, img) for img in images]
# print('images', images)
# images = ['./data/2250_train/val/6920616313186/6920616313186_6920616313186_20240220-124502_53d2e103-ae3a-4689-b745-9d8723b770fe_front_returnGood_70f75407b7ae_31_01.jpg']
# groups = group_image(conf.test_val, conf.test_batch_size) ##根据batch_size取图片
groups = group_image('img_test', 1) ##根据batch_size取图片, 默认batch_size = 8
feature_dict = dict()
for group in groups:
s = time.time()
features = featurize(group, conf.test_transform, model, conf.device)
e = time.time()
print('time: {}'.format(e - s))
# out = softmax(features, dim=1).argmax(dim=1)
# print('d >>> {}'. format(out))
# feature_dict.update(d)

View File

@ -0,0 +1 @@
from .resnet_pre import resnet18, resnet34, resnet50, resnet14

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

View File

@ -0,0 +1,462 @@
import torch
import torch.nn as nn
from config import config as conf
try:
from torch.hub import load_state_dict_from_url
except ImportError:
from torch.utils.model_zoo import load_url as load_state_dict_from_url
# from .utils import load_state_dict_from_url
__all__ = ['ResNet', 'resnet18', 'resnet34', 'resnet50', 'resnet101',
'resnet152', 'resnext50_32x4d', 'resnext101_32x8d',
'wide_resnet50_2', 'wide_resnet101_2']
model_urls = {
'resnet18': 'https://download.pytorch.org/models/resnet18-5c106cde.pth',
'resnet34': 'https://download.pytorch.org/models/resnet34-333f7ec4.pth',
'resnet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth',
'resnet101': 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth',
'resnet152': 'https://download.pytorch.org/models/resnet152-b121ed2d.pth',
'resnext50_32x4d': 'https://download.pytorch.org/models/resnext50_32x4d-7cdf4587.pth',
'resnext101_32x8d': 'https://download.pytorch.org/models/resnext101_32x8d-8ba56ff5.pth',
'wide_resnet50_2': 'https://download.pytorch.org/models/wide_resnet50_2-95faca4d.pth',
'wide_resnet101_2': 'https://download.pytorch.org/models/wide_resnet101_2-32ee1156.pth',
}
def conv3x3(in_planes, out_planes, stride=1, groups=1, dilation=1):
"""3x3 convolution with padding"""
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
padding=dilation, groups=groups, bias=False, dilation=dilation)
def conv1x1(in_planes, out_planes, stride=1):
"""1x1 convolution"""
return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False)
class SpatialAttention(nn.Module):
def __init__(self, kernel_size=7):
super(SpatialAttention, self).__init__()
assert kernel_size in (3, 7), 'kernel size must be 3 or 7'
padding = 3 if kernel_size == 7 else 1
self.conv1 = nn.Conv2d(2, 1, kernel_size, padding=padding, bias=False)
self.sigmoid = nn.Sigmoid()
def forward(self, x):
avg_out = torch.mean(x, dim=1, keepdim=True)
max_out, _ = torch.max(x, dim=1, keepdim=True)
x = torch.cat([avg_out, max_out], dim=1)
x = self.conv1(x)
return self.sigmoid(x)
class BasicBlock(nn.Module):
expansion = 1
def __init__(self, inplanes, planes, stride=1, downsample=None, groups=1,
base_width=64, dilation=1, norm_layer=None, cam=False, bam=False):
super(BasicBlock, self).__init__()
if norm_layer is None:
norm_layer = nn.BatchNorm2d
if groups != 1 or base_width != 64:
raise ValueError('BasicBlock only supports groups=1 and base_width=64')
if dilation > 1:
raise NotImplementedError("Dilation > 1 not supported in BasicBlock")
self.cam = cam
self.bam = bam
# Both self.conv1 and self.downsample layers downsample the input when stride != 1
self.conv1 = conv3x3(inplanes, planes, stride)
self.bn1 = norm_layer(planes)
self.relu = nn.ReLU(inplace=True)
self.conv2 = conv3x3(planes, planes)
self.bn2 = norm_layer(planes)
self.downsample = downsample
self.stride = stride
if self.cam:
if planes == 64:
self.globalAvgPool = nn.AvgPool2d(56, stride=1)
elif planes == 128:
self.globalAvgPool = nn.AvgPool2d(28, stride=1)
elif planes == 256:
self.globalAvgPool = nn.AvgPool2d(14, stride=1)
elif planes == 512:
self.globalAvgPool = nn.AvgPool2d(7, stride=1)
self.fc1 = nn.Linear(in_features=planes, out_features=round(planes / 16))
self.fc2 = nn.Linear(in_features=round(planes / 16), out_features=planes)
self.sigmod = nn.Sigmoid()
if self.bam:
self.bam = SpatialAttention()
def forward(self, x):
identity = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
if self.downsample is not None:
identity = self.downsample(x)
if self.cam:
ori_out = self.globalAvgPool(out)
out = out.view(out.size(0), -1)
out = self.fc1(out)
out = self.relu(out)
out = self.fc2(out)
out = self.sigmod(out)
out = out.view(out.size(0), out.size(-1), 1, 1)
out = out * ori_out
if self.bam:
out = out*self.bam(out)
out += identity
out = self.relu(out)
return out
class Bottleneck(nn.Module):
# Bottleneck in torchvision places the stride for downsampling at 3x3 convolution(self.conv2)
# while original implementation places the stride at the first 1x1 convolution(self.conv1)
# according to "Deep residual learning for image recognition"https://arxiv.org/abs/1512.03385.
# This variant is also known as ResNet V1.5 and improves accuracy according to
# https://ngc.nvidia.com/catalog/model-scripts/nvidia:resnet_50_v1_5_for_pytorch.
expansion = 4
def __init__(self, inplanes, planes, stride=1, downsample=None, groups=1,
base_width=64, dilation=1, norm_layer=None, cam=False, bam=False):
super(Bottleneck, self).__init__()
if norm_layer is None:
norm_layer = nn.BatchNorm2d
width = int(planes * (base_width / 64.)) * groups
self.cam = cam
self.bam = bam
# Both self.conv2 and self.downsample layers downsample the input when stride != 1
self.conv1 = conv1x1(inplanes, width)
self.bn1 = norm_layer(width)
self.conv2 = conv3x3(width, width, stride, groups, dilation)
self.bn2 = norm_layer(width)
self.conv3 = conv1x1(width, planes * self.expansion)
self.bn3 = norm_layer(planes * self.expansion)
self.relu = nn.ReLU(inplace=True)
self.downsample = downsample
self.stride = stride
if self.cam:
if planes == 64:
self.globalAvgPool = nn.AvgPool2d(56, stride=1)
elif planes == 128:
self.globalAvgPool = nn.AvgPool2d(28, stride=1)
elif planes == 256:
self.globalAvgPool = nn.AvgPool2d(14, stride=1)
elif planes == 512:
self.globalAvgPool = nn.AvgPool2d(7, stride=1)
self.fc1 = nn.Linear(planes * self.expansion, round(planes / 4))
self.fc2 = nn.Linear(round(planes / 4), planes * self.expansion)
self.sigmod = nn.Sigmoid()
def forward(self, x):
identity = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
out = self.relu(out)
out = self.conv3(out)
out = self.bn3(out)
if self.downsample is not None:
identity = self.downsample(x)
if self.cam:
ori_out = self.globalAvgPool(out)
out = out.view(out.size(0), -1)
out = self.fc1(out)
out = self.relu(out)
out = self.fc2(out)
out = self.sigmod(out)
out = out.view(out.size(0), out.size(-1), 1, 1)
out = out * ori_out
out += identity
out = self.relu(out)
return out
class ResNet(nn.Module):
def __init__(self, block, layers, num_classes=conf.embedding_size, zero_init_residual=False,
groups=1, width_per_group=64, replace_stride_with_dilation=None,
norm_layer=None, scale=0.75):
super(ResNet, self).__init__()
if norm_layer is None:
norm_layer = nn.BatchNorm2d
self._norm_layer = norm_layer
self.inplanes = 64
self.dilation = 1
if replace_stride_with_dilation is None:
# each element in the tuple indicates if we should replace
# the 2x2 stride with a dilated convolution instead
replace_stride_with_dilation = [False, False, False]
if len(replace_stride_with_dilation) != 3:
raise ValueError("replace_stride_with_dilation should be None "
"or a 3-element tuple, got {}".format(replace_stride_with_dilation))
self.groups = groups
self.base_width = width_per_group
self.conv1 = nn.Conv2d(3, self.inplanes, kernel_size=7, stride=2, padding=3,
bias=False)
self.bn1 = norm_layer(self.inplanes)
self.relu = nn.ReLU(inplace=True)
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.layer1 = self._make_layer(block, int(64*scale), layers[0])
self.layer2 = self._make_layer(block, int(128*scale), layers[1], stride=2,
dilate=replace_stride_with_dilation[0])
self.layer3 = self._make_layer(block, int(256*scale), layers[2], stride=2,
dilate=replace_stride_with_dilation[1])
self.layer4 = self._make_layer(block, int(512*scale), layers[3], stride=2,
dilate=replace_stride_with_dilation[2])
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
self.fc = nn.Linear(int(512 * block.expansion*scale), num_classes)
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
# Zero-initialize the last BN in each residual branch,
# so that the residual branch starts with zeros, and each residual block behaves like an identity.
# This improves the model by 0.2~0.3% according to https://arxiv.org/abs/1706.02677
if zero_init_residual:
for m in self.modules():
if isinstance(m, Bottleneck):
nn.init.constant_(m.bn3.weight, 0)
elif isinstance(m, BasicBlock):
nn.init.constant_(m.bn2.weight, 0)
def _make_layer(self, block, planes, blocks, stride=1, dilate=False):
norm_layer = self._norm_layer
downsample = None
previous_dilation = self.dilation
if dilate:
self.dilation *= stride
stride = 1
if stride != 1 or self.inplanes != planes * block.expansion:
downsample = nn.Sequential(
conv1x1(self.inplanes, planes * block.expansion, stride),
norm_layer(planes * block.expansion),
)
layers = []
layers.append(block(self.inplanes, planes, stride, downsample, self.groups,
self.base_width, previous_dilation, norm_layer))
self.inplanes = planes * block.expansion
for _ in range(1, blocks):
layers.append(block(self.inplanes, planes, groups=self.groups,
base_width=self.base_width, dilation=self.dilation,
norm_layer=norm_layer))
return nn.Sequential(*layers)
def _forward_impl(self, x):
# See note [TorchScript super()]
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.maxpool(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
# print('poolBefore', x.shape)
x = self.avgpool(x)
# print('poolAfter', x.shape)
x = torch.flatten(x, 1)
# print('fcBefore',x.shape)
x = self.fc(x)
# print('fcAfter',x.shape)
return x
def forward(self, x):
return self._forward_impl(x)
# def _resnet(arch, block, layers, pretrained, progress, **kwargs):
# model = ResNet(block, layers, **kwargs)
# if pretrained:
# state_dict = load_state_dict_from_url(model_urls[arch],
# progress=progress)
# model.load_state_dict(state_dict, strict=False)
# return model
def _resnet(arch, block, layers, pretrained, progress, **kwargs):
model = ResNet(block, layers, **kwargs)
if pretrained:
state_dict = load_state_dict_from_url(model_urls[arch],
progress=progress)
src_state_dict = state_dict
target_state_dict = model.state_dict()
skip_keys = []
# skip mismatch size tensors in case of pretraining
for k in src_state_dict.keys():
if k not in target_state_dict:
continue
if src_state_dict[k].size() != target_state_dict[k].size():
skip_keys.append(k)
for k in skip_keys:
del src_state_dict[k]
missing_keys, unexpected_keys = model.load_state_dict(src_state_dict, strict=False)
return model
def resnet14(pretrained=True, progress=True, **kwargs):
r"""ResNet-14 model from
`"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
progress (bool): If True, displays a progress bar of the download to stderr
"""
return _resnet('resnet18', BasicBlock, [2, 1, 1, 2], pretrained, progress,
**kwargs)
def resnet18(pretrained=True, progress=True, **kwargs):
r"""ResNet-18 model from
`"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
progress (bool): If True, displays a progress bar of the download to stderr
"""
return _resnet('resnet18', BasicBlock, [2, 2, 2, 2], pretrained, progress,
**kwargs)
def resnet34(pretrained=False, progress=True, **kwargs):
r"""ResNet-34 model from
`"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
progress (bool): If True, displays a progress bar of the download to stderr
"""
return _resnet('resnet34', BasicBlock, [3, 4, 6, 3], pretrained, progress,
**kwargs)
def resnet50(pretrained=False, progress=True, **kwargs):
r"""ResNet-50 model from
`"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
progress (bool): If True, displays a progress bar of the download to stderr
"""
return _resnet('resnet50', Bottleneck, [3, 4, 6, 3], pretrained, progress,
**kwargs)
def resnet101(pretrained=False, progress=True, **kwargs):
r"""ResNet-101 model from
`"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
progress (bool): If True, displays a progress bar of the download to stderr
"""
return _resnet('resnet101', Bottleneck, [3, 4, 23, 3], pretrained, progress,
**kwargs)
def resnet152(pretrained=False, progress=True, **kwargs):
r"""ResNet-152 model from
`"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
progress (bool): If True, displays a progress bar of the download to stderr
"""
return _resnet('resnet152', Bottleneck, [3, 8, 36, 3], pretrained, progress,
**kwargs)
def resnext50_32x4d(pretrained=False, progress=True, **kwargs):
r"""ResNeXt-50 32x4d model from
`"Aggregated Residual Transformation for Deep Neural Networks" <https://arxiv.org/pdf/1611.05431.pdf>`_
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
progress (bool): If True, displays a progress bar of the download to stderr
"""
kwargs['groups'] = 32
kwargs['width_per_group'] = 4
return _resnet('resnext50_32x4d', Bottleneck, [3, 4, 6, 3],
pretrained, progress, **kwargs)
def resnext101_32x8d(pretrained=False, progress=True, **kwargs):
r"""ResNeXt-101 32x8d model from
`"Aggregated Residual Transformation for Deep Neural Networks" <https://arxiv.org/pdf/1611.05431.pdf>`_
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
progress (bool): If True, displays a progress bar of the download to stderr
"""
kwargs['groups'] = 32
kwargs['width_per_group'] = 8
return _resnet('resnext101_32x8d', Bottleneck, [3, 4, 23, 3],
pretrained, progress, **kwargs)
def wide_resnet50_2(pretrained=False, progress=True, **kwargs):
r"""Wide ResNet-50-2 model from
`"Wide Residual Networks" <https://arxiv.org/pdf/1605.07146.pdf>`_
The model is the same as ResNet except for the bottleneck number of channels
which is twice larger in every block. The number of channels in outer 1x1
convolutions is the same, e.g. last block in ResNet-50 has 2048-512-2048
channels, and in Wide ResNet-50-2 has 2048-1024-2048.
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
progress (bool): If True, displays a progress bar of the download to stderr
"""
kwargs['width_per_group'] = 64 * 2
return _resnet('wide_resnet50_2', Bottleneck, [3, 4, 6, 3],
pretrained, progress, **kwargs)
def wide_resnet101_2(pretrained=False, progress=True, **kwargs):
r"""Wide ResNet-101-2 model from
`"Wide Residual Networks" <https://arxiv.org/pdf/1605.07146.pdf>`_
The model is the same as ResNet except for the bottleneck number of channels
which is twice larger in every block. The number of channels in outer 1x1
convolutions is the same, e.g. last block in ResNet-50 has 2048-512-2048
channels, and in Wide ResNet-50-2 has 2048-1024-2048.
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
progress (bool): If True, displays a progress bar of the download to stderr
"""
kwargs['width_per_group'] = 64 * 2
return _resnet('wide_resnet101_2', Bottleneck, [3, 4, 23, 3],
pretrained, progress, **kwargs)

View File

@ -34,6 +34,7 @@ import cv2
import os import os
import sys import sys
import json import json
import pickle
sys.path.append(r"D:\DetectTracking") sys.path.append(r"D:\DetectTracking")
from tracking.utils.read_data import extract_data, read_tracking_output, read_deletedBarcode_file from tracking.utils.read_data import extract_data, read_tracking_output, read_deletedBarcode_file
@ -213,9 +214,12 @@ def get_std_barcodeDict(bcdpath):
if ext not in IMG_FORMAT: continue if ext not in IMG_FORMAT: continue
imgpaths.append(imgpath) imgpaths.append(imgpath)
stdBarcodeDict[barcode].extend(imgpaths) stdBarcodeDict[barcode].extend(imgpaths)
with open('stdBarcodeDict.json', 'wb') as f: jsonpath = os.path.join(r'\\192.168.1.28\share\测试_202406\contrast\barcodes', f"{barcode}.pickle")
json.dump(stdBarcodeDict, f) with open(jsonpath, 'wb') as f:
pickle.dump(stdBarcodeDict, f)
print(f"Barcode: {barcode}")