This commit is contained in:
王庆刚
2024-11-08 08:52:56 +08:00
parent 5ecc1285d4
commit c47894ddc0
11 changed files with 562 additions and 644 deletions

Binary file not shown.

View File

@ -16,7 +16,7 @@ from tracking.utils.read_data import extract_data, read_deletedBarcode_file, rea
# from tracking.dotrack.dotracks import Track
from one2n_contrast import compute_recall_precision, show_recall_prec
from one2n_contrast import performance_evaluate
from one2n_contrast import performance_evaluate, one2n_return, one2n_deleted
def compute_similar(feat1, feat2):

View File

@ -27,7 +27,7 @@ model.load_state_dict(torch.load(model_path, map_location=conf.device))
model.eval()
print('load model {} '.format(conf.testbackbone))
def get_std_barcodeDict(bcdpath, savepath):
def get_std_barcodeDict(bcdpath, savepath, bcdSet):
'''
inputs:
bcdpath: 已清洗的barcode样本图像如果barcode下有'base'文件夹,只选用该文件夹下图像
@ -42,10 +42,14 @@ def get_std_barcodeDict(bcdpath, savepath):
'''读取数据集中 barcode 列表'''
stdBarcodeList = []
for filename in os.listdir(bcdpath):
filepath = os.path.join(bcdpath, filename)
# filepath = os.path.join(bcdpath, filename)
# if not os.path.isdir(filepath) or not filename.isdigit() or len(filename)<8:
# continue
stdBarcodeList.append(filename)
if bcdSet is None:
stdBarcodeList.append(filename)
elif filename in bcdSet:
stdBarcodeList.append(filename)
bcdPaths = [(barcode, os.path.join(bcdpath, barcode)) for barcode in stdBarcodeList]
@ -184,18 +188,15 @@ def stdfeat_infer(imgPath, featPath, bcdSet=None):
def genfeatures(imgpath, bcdpath, featpath):
def genfeatures(imgpath, bcdpath, featpath, bcdSet=None):
''' 生成标准特征集 '''
'''1. 提取 imgpath 中样本地址,生成字典{barcode: [imgpath1, imgpath1, ...]}
并存储于: bcdpath, 格式为 barcode.pickle'''
get_std_barcodeDict(imgpath, bcdpath, bcdSet)
get_std_barcodeDict(imgpath, bcdpath)
stdfeat_infer(bcdpath, featpath, bcdSet=None)
'''2. 特征提取,并保存至文件夹 featpath 中,也根据 bcdSet 交集执行'''
stdfeat_infer(bcdpath, featpath, bcdSet)
print(f"Features have generated, saved in: {featpath}")
def main():
imgpath = r"\\192.168.1.28\share\展厅barcode数据\整理\zhantingBase"
bcdpath = r"D:\exhibition\dataset\bcdpath"

View File

@ -21,7 +21,7 @@ import sys
sys.path.append(r"D:\DetectTracking")
from tracking.utils.plotting import Annotator, colors
from tracking.utils.read_data import extract_data, read_deletedBarcode_file, read_tracking_output, read_returnGoods_file
from tracking.utils.plotting import draw_tracking_boxes
from tracking.utils.plotting import draw_tracking_boxes, get_subimgs
from contrast.utils.tools import showHist, show_recall_prec, compute_recall_precision
@ -148,13 +148,18 @@ def get_contrast_paths(pair, basepath):
if len(input_folds):
indice = np.argsort(np.array(times))
input_fold = input_folds[indice[-1]]
inputpath = os.path.join(basepath, input_fold)
'''取出操作错误匹配的放入操作对应的文件夹'''
if len(errmatch_folds):
indice = np.argsort(np.array(errmatch_times))
errmatch_fold = errmatch_folds[indice[-1]]
errorpath = os.path.join(basepath, errmatch_fold)
'''放入事件文件夹地址、取出事件文件夹地址'''
getoutpath = os.path.join(basepath, getout_fold)
@ -163,33 +168,33 @@ def get_contrast_paths(pair, basepath):
return getoutpath, inputpath, errorpath
def save_tracking_imgpairs(pair, basepath, savepath):
def save_tracking_imgpairs(pairs, savepath):
'''
basepath: 原始测试数据文件夹的路径
pairs: 匹配事件对
savepath: 保存的目标文件夹
'''
def get_event_path(evtpath):
basepath, eventname = os.path.split(evtpath)
evt_path = ''
for filename in os.listdir(basepath):
if filename.find(eventname)==0:
evt_path = os.path.join(basepath, filename)
break
return evt_path
getoutpath, inputpath, errorpath = get_contrast_paths(pair, basepath)
if len(inputpath)==0:
return
getoutpath = get_event_path(pairs[0])
inputpath = get_event_path(pairs[1])
if len(pairs) == 3:
errorpath = get_event_path(pairs[2])
else:
errorpath = ''
'''==== 读取放入、取出事件对应的 Yolo输入的前后摄图像0后摄1前摄 ===='''
'''==== 读取放入、取出事件对应的 tracking 输出boxes, feats ===='''
if len(inputpath):
imgs_input_0, imgs_input_1 = read_tracking_imgs(inputpath)
input_data_0 = os.path.join(inputpath, '0_tracking_output.data')
input_data_1 = os.path.join(inputpath, '1_tracking_output.data')
boxes_input_0, feats_input_0 = read_tracking_output(input_data_0)
boxes_input_1, feats_input_1 = read_tracking_output(input_data_1)
ImgsInput_0 = draw_tracking_boxes(imgs_input_0, boxes_input_0)
ImgsInput_1 = draw_tracking_boxes(imgs_input_1, boxes_input_1)
''' 1. 读取放入、取出事件对应的 Yolo输入的前后摄图像0后摄1前摄
2. 读取放入、取出事件对应的 tracking 输出boxes, feats
3. boxes绘制并保存图像序列
4. 截取并保存轨迹子图
'''
if len(getoutpath):
imgs_getout_0, imgs_getout_1 = read_tracking_imgs(getoutpath)
@ -199,9 +204,28 @@ def save_tracking_imgpairs(pair, basepath, savepath):
boxes_output_1, feats_output_1 = read_tracking_output(getout_data_1)
ImgsGetout_0 = draw_tracking_boxes(imgs_getout_0, boxes_output_0)
ImgsGetout_1 = draw_tracking_boxes(imgs_getout_1, boxes_output_1)
if len(errorpath):
SubimgsGetout_0 = get_subimgs(imgs_getout_0, boxes_output_0)
SubimgsGetout_1 = get_subimgs(imgs_getout_1, boxes_output_1)
savedir = os.path.basename(getoutpath)
if len(inputpath):
imgs_input_0, imgs_input_1 = read_tracking_imgs(inputpath)
input_data_0 = os.path.join(inputpath, '0_tracking_output.data')
input_data_1 = os.path.join(inputpath, '1_tracking_output.data')
boxes_input_0, feats_input_0 = read_tracking_output(input_data_0)
boxes_input_1, feats_input_1 = read_tracking_output(input_data_1)
ImgsInput_0 = draw_tracking_boxes(imgs_input_0, boxes_input_0)
ImgsInput_1 = draw_tracking_boxes(imgs_input_1, boxes_input_1)
SubimgsInput_0 = get_subimgs(imgs_input_0, boxes_input_0)
SubimgsInput_1 = get_subimgs(imgs_input_1, boxes_input_1)
savedir = savedir + '+' + os.path.basename(inputpath)
if len(errorpath):
imgs_error_0, imgs_error_1 = read_tracking_imgs(errorpath)
error_data_0 = os.path.join(errorpath, '0_tracking_output.data')
@ -211,37 +235,61 @@ def save_tracking_imgpairs(pair, basepath, savepath):
ImgsError_0 = draw_tracking_boxes(imgs_error_0, boxes_error_0)
ImgsError_1 = draw_tracking_boxes(imgs_error_1, boxes_error_1)
SubimgsError_0 = get_subimgs(imgs_error_0, boxes_error_0)
SubimgsError_1 = get_subimgs(imgs_error_0, boxes_error_0)
savedir = pair[0] + pair[1]
if len(errorpath):
savedir = savedir + '_' + errorpath.split('_')[-1]
foldname = os.path.join(savepath, 'imgpairs', savedir)
if not os.path.exists(foldname):
os.makedirs(foldname)
for i, img in enumerate(ImgsInput_0):
imgpath = os.path.join(foldname, f'input_0_{i}.png')
cv2.imwrite(imgpath, img)
for i, img in enumerate(ImgsInput_1):
imgpath = os.path.join(foldname, f'input_1_{i}.png')
cv2.imwrite(imgpath, img)
for i, img in enumerate(ImgsGetout_0):
imgpath = os.path.join(foldname, f'getout_0_{i}.png')
cv2.imwrite(imgpath, img)
for i, img in enumerate(ImgsGetout_1):
imgpath = os.path.join(foldname, f'getout_1_{i}.png')
cv2.imwrite(imgpath, img)
savedir = savedir + '+' + os.path.basename(errorpath)
for i, img in enumerate(ImgsError_0):
imgpath = os.path.join(foldname, f'errMatch_0_{i}.png')
''' savepath\pairs\savedir\eventpairs\保存画框后的图像序列 '''
entpairs = os.path.join(savepath, 'pairs', savedir, 'eventpairs')
if not os.path.exists(entpairs):
os.makedirs(entpairs)
for fid, img in ImgsInput_0:
imgpath = os.path.join(entpairs, f'input_0_{fid}.png')
cv2.imwrite(imgpath, img)
for i, img in enumerate(ImgsError_1):
imgpath = os.path.join(foldname, f'errMatch_1_{i}.png')
for fid, img in ImgsInput_1:
imgpath = os.path.join(entpairs, f'input_1_{fid}.png')
cv2.imwrite(imgpath, img)
for fid, img in ImgsGetout_0:
imgpath = os.path.join(entpairs, f'getout_0_{fid}.png')
cv2.imwrite(imgpath, img)
for fid, img in ImgsGetout_1:
imgpath = os.path.join(entpairs, f'getout_1_{fid}.png')
cv2.imwrite(imgpath, img)
if 'ImgsError_0' in vars() and 'ImgsError_1' in vars():
for fid, img in ImgsError_0:
imgpath = os.path.join(entpairs, f'errMatch_0_{fid}.png')
cv2.imwrite(imgpath, img)
for fid, img in ImgsError_1:
imgpath = os.path.join(entpairs, f'errMatch_1_{fid}.png')
cv2.imwrite(imgpath, img)
''' savepath\pairs\savedir\subimgpairs\保存轨迹子图 '''
subimgpairs = os.path.join(savepath, 'pairs', savedir, 'subimgpairs')
if not os.path.exists(subimgpairs):
os.makedirs(subimgpairs)
for fid, bid, img in SubimgsGetout_0:
imgpath = os.path.join(subimgpairs, f'getout_0_{fid}_{bid}.png')
cv2.imwrite(imgpath, img)
for fid, bid, img in SubimgsGetout_1:
imgpath = os.path.join(subimgpairs, f'getout_1_{fid}_{bid}.png')
cv2.imwrite(imgpath, img)
for fid, bid, img in SubimgsInput_0:
imgpath = os.path.join(subimgpairs, f'input_0_{fid}_{bid}.png')
cv2.imwrite(imgpath, img)
for fid, bid, img in SubimgsInput_1:
imgpath = os.path.join(subimgpairs, f'input_1_{fid}_{bid}.png')
cv2.imwrite(imgpath, img)
if 'SubimgsError_0' in vars() and 'SubimgsError_1' in vars():
for fid, bid, img in SubimgsError_0:
imgpath = os.path.join(subimgpairs, f'errMatch_0_{fid}_{bid}.png')
cv2.imwrite(imgpath, img)
for fid, bid, img in SubimgsError_1:
imgpath = os.path.join(subimgpairs, f'errMatch_1_{fid}_{bid}.png')
cv2.imwrite(imgpath, img)
def one2n_old(all_list):
def one2n_deleted(all_list):
corrpairs, errpairs, correct_similarity, err_similarity = [], [], [], []
for s_list in all_list:
seqdir = s_list['SeqDir'].strip()
@ -277,8 +325,9 @@ def one2n_old(all_list):
def one2n_new(all_list):
corrpairs, correct_similarity, errpairs, err_similarity = [], [], [], []
def one2n_return(all_list, basepath):
corrpairs, corr_similarity, errpairs, err_similarity = [], [], [], []
for s_list in all_list:
seqdir = s_list['SeqDir'].strip()
delete = s_list['Deleted'].strip()
@ -305,7 +354,7 @@ def one2n_new(all_list):
matched_barcode = barcodes[index]
if matched_barcode == delete:
corrpairs.append((seqdir, events[index]))
correct_similarity.append(max(similarity))
corr_similarity.append(max(similarity))
else:
idx = [i for i, name in enumerate(events) if name.split('_')[-1] == delete]
idxmax, simimax = -1, -1
@ -314,49 +363,80 @@ def one2n_new(all_list):
if similarity[k] > simimax:
idxmax = k
simimax = similarity[k]
errpairs.append((seqdir, events[idxmax], events[index]))
if idxmax>-1:
input_event = events[idxmax]
else:
input_event = ''
errpairs.append((seqdir, input_event, events[index]))
err_similarity.append(max(similarity))
return errpairs, corrpairs, err_similarity, correct_similarity
return corrpairs, errpairs, corr_similarity, err_similarity
# def contrast_analysis(del_barcode_file, basepath, savepath, saveimgs=False):
def get_relative_paths(del_barcode_file, basepath, savepath, saveimgs=False):
'''
del_barcode_file:
deletedBarcode.txt 格式的 1:n 数据结果文件
returnGoods.txt格式数据文件不需要调用该函数one2n_old() 函数返回的 errpairs
中元素为三元元组(取出,放入, 错误匹配)
'''
def test_rpath_deleted():
'''deletedBarcode.txt 格式的 1:n 数据结果文件, returnGoods.txt格式数据文件不需要调用该函数'''
del_bfile = r'\\192.168.1.28\share\测试_202406\709\deletedBarcode.txt'
basepath = r'\\192.168.1.28\share\测试_202406\709'
savepath = r'D:\DetectTracking\contrast\result'
saveimgs = True
relative_paths = []
'''1. 读取 deletedBarcode 文件 '''
all_list = read_deletedBarcode_file(del_barcode_file)
all_list = read_deletedBarcode_file(del_bfile)
'''2. 算法性能评估,并输出 (取出,删除, 错误匹配) 对 '''
errpairs, corrpairs, _, _ = one2n_old(all_list)
corrpairs, errpairs, _, _ = one2n_deleted(all_list)
'''3. 构造事件组合(取出,放入并删除, 错误匹配) 对应路径 '''
for errpair in errpairs:
GetoutPath, InputPath, ErrorPath = get_contrast_paths(errpair, basepath)
relative_paths.append((GetoutPath, InputPath, ErrorPath))
pairs = (GetoutPath, InputPath, ErrorPath)
relative_paths.append(pairs)
print(InputPath)
'''3. 获取 (取出,放入并删除, 错误匹配) 对应路径,保存相应轨迹图像'''
if saveimgs:
save_tracking_imgpairs(errpair, basepath, savepath)
if saveimgs:
save_tracking_imgpairs(pairs, savepath)
return relative_paths
def one2n_test():
fpath = r'\\192.168.1.28\share\测试_202406\deletedBarcode\other'
fpath = r'\\192.168.1.28\share\测试_202406\1030\images'
def test_rpath_return():
return_bfile = r'\\192.168.1.28\share\测试_202406\1101\images\returnGoods.txt'
basepath = r'\\192.168.1.28\share\测试_202406\1101\images'
savepath = r'D:\DetectTracking\contrast\result'
all_list = read_returnGoods_file(return_bfile)
corrpairs, errpairs, _, _ = one2n_return(all_list, basepath)
for corrpair in corrpairs:
GetoutPath = os.path.join(basepath, corrpair[0])
InputPath = os.path.join(basepath, corrpair[1])
pairs = (GetoutPath, InputPath)
save_tracking_imgpairs(pairs, savepath)
for errpair in errpairs:
GetoutPath = os.path.join(basepath, errpair[0])
InputPath = os.path.join(basepath, errpair[1])
ErrorPath = os.path.join(basepath, errpair[2])
pairs = (GetoutPath, InputPath, ErrorPath)
save_tracking_imgpairs(pairs, savepath)
def test_one2n():
'''
1:n 性能测试
兼容 2 种 txt 文件格式returnGoods.txt, deletedBarcode.txt
fpath: 文件路径、或文件夹,其中包含多个 txt 文件
savepath: pr曲线保存路径
'''
# fpath = r'\\192.168.1.28\share\测试_202406\deletedBarcode\other' # deletedBarcode.txt
fpath = r'\\192.168.1.28\share\测试_202406\returnGoods\all' # returnGoods.txt
savepath = r'\\192.168.1.28\share\测试_202406\deletedBarcode\illustration'
if not os.path.exists(savepath):
os.mkdir(savepath)
if os.path.isdir(fpath):
filepaths = [os.path.join(fpath, f) for f in os.listdir(fpath)
@ -366,37 +446,27 @@ def one2n_test():
filepaths = [fpath]
else:
return
FileFormat = {}
if not os.path.exists(savepath):
os.mkdir(savepath)
BarLists, blists = {}, []
for pth in filepaths:
file = str(Path(pth).stem)
if file.find('deletedBarcode')>=0:
FileFormat[file] = 'deletedBarcode'
blist = read_deletedBarcode_file(pth)
elif file.find('returnGoods')>=0:
FileFormat[file] = 'returnGoods'
if file.find('returnGoods')>=0:
blist = read_returnGoods_file(pth)
else:
return
BarLists.update({file: blist})
blists.extend(blist)
BarLists.update({file: blist})
BarLists.update({"Total": blists})
if len(blists): BarLists.update({"Total": blists})
for file, blist in BarLists.items():
if FileFormat[file] == 'deletedBarcode':
_, _, err_similarity, correct_similarity = one2n_old(blist)
elif FileFormat[file] == 'returnGoods':
_, _, err_similarity, correct_similarity = one2n_new(blist)
else:
_, _, err_similarity, correct_similarity = one2n_old(blist)
if all(b['filetype']=="deletedBarcode" for b in blist):
_, _, correct_similarity, err_similarity = one2n_deleted(blist)
if all(b['filetype']=="returnGoods" for b in blists):
_, _, correct_similarity, err_similarity = one2n_return(blist)
recall, prec, ths = compute_recall_precision(err_similarity, correct_similarity)
@ -413,51 +483,16 @@ def one2n_test():
def test_getreltpath():
'''
适用于deletedBarcode.txt不适用于returnGoods.txt
'''
del_barcode_file = r'\\192.168.1.28\share\测试_202406\709\deletedBarcode.txt'
basepath = r'\\192.168.1.28\share\测试_202406\709'
# del_barcode_file = r'\\192.168.1.28\share\测试_202406\1030\images\returnGoods.txt'
# basepath = r'\\192.168.1.28\share\测试_202406\1030\images'
savepath = r'D:\contrast\dataset\result'
saveimgs = True
try:
relative_path = get_relative_paths(del_barcode_file, basepath, savepath, saveimgs)
except Exception as e:
print(f'Error Type: {e}')
if __name__ == '__main__':
one2n_test()
# test_getreltpath()
# test_one2n()
test_rpath_return() # returnGoods.txt
test_rpath_deleted() # deleteBarcode.txt
# try:
# test_rpath_return()
# test_rpath_deleted()
# except Exception as e:
# print(e)

View File

@ -11,7 +11,7 @@ Created on Fri Aug 30 17:53:03 2024
标准特征提取,并保存至文件夹 stdFeaturePath 中,
也可在运行过程中根据与购物事件集合 barcodes 交集执行
2. 1:1 比对性能测试,
func: contrast_performance_evaluate(resultPath)
func: one2one_eval(resultPath)
(1) 求购物事件和标准特征级 Barcode 交集,构造 evtDict、stdDict
(2) 构造扫 A 放 A、扫 A 放 B 组合mergePairs = AA_list + AB_list
(3) 循环计算 mergePairs 中元素 "(A, A) 或 (A, B)" 相似度;
@ -32,86 +32,83 @@ import os
import sys
import random
import pickle
import torch
# import torch
import time
import json
# import json
from pathlib import Path
from scipy.spatial.distance import cdist
import matplotlib.pyplot as plt
import shutil
from datetime import datetime
from openpyxl import load_workbook, Workbook
# from openpyxl import load_workbook, Workbook
# Vit版resnet, 和现场特征不一致需将resnet_vit中文件提出
# from config import config as conf
# from model import resnet18
# from inference import load_contrast_model
# from inference import featurize
# embedding_size = conf.embedding_size
# img_size = conf.img_size
# device = conf.device
# model = load_contrast_model()
# from model import resnet18 as resnet18
# from feat_inference import inference_image
sys.path.append(r"D:\DetectTracking")
from tracking.utils.read_data import extract_data, read_tracking_output, read_deletedBarcode_file
from config import config as conf
from model import resnet18 as resnet18
from feat_inference import inference_image
from tracking.utils.read_data import extract_data, read_tracking_output, read_one2one_simi, read_deletedBarcode_file
from genfeats import genfeatures, stdfeat_infer
IMG_FORMAT = ['.bmp', '.jpg', '.jpeg', '.png']
'''
共6个地址
(1) stdSamplePath: 用于生成比对标准特征集的原始图像地址
(2) stdBarcodePath: 比对标准特征集原始图像地址的pickle文件存储{barcode: [imgpath1, imgpath1, ...]}
(3) stdFeaturePath: 比对标准特征集特征存储地址
(4) eventFeatPath: 用于1:1比对的购物事件特征存储地址、对应子图存储地址
(5) subimgPath: 1:1比对购物事件轨迹、标准barcode所对应的 subimgs 存储地址
(6) resultPath: 1:1比对结果存储地址
'''
stdSamplePath = r"\\192.168.1.28\share\已标注数据备份\对比数据\barcode\barcode_500_1979_已清洗"
stdBarcodePath = r"\\192.168.1.28\share\测试_202406\contrast\std_barcodes_2192"
stdFeaturePath = r"\\192.168.1.28\share\测试_202406\contrast\std_features_ft32"
eventFeatPath = r"\\192.168.1.28\share\测试_202406\contrast\events"
subimgPath = r'\\192.168.1.28\share\测试_202406\contrast\subimgs'
resultPath = r"D:\DetectTracking\contrast\result\pickle"
if not os.path.exists(resultPath):
os.makedirs(resultPath)
##============ load resnet mdoel
model = resnet18().to(conf.device)
# model = nn.DataParallel(model).to(conf.device)
model.load_state_dict(torch.load(conf.test_model, map_location=conf.device))
model.eval()
print('load model {} '.format(conf.testbackbone))
def creat_shopping_event(eventPath, subimgPath=False):
def int8_to_ft16(arr_uint8, amin, amax):
arr_ft16 = (arr_uint8 / 255 * (amax-amin) + amin).astype(np.float16)
return arr_ft16
def ft16_to_uint8(arr_ft16):
# pickpath = r"\\192.168.1.28\share\测试_202406\contrast\std_features_ft32vsft16\6902265587712_ft16.pickle"
# with open(pickpath, 'rb') as f:
# edict = pickle.load(f)
# arr_ft16 = edict['feats']
amin = np.min(arr_ft16)
amax = np.max(arr_ft16)
arr_ft255 = (arr_ft16 - amin) * 255 / (amax-amin)
arr_uint8 = arr_ft255.astype(np.uint8)
arr_ft16_ = int8_to_ft16(arr_uint8, amin, amax)
arrDistNorm = np.linalg.norm(arr_ft16_ - arr_ft16) / arr_ft16_.size
return arr_uint8, arr_ft16_
def creat_shopping_event(eventPath):
'''构造放入商品事件字典,这些事件需满足条件:
1) 前后摄至少有一条轨迹输出
2) 保存有帧图像,以便裁剪出 boxe 子图
'''
# filename = "20240723-155413_6904406215720"
'''filename下为一次购物事件'''
eventName = os.path.basename(eventPath)
'''================ 0. 检查 filename 及 eventPath 正确性和有效性 ================'''
nmlist = eventName.split('_')
# if eventName.find('2024')<0 or len(nmlist)!=2 or len(nmlist[0])!=15 or len(nmlist[1])<11:
# return
if eventName.find('2024')<0 or len(nmlist)!=2 or len(nmlist[1])<11:
'''evtName 为一次购物事件'''
evtName = os.path.basename(eventPath)
evtList = evtName.split('_')
'''================ 0. 检查 evtName 及 eventPath 正确性和有效性 ================'''
if evtName.find('2024')<0 and len(evtList[0])!=15:
return
if not os.path.isdir(eventPath):
return
if len(evtList)==1 or (len(evtList)==2 and len(evtList[1])==0):
barcode = ''
else:
barcode = evtList[-1]
if len(evtList)==3 and evtList[-1]== evtList[-2]:
evtType = 'input'
else:
evtType = 'other'
'''================ 1. 构造事件描述字典,暂定 9 items ==============='''
event = {}
event['barcode'] = eventName.split('_')[1]
event['type'] = 'input'
event['barcode'] = barcode
event['type'] = evtType
event['filepath'] = eventPath
event['back_imgpaths'] = []
event['front_imgpaths'] = []
@ -120,7 +117,8 @@ def creat_shopping_event(eventPath, subimgPath=False):
event['back_feats'] = np.empty((0, 256), dtype=np.float64)
event['front_feats'] = np.empty((0, 256), dtype=np.float64)
event['feats_compose'] = np.empty((0, 256), dtype=np.float64)
# event['feats_select'] = np.empty((0, 256), dtype=np.float64)
event['one2one_simi'] = None
event['feats_select'] = np.empty((0, 256), dtype=np.float64)
'''================= 2. 读取 data 文件 ============================='''
@ -144,8 +142,12 @@ def creat_shopping_event(eventPath, subimgPath=False):
elif CamerType == '1':
event['front_boxes'] = tracking_output_boxes
event['front_feats'] = tracking_output_feats
if dataname.find("process.data")==0:
simiDict = read_one2one_simi(datapath)
event['one2one_simi'] = simiDict
if len(event['back_boxes'])==0 or len(event['front_boxes'])==0:
return None
@ -165,16 +167,8 @@ def creat_shopping_event(eventPath, subimgPath=False):
if len(ft_feats):
event['feats_select'] = ft_feats
# pickpath = os.path.join(savePath, f"{filename}.pickle")
# with open(pickpath, 'wb') as f:
# pickle.dump(event, f)
# print(f"Event: {filename}")
# if subimgPath==False:
# eventList.append(event)
# continue
'''================ 2. 读取图像文件地址并按照帧ID排序 ============='''
'''================ 3. 读取图像文件地址并按照帧ID排序 ============='''
frontImgs, frontFid = [], []
backImgs, backFid = [], []
for imgname in os.listdir(eventPath):
@ -194,11 +188,11 @@ def creat_shopping_event(eventPath, subimgPath=False):
frontIdx = np.argsort(np.array(frontFid))
backIdx = np.argsort(np.array(backFid))
'''2.1 生成依据帧 ID 排序的前后摄图像地址列表'''
'''3.1 生成依据帧 ID 排序的前后摄图像地址列表'''
frontImgs = [frontImgs[i] for i in frontIdx]
backImgs = [backImgs[i] for i in backIdx]
'''2.2 将前、后摄图像路径添加至事件字典'''
'''3.2 将前、后摄图像路径添加至事件字典'''
bfid = event['back_boxes'][:, 7].astype(np.int64)
@ -209,101 +203,16 @@ def creat_shopping_event(eventPath, subimgPath=False):
event['front_imgpaths'] = [frontImgs[i-1] for i in ffid]
'''================ 3. 判断当前事件有效性,并添加至事件列表 =========='''
'''================ 4. 判断当前事件有效性,并添加至事件列表 =========='''
condt1 = len(event['back_imgpaths'])==0 or len(event['front_imgpaths'])==0
condt2 = len(event['front_feats'])==0 and len(event['back_feats'])==0
if condt1 or condt2:
print(f"Event: {eventName}, Error, condt1: {condt1}, condt2: {condt2}")
print(f"Event: {evtName}, Error, condt1: {condt1}, condt2: {condt2}")
return None
'''构造放入商品事件列表,暂不处理'''
# delepath = os.path.join(basePath, 'deletedBarcode.txt')
# bcdList = read_deletedBarcode_file(delepath)
# for slist in bcdList:
# getoutFold = slist['SeqDir'].strip()
# getoutPath = os.path.join(basePath, getoutFold)
# '''取出事件文件夹不存在,跳出循环'''
# if not os.path.exists(getoutPath) and not os.path.isdir(getoutPath):
# continue
# ''' 生成取出事件字典 '''
# event = {}
# event['barcode'] = slist['Deleted'].strip()
# event['type'] = 'getout'
# event['basePath'] = getoutPath
return event
# def get_std_barcodeDict(bcdpath, savepath):
# '''
# inputs:
# bcdpath: 已清洗的barcode样本图像如果barcode下有'base'文件夹,只选用该文件夹下图像
# (default = r'\\192.168.1.28\share\已标注数据备份\对比数据\barcode\barcode_1771')
# 功能:
# 生成并保存只有一个key值的字典 {barcode: [imgpath1, imgpath1, ...]}
# savepath: 字典存储地址文件名格式barcode.pickle
# '''
# # savepath = r'\\192.168.1.28\share\测试_202406\contrast\std_barcodes'
# '''读取数据集中 barcode 列表'''
# stdBarcodeList = []
# for filename in os.listdir(bcdpath):
# filepath = os.path.join(bcdpath, filename)
# # if not os.path.isdir(filepath) or not filename.isdigit() or len(filename)<8:
# # continue
# stdBarcodeList.append(filename)
# bcdPaths = [(barcode, os.path.join(bcdpath, barcode)) for barcode in stdBarcodeList]
# '''遍历数据集针对每一个barcode生成并保存字典{barcode: [imgpath1, imgpath1, ...]}'''
# k = 0
# errbarcodes = []
# for barcode, bpath in bcdPaths:
# pickpath = os.path.join(savepath, f"{barcode}.pickle")
# if os.path.isfile(pickpath):
# continue
# stdBarcodeDict = {}
# stdBarcodeDict[barcode] = []
# for root, dirs, files in os.walk(bpath):
# imgpaths = []
# if "base" in dirs:
# broot = os.path.join(root, "base")
# for imgname in os.listdir(broot):
# imgpath = os.path.join(broot, imgname)
# file, ext = os.path.splitext(imgpath)
# if ext not in IMG_FORMAT:
# continue
# imgpaths.append(imgpath)
# stdBarcodeDict[barcode].extend(imgpaths)
# break
# else:
# for imgname in files:
# imgpath = os.path.join(root, imgname)
# _, ext = os.path.splitext(imgpath)
# if ext not in IMG_FORMAT: continue
# imgpaths.append(imgpath)
# stdBarcodeDict[barcode].extend(imgpaths)
# pickpath = os.path.join(savepath, f"{barcode}.pickle")
# with open(pickpath, 'wb') as f:
# pickle.dump(stdBarcodeDict, f)
# print(f"Barcode: {barcode}")
# # k += 1
# # if k == 10:
# # break
# print(f"Len of errbarcodes: {len(errbarcodes)}")
# return
def save_event_subimg(event, savepath):
'''
@ -340,131 +249,20 @@ def save_event_subimg(event, savepath):
print(f"Image saved: {os.path.basename(event['filepath'])}")
def batch_inference(imgpaths, batch):
size = len(imgpaths)
groups = []
for i in range(0, size, batch):
end = min(batch + i, size)
groups.append(imgpaths[i: end])
features = []
for group in groups:
feature = featurize(group, conf.test_transform, model, conf.device)
features.append(feature)
features = np.concatenate(features, axis=0)
return features
# def stdfeat_infer(imgPath, featPath, bcdSet=None):
# '''
# inputs:
# imgPath: 该文件夹下的 pickle 文件格式 {barcode: [imgpath1, imgpath1, ...]}
# featPath: imgPath图像对应特征的存储地址
# 功能:
# 对 imgPath中图像进行特征提取生成只有一个key值的字典
# {barcode: features}features.shape=(nsample, 256),并保存至 featPath 中
# '''
# # imgPath = r"\\192.168.1.28\share\测试_202406\contrast\std_barcodes"
# # featPath = r"\\192.168.1.28\share\测试_202406\contrast\std_features"
# stdBarcodeDict = {}
# stdBarcodeDict_ft16 = {}
# '''4处同名: (1)barcode原始图像文件夹; (2)imgPath中的 .pickle 文件名、该pickle文件中字典的key值'''
# k = 0
# for filename in os.listdir(imgPath):
# bcd, ext = os.path.splitext(filename)
# pkpath = os.path.join(featPath, f"{bcd}.pickle")
# if os.path.isfile(pkpath): continue
# if bcdSet is not None and bcd not in bcdSet:
# continue
# filepath = os.path.join(imgPath, filename)
# stdbDict = {}
# stdbDict_ft16 = {}
# stdbDict_uint8 = {}
# t1 = time.time()
# try:
# with open(filepath, 'rb') as f:
# bpDict = pickle.load(f)
# for barcode, imgpaths in bpDict.items():
# # feature = batch_inference(imgpaths, 8) #from vit distilled model of LiChen
# feature = inference_image(imgpaths, conf.test_transform, model, conf.device)
# feature /= np.linalg.norm(feature, axis=1)[:, None]
# # float16
# feature_ft16 = feature.astype(np.float16)
# feature_ft16 /= np.linalg.norm(feature_ft16, axis=1)[:, None]
# # uint8, 两种策略1) 精度损失小, 2) 计算复杂度小
# # feature_uint8, _ = ft16_to_uint8(feature_ft16)
# feature_uint8 = (feature_ft16*128).astype(np.int8)
# except Exception as e:
# print(f"Error accured at: {filename}, with Exception is: {e}")
# '''================ 保存单个barcode特征 ================'''
# ##================== float32
# stdbDict["barcode"] = barcode
# stdbDict["imgpaths"] = imgpaths
# stdbDict["feats_ft32"] = feature
# stdbDict["feats_ft16"] = feature_ft16
# stdbDict["feats_uint8"] = feature_uint8
# with open(pkpath, 'wb') as f:
# pickle.dump(stdbDict, f)
# stdBarcodeDict[barcode] = feature
# stdBarcodeDict_ft16[barcode] = feature_ft16
# t2 = time.time()
# print(f"Barcode: {barcode}, need time: {t2-t1:.1f} secs")
# # k += 1
# # if k == 10:
# # break
# ##================== float32
# # pickpath = os.path.join(featPath, f"barcode_features_{k}.pickle")
# # with open(pickpath, 'wb') as f:
# # pickle.dump(stdBarcodeDict, f)
# ##================== float16
# # pickpath_ft16 = os.path.join(featPath, f"barcode_features_ft16_{k}.pickle")
# # with open(pickpath_ft16, 'wb') as f:
# # pickle.dump(stdBarcodeDict_ft16, f)
# return
def contrast_performance_evaluate(resultPath):
def one2one_eval(resultPath):
# stdBarcode = [p.stem for p in Path(stdFeaturePath).iterdir() if p.is_file() and p.suffix=='.pickle']
stdBarcode = [p.stem for p in Path(stdBarcodePath).iterdir() if p.is_file() and p.suffix=='.pickle']
'''购物事件列表,该列表中的 Barcode 存在于标准的 stdBarcode 内'''
# evtList = [(p.stem, p.stem.split('_')[1]) for p in Path(eventFeatPath).iterdir()
# if p.is_file()
# and p.suffix=='.pickle'
# and len(p.stem.split('_'))==2
# and p.stem.split('_')[1].isdigit()
# and p.stem.split('_')[1] in stdBarcode
# ]
evtList = [(p.stem, p.stem.split('_')[1]) for p in Path(eventFeatPath).iterdir()
'''购物事件列表,该列表中的 Barcode 存在于标准的 stdBarcode 内'''
evtList = [(p.stem, p.stem.split('_')[-1]) for p in Path(eventFeatPath).iterdir()
if p.is_file()
and str(p).find('240910')>0
and p.suffix=='.pickle'
and len(p.stem.split('_'))==2
and p.stem.split('_')[1].isdigit()
and p.stem.split('_')[1] in stdBarcode
and (len(p.stem.split('_'))==2 or len(p.stem.split('_'))==3)
and p.stem.split('_')[-1].isdigit()
and p.stem.split('_')[-1] in stdBarcode
]
barcodes = set([bcd for _, bcd in evtList])
@ -612,7 +410,7 @@ def contrast_performance_evaluate(resultPath):
f.write(line + '\n')
print("func: contrast_performance_evaluate(), have finished!")
print("func: one2one_eval(), have finished!")
@ -684,44 +482,16 @@ def compute_precise_recall(pickpath):
plt.savefig(f'./result/{file}_pr.png') # svg, png, pdf
def generate_event_and_stdfeatures():
'''=========================== 1. 生成标准特征集 ========================'''
'''1.1 提取 stdSamplePath 中样本地址,生成字典{barcode: [imgpath1, imgpath1, ...]}
并存储为 pickle 文件barcode.pickle'''
# get_std_barcodeDict(stdSamplePath, stdBarcodePath)
# print("standard imgpath have extracted and saved")
'''1.2 特征提取,并保存至文件夹 stdFeaturePath 中,也可在运行过程中根据 barcodes 交集执行'''
# stdfeat_infer(stdBarcodePath, stdFeaturePath, bcdSet=None)
# print("standard features have generated!")
'''=========================== 2. 提取并存储事件特征 ========================'''
eventDatePath = [r'\\192.168.1.28\share\测试_202406\0910\images',
# r'\\192.168.1.28\share\测试_202406\0723\0723_1',
# r'\\192.168.1.28\share\测试_202406\0723\0723_2',
# r'\\192.168.1.28\share\测试_202406\0723\0723_3',
# r'\\192.168.1.28\share\测试_202406\0722\0722_01',
# r'\\192.168.1.28\share\测试_202406\0722\0722_02'
# r'\\192.168.1.28\share\测试_202406\0719\719_3',
# r'\\192.168.1.28\share\测试_202406\0716\0716_1',
# r'\\192.168.1.28\share\测试_202406\0716\0716_2',
# r'\\192.168.1.28\share\测试_202406\0716\0716_3',
# r'\\192.168.1.28\share\测试_202406\0712\0712_1', # 无帧图像
# r'\\192.168.1.28\share\测试_202406\0712\0712_2', # 无帧图像
]
def gen_eventdict(eventDatePath, saveimg=True):
eventList = []
# k = 0
for datePath in eventDatePath:
for eventName in os.listdir(datePath):
pickpath = os.path.join(eventFeatPath, f"{eventName}.pickle")
if os.path.isfile(pickpath):
continue
eventPath = os.path.join(datePath, eventName)
eventDict = creat_shopping_event(eventPath)
@ -736,52 +506,61 @@ def generate_event_and_stdfeatures():
# break
## 保存轨迹中 boxes 子图
if not saveimg:
return
for event in eventList:
basename = os.path.basename(event['filepath'])
savepath = os.path.join(subimgPath, basename)
if not os.path.exists(savepath):
os.makedirs(savepath)
save_event_subimg(event, savepath)
def test_one2one():
eventDatePath = [r'\\192.168.1.28\share\测试_202406\1101\images',
# r'\\192.168.1.28\share\测试_202406\0910\images',
# r'\\192.168.1.28\share\测试_202406\0723\0723_1',
# r'\\192.168.1.28\share\测试_202406\0723\0723_2',
# r'\\192.168.1.28\share\测试_202406\0723\0723_3',
# r'\\192.168.1.28\share\测试_202406\0722\0722_01',
# r'\\192.168.1.28\share\测试_202406\0722\0722_02'
# r'\\192.168.1.28\share\测试_202406\0719\719_3',
# r'\\192.168.1.28\share\测试_202406\0716\0716_1',
# r'\\192.168.1.28\share\测试_202406\0716\0716_2',
# r'\\192.168.1.28\share\测试_202406\0716\0716_3',
# r'\\192.168.1.28\share\测试_202406\0712\0712_1', # 无帧图像
# r'\\192.168.1.28\share\测试_202406\0712\0712_2', # 无帧图像
]
bcdList = []
for evtpath in eventDatePath:
for evtname in os.listdir(evtpath):
evt = evtname.split('_')
if len(evt)>=2 and evt[-1].isdigit() and len(evt[-1])>=10:
bcdList.append(evt[-1])
bcdSet = set(bcdList)
print("eventList have generated and features have saved!")
def int8_to_ft16(arr_uint8, amin, amax):
arr_ft16 = (arr_uint8 / 255 * (amax-amin) + amin).astype(np.float16)
return arr_ft16
def ft16_to_uint8(arr_ft16):
# pickpath = r"\\192.168.1.28\share\测试_202406\contrast\std_features_ft32vsft16\6902265587712_ft16.pickle"
# with open(pickpath, 'rb') as f:
# edict = pickle.load(f)
# arr_ft16 = edict['feats']
amin = np.min(arr_ft16)
amax = np.max(arr_ft16)
arr_ft255 = (arr_ft16 - amin) * 255 / (amax-amin)
arr_uint8 = arr_ft255.astype(np.uint8)
arr_ft16_ = int8_to_ft16(arr_uint8, amin, amax)
'''==== 1. 生成标准特征集, 只需运行一次 ==============='''
genfeatures(stdSamplePath, stdBarcodePath, stdFeaturePath, bcdSet)
print("stdFeats have generated and saved!")
arrDistNorm = np.linalg.norm(arr_ft16_ - arr_ft16) / arr_ft16_.size
return arr_uint8, arr_ft16_
'''==== 2. 生成事件字典, 只需运行一次 ==============='''
gen_eventdict(eventDatePath)
print("eventList have generated and saved!")
def main():
# generate_event_and_stdfeatures()
contrast_performance_evaluate(resultPath)
'''==== 3. 1:1性能评估 ==============='''
one2one_eval(resultPath)
for filename in os.listdir(resultPath):
if filename.find('.pickle') < 0: continue
if filename.find('0911') < 0: continue
@ -789,63 +568,29 @@ def main():
compute_precise_recall(pickpath)
# def main_std():
# std_sample_path = r"\\192.168.1.28\share\已标注数据备份\对比数据\barcode\barcode_500_2192_已清洗"
# std_barcode_path = r"\\192.168.1.28\share\测试_202406\contrast\std_barcodes_2192"
# std_feature_path = r"\\192.168.1.28\share\测试_202406\contrast\std_features_2192_ft32vsft16"
# get_std_barcodeDict(std_sample_path, std_barcode_path)
# stdfeat_infer(std_barcode_path, std_feature_path, bcdSet=None)
# # fileList = []
# # for filename in os.listdir(std_barcode_path):
# # filepath = os.path.join(std_barcode_path, filename)
# # with open(filepath, 'rb') as f:
# # bpDict = pickle.load(f)
# # for v in bpDict.values():
# # fileList.append(len(v))
# # print("done")
if __name__ == '__main__':
main()
# main_std()
'''
共6个地址
(1) stdSamplePath: 用于生成比对标准特征集的原始图像地址
(2) stdBarcodePath: 比对标准特征集原始图像地址的pickle文件存储{barcode: [imgpath1, imgpath1, ...]}
(3) stdFeaturePath: 比对标准特征集特征存储地址
(4) eventFeatPath: 用于1:1比对的购物事件特征存储地址、对应子图存储地址
(5) subimgPath: 1:1比对购物事件轨迹、标准barcode所对应的 subimgs 存储地址
(6) resultPath: 1:1比对结果存储地址
'''
stdSamplePath = r"\\192.168.1.28\share\已标注数据备份\对比数据\barcode\barcode_500_1979_已清洗"
stdBarcodePath = r"\\192.168.1.28\share\测试_202406\contrast\std_barcodes_2192"
stdFeaturePath = r"\\192.168.1.28\share\测试_202406\contrast\std_features_ft32"
eventFeatPath = r"\\192.168.1.28\share\测试_202406\contrast\events"
subimgPath = r'\\192.168.1.28\share\测试_202406\contrast\subimgs'
resultPath = r"D:\DetectTracking\contrast\result\pickle"
if not os.path.exists(resultPath):
os.makedirs(resultPath)
test_one2one()

View File

@ -17,7 +17,6 @@ import copy
import matplotlib.pyplot as plt
from imgs_inference import run_yolo
from event_time_specify import devide_motion_state#, state_measure
from tracking.utils.read_data import read_seneor

View File

@ -285,6 +285,38 @@ def boxing_img(det, img, line_width=3):
return imgx
def array2list(bboxes):
track_fids = np.unique(bboxes[:, 7].astype(int))
track_fids.sort()
lboxes = []
for f_id in track_fids:
# print(f"The ID is: {t_id}")
idx = np.where(bboxes[:, 7] == f_id)[0]
box = bboxes[idx, :]
lboxes.append(box)
assert len(set(box[:, 4])) == len(box), "Please check!!!"
return lboxes
def get_subimgs(imgs, tracks, scale=2):
bboxes = []
if len(tracks):
bboxes = array2list(tracks)
subimgs = []
for i, boxes in enumerate(bboxes):
fid = int(boxes[0, 7])
for *xyxy, tid, conf, cls, fid, bid in boxes:
pt2 = [p/scale for p in xyxy]
x1, y1, x2, y2 = (int(pt2[0]), int(pt2[1])), (int(pt2[2]), int(pt2[3]))
subimgs.append((int(fid), int(bid), imgs[fid-1][y1:y2, x1:x2]))
return subimgs
def draw_tracking_boxes(imgs, tracks, scale=2):
'''需要确保 imgs 覆盖tracks中的帧ID数
tracks: [x1, y1, x2, y2, track_id, score, cls, frame_index, box_index]
@ -295,27 +327,15 @@ def draw_tracking_boxes(imgs, tracks, scale=2):
'''
def array2list(bboxes):
track_fids = np.unique(bboxes[:, 7].astype(int))
track_fids.sort()
lboxes = []
for f_id in track_fids:
# print(f"The ID is: {t_id}")
idx = np.where(bboxes[:, 7] == f_id)[0]
box = bboxes[idx, :]
lboxes.append(box)
assert len(set(box[:, 4])) == len(box), "Please check!!!"
return lboxes
bboxes = array2list(tracks)
bboxes = []
if len(tracks):
bboxes = array2list(tracks)
# if len(bboxes)!=len(imgs):
# return False, imgs
subimgs = []
annimgs = []
for i, boxes in enumerate(bboxes):
fid = int(boxes[0, 7])
annotator = Annotator(imgs[fid-1].copy())
@ -331,11 +351,11 @@ def draw_tracking_boxes(imgs, tracks, scale=2):
pt2 = [p/scale for p in xyxy]
annotator.box_label(pt2, label, color=color)
img = annotator.result()
subimgs.append((fid, img))
annimgs.append((int(fid), img))
return subimgs
return annimgs

View File

@ -37,6 +37,9 @@ def find_samebox_in_array(arr, target):
def extract_data(datapath):
'''
0/1_track.data 数据读取
'''
bboxes, ffeats = [], []
trackerboxes = np.empty((0, 9), dtype=np.float64)
@ -147,8 +150,15 @@ def extract_data(datapath):
return bboxes, ffeats, trackerboxes, tracker_feat_dict, trackingboxes, tracking_feat_dict
def read_tracking_output(filepath):
'''
0/1_tracking_output.data 数据读取
'''
boxes = []
feats = []
if not os.path.isfile(filepath):
return np.array(boxes), np.array(feats)
with open(filepath, 'r', encoding='utf-8') as file:
for line in file:
line = line.strip() # 去除行尾的换行符和可能的空白字符
@ -176,7 +186,6 @@ def read_deletedBarcode_file(filePath):
split_flag, all_list = False, []
dict, barcode_list, similarity_list = {}, [], []
clean_lines = [line.strip().replace("'", '').replace('"', '') for line in lines]
for i, line in enumerate(clean_lines):
@ -199,6 +208,7 @@ def read_deletedBarcode_file(filePath):
if label == 'SeqDir':
dict['SeqDir'] = value
dict['filetype'] = "deletedBarcode"
if label == 'Deleted':
dict['Deleted'] = value
if label == 'List':
@ -259,15 +269,19 @@ def read_returnGoods_file(filePath):
if label == 'SeqDir':
dict['SeqDir'] = value
dict['Deleted'] = value.split('_')[-1]
dict['filetype'] = "returnGoods"
if label == 'List':
split_flag = True
continue
if split_flag:
bcd = label.split('_')[-1]
# event_list.append(label + '_' + bcd)
event_list.append(label)
barcode_list.append(label.split('_')[-1])
barcode_list.append(bcd)
similarity_list.append(value.split(',')[0])
type_list.append(value.split('=')[-1])
if len(barcode_list): dict['barcode'] = barcode_list
if len(similarity_list): dict['similarity'] = similarity_list
if len(event_list): dict['event'] = event_list
@ -279,33 +293,51 @@ def read_returnGoods_file(filePath):
# =============================================================================
# def read_seneor(filepath):
# WeightDict = OrderedDict()
# with open(filepath, 'r', encoding='utf-8') as f:
# lines = f.readlines()
# for i, line in enumerate(lines):
# line = line.strip()
#
# keyword = line.split(':')[0]
# value = line.split(':')[1]
#
# vdata = [float(s) for s in value.split(',') if len(s)]
#
# WeightDict[keyword] = vdata[-1]
#
# return WeightDict
# =============================================================================
def read_one2one_simi(filePath):
def read_seneor(filepath):
WeightDict = OrderedDict()
with open(filepath, 'r', encoding='utf-8') as f:
SimiDict = {}
with open(filePath, 'r', encoding='utf-8') as f:
lines = f.readlines()
flag = False
for i, line in enumerate(lines):
line = line.strip()
if line.find('barcode:')<0 and not flag:
continue
if line.find('barcode:')==0 :
flag = True
continue
keyword = line.split(':')[0]
value = line.split(':')[1]
vdata = [float(s) for s in value.split(',') if len(s)]
WeightDict[keyword] = vdata[-1]
return WeightDict
# if line.endswith(','):
# line = line[:-1]
if flag:
barcode = line.split(',')[0].strip()
value = line.split(',')[1].split(':')[1].strip()
SimiDict[barcode] = float(value)
if flag and not line:
flag = False
return SimiDict
def read_weight_timeConsuming(filePth):
@ -362,15 +394,14 @@ def plot_sensor_curve(WeightDict, SensorDict, ProcessTimeDict):
nw = len(wdata)
assert(nw) >= 8, "The num of weight data is less than 8!"
i1, i2 = 0, 7
while i2 < nw:
data = wdata[i1:(i2+1)]
max(data) - min(data)
if i2<7:
i1 = 0
else:
i1 = i2-windth
# i1, i2 = 0, 7
# while i2 < nw:
# data = wdata[i1:(i2+1)]
# max(data) - min(data)
# if i2<7:
# i1 = 0
# else:
# i1 = i2-windth
min_t = min(wtime + stime)
wtime = [t-min_t for t in wtime]
@ -405,15 +436,12 @@ def plot_sensor_curve(WeightDict, SensorDict, ProcessTimeDict):
def main(file_path):
def test_process(file_path):
WeightDict, SensorDict, ProcessTimeDict = read_weight_timeConsuming(file_path)
plot_sensor_curve(WeightDict, SensorDict, ProcessTimeDict)
if __name__ == "__main__":
def main():
files_path = r'\\192.168.1.28\share\测试_202406\0814\0814\20240814-102227-62264578-a720-4eb9-b95e-cb8be009aa98_null'
k = 0
for filename in os.listdir(files_path):
@ -424,42 +452,21 @@ if __name__ == "__main__":
extract_data(file_path)
if os.path.isfile(file_path) and filename.find("process.data")>=0:
main(file_path)
test_process(file_path)
k += 1
if k == 1:
break
# print("Done")
def main1():
fpath = r'\\192.168.1.28\share\测试_202406\1101\images\20241101-140456-44dc75b5-c406-4cb2-8317-c4660bb727a3_6922130101355_6922130101355\process.data'
simidct = read_one2one_simi(fpath)
print(simidct)
if __name__ == "__main__":
# main()
main1()

View File

@ -144,15 +144,124 @@
precision_compare(filepath, savepath)
读取 deletedBarcode.txt 和 deletedBarcodeTest.txt 中的数据,进行相似度比较
genfeats.py
get_std_barcodeDict(bcdpath, savepath)
功能: 生成并保存只有一个key值的字典 {barcode: [imgpath1, imgpath1, ...]}
stdfeat_infer(imgPath, featPath, bcdSet=None)
功能: 对 imgPath 中图像进行特征提取生成只有一个key值的字典。
{barcode: features}features.shape=(nsample, 256),并保存至 featPath 中
one2n_contrast.py
1:n 比对,读取 deletedBarcode.txt实现现场测试评估。
main():
循环读取不同文件夹中的 deletedBarcode.txt,合并评估。
main1():
指定deletedBarcode.txt进行1:n性能评估
test_one2n()
1:n 现场测试性能评估,输出 PR 曲线
兼容 2 种 txt 文件格式returnGoods.txt, deletedBarcode.txt,
分别对应不同的文件读取函数:
- read_deletedBarcode_file()
- read_returnGoods_file()
one2n_return(all_list)
输入从returnGoods.txt读取的数据
输出:
corrpairs(取出事件, 正确匹配的放入事件)
errpairs(取出事件, 放入事件, 错误匹配的放入事件)
corr_similarity: (正确匹配时的相似度)
err_similarity: (错误匹配时的相似度)
one2n_deleted(all_list)
输入: 从deletedBarcode.txt读取的数据
输出:
corrpairs(取出事件, 取出的barcode)
errpairs(取出事件, 取出的barcode, 错误匹配的barcode)
corr_similarity: (正确匹配时的相似度)
err_similarity: (错误匹配时的相似度)
save_tracking_imgpairs(pairs, savepath)
输入:
pairs匹配时间对len(2)=2 or 3, 对应正确匹配与错误匹配
savepath结果保存地址其中图像文件的命名为取出事件 + 放入事件 + 错误匹配时间
子函数 get_event_path(), 扫码放入的对齐名
对于 returnGoods.txt, 放入事件的事件名和对应的文件夹名不一致,需要对齐
test_rpath_deleted()
功能:
针对 eletedBarcode.txt 格式的 1:n 数据结果文件
获得 1:n 情况下正确或匹配事件对(取出事件、放入事件、错误匹配事件)
匹配事件分析, 实现函数save_tracking_imgpairs()
重要参数:
del_barcode_file:
basepath: 对应事件路径
savepath: 存储路径, 是函数 save_tracking_imgpairs() 的输入
saveimgs: Ture, False, 是否保存错误匹配的事件对
get_contrast_paths()
针对 eletedBarcode.txt 格式的 1:n 数据结果文件,返回三元时间元组getoutpath, inputpath, errorpath
test_rpath_return()
针对 returnGoods.txt 格式 1:n 数据文件不需要调用函数get_contrast_paths()
获得 1:n 情况下正确或匹配事件对(取出事件、放入事件、错误匹配事件)
匹配事件分析, 实现函数save_tracking_imgpairs()
one2one_contrast.py
共6个地址
(1) stdSamplePath: 用于生成比对标准特征集的原始图像地址
(2) stdBarcodePath: 比对标准特征集原始图像地址的pickle文件存储{barcode: [imgpath1, imgpath1, ...]}
(3) stdFeaturePath: 比对标准特征集特征存储地址
(4) eventFeatPath: 用于1:1比对的购物事件特征存储地址、对应子图存储地址
(5) subimgPath: 1:1比对购物事件轨迹、标准barcode所对应的 subimgs 存储地址
(6) resultPath: 1:1比对结果存储地址
(1), (2), (3): 保存标准特征集向量,只需运行一次
(4): 保存测试的事件字典,只需运行一次
test_one2one()
(1) 生成标准特征集, 只需运行一次
genfeatures()
(2) 生成事件字典, 只需运行一次
gen_eventdict(eventDatePath, saveimg)
参数:
eventDatePath: 事件集列表,其中每个元素均为事件的集合;
saveimg: 是否保存事件子图
(3) 1:1性能评估
(4) 计算PR曲线
creat_shopping_event(eventPath, subimgPath=False)
构造一次购物事件字典, 共12个关键字。
save_event_subimg(event, savepath)
保存一次购物事件的子图
one2one_eval()
compute_precise_recall()
int8_to_ft16()
ft16_to_uint8()
one2one_onsite.py
现场试验输出数据的 1:1 性能评估;
适用于202410前数据保存版本的需调用 OneToOneCompare.txt
@ -161,11 +270,13 @@
std_sample_path图像样本的存储地址
std_barcode_path对 std_sample_path 中文件列表进行遍历,形成{barcode: 图像样本地址}形式字典并进行存储
std_feature_path调用 inference_image(), 对每一个barcode生成字典并进行存储
genfeats.py
genfeatures(imgpath, bcdpath, featpath)
功能:生成标准特征向量
功能:生成标准特征向量的字典, 并保存为: barcode.pickle
keys: barcode, imgpaths, feats_ft32, feats_ft16, feats_uint8
参数:
(1) imgpath图像样本的存储地址
(2) bcdpath对 imgpath 中文件列表进行遍历,形成{barcode: 图像样本地址}形式字典并进行存储