contrast performance evaluatation have done!

This commit is contained in:
王庆刚
2024-09-05 19:01:49 +08:00
parent f978d4174f
commit 7309dec166
85 changed files with 3941 additions and 248 deletions

Binary file not shown.

View File

@ -0,0 +1,124 @@
same, 6954256905319, 20240715-144627_6954256905319, 0.211, 0.750, 0.630
same, 6930364600025, 20240719-143603_6930364600025, 0.283, 0.771, 0.616
same, 6924509902839, 20240719-143630_6924509902839, 0.182, 0.727, 0.462
same, 6902007115524, 20240719-143729_6902007115524, 0.221, 0.723, 0.519
same, 6930628801472, 20240719-143807_6930628801472, 0.249, 0.804, 0.672
same, 6908355010450, 20240719-144335_6908355010450, 0.255, 0.812, 0.575
same, 6924509902754, 20240719-144454_6924509902754, 0.458, 0.882, 0.836
same, 6925843410158, 20240719-144916_6925843410158, 0.229, 0.829, 0.686
same, 6941499112529, 20240719-145022_6941499112529, 0.190, 0.795, 0.359
same, 6918149576536, 20240719-145058_6918149576536, 0.493, 0.906, 0.765
same, 6928002374551, 20240719-145542_6928002374551, 0.165, 0.773, 0.531
same, 6930364600001, 20240719-150000_6930364600001, 0.322, 0.831, 0.736
same, 6937962111526, 20240719-150209_6937962111526, 0.225, 0.794, 0.605
same, 6924509902839, 20240719-150345_6924509902839, 0.161, 0.816, 0.502
same, 6924509902839, 20240719-150458_6924509902839, 0.319, 0.746, 0.623
same, 6924187895423, 20240719-150623_6924187895423, 0.430, 0.906, 0.903
same, 6916749306102, 20240719-150716_6916749306102, 0.269, 0.764, 0.737
same, 6951469100067, 20240719-150750_6951469100067, 0.547, 0.938, 0.896
same, 6958350501101, 20240719-151215_6958350501101, 0.578, 0.906, 0.877
same, 6951469100067, 20240719-151325_6951469100067, 0.610, 0.930, 0.904
same, 6937962111526, 20240719-151349_6937962111526, 0.138, 0.762, 0.496
same, 6916749306102, 20240719-151416_6916749306102, 0.243, 0.728, 0.630
same, 6930364600001, 20240719-151535_6930364600001, 0.144, 0.787, 0.482
same, 6911988027191, 20240719-151724_6911988027191, 0.035, 0.502, 0.076
same, 6972219890632, 20240719-151800_6972219890632, 0.315, 0.880, 0.700
same, 6901668935908, 20240719-152125_6901668935908, 0.203, 0.856, 0.426
same, 6930364600001, 20240719-153117_6930364600001, 0.057, 0.775, 0.165
same, 6902265587712, 20240722-144630_6902265587712, 0.364, 0.833, 0.669
same, 4897073991658, 20240722-160713_4897073991658, 0.101, 0.514, 0.247
same, 4892655902237, 20240722-160857_4892655902237, 0.459, 0.760, 0.812
same, 6920907803020, 20240722-161533_6920907803020, 0.211, 0.769, 0.678
same, 6920912342002, 20240722-163428_6920912342002, 0.281, 0.825, 0.853
same, 6916196422325, 20240722-164859_6916196422325, 0.392, 0.837, 0.665
same, 6901668006011, 20240722-165548_6901668006011, 0.284, 0.752, 0.530
same, 6937221716189, 20240723-094426_6937221716189, 0.407, 0.850, 0.705
same, 4897098800133, 20240723-094447_4897098800133, 0.382, 0.846, 0.784
same, 6970470331529, 20240723-094617_6970470331529, 0.238, 0.925, 0.586
same, 6918598120014, 20240723-095103_6918598120014, 0.407, 0.905, 0.819
same, 6938737200650, 20240723-095527_6938737200650, 0.208, 0.825, 0.543
same, 6902890022558, 20240723-095858_6902890022558, 0.162, 0.769, 0.628
same, 6925303795535, 20240723-100031_6925303795535, 0.304, 0.835, 0.671
same, 6920382723257, 20240723-100113_6920382723257, 0.274, 0.854, 0.539
same, 6938737200650, 20240723-100416_6938737200650, 0.237, 0.719, 0.581
same, 6918598120014, 20240723-100501_6918598120014, 0.099, 0.791, 0.209
same, 6937221716189, 20240723-100726_6937221716189, 0.347, 0.771, 0.611
same, 4897098800133, 20240723-100845_4897098800133, 0.304, 0.770, 0.718
same, 6918598120014, 20240723-101829_6918598120014, 0.502, 0.919, 0.857
same, 6920382723257, 20240723-102033_6920382723257, 0.343, 0.849, 0.748
same, 6902890022558, 20240723-102206_6902890022558, 0.117, 0.745, 0.389
same, 6970470331529, 20240723-102409_6970470331529, 0.102, 0.734, 0.305
same, 6938737200650, 20240723-102515_6938737200650, 0.183, 0.725, 0.469
same, 6937221716189, 20240723-102833_6937221716189, 0.067, 0.623, 0.175
same, 6937451883132, 20240723-110216_6937451883132, 0.323, 0.860, 0.717
same, 6973337010216, 20240723-110224_6973337010216, 0.202, 0.760, 0.622
same, 6937451883132, 20240723-111446_6937451883132, 0.367, 0.817, 0.806
same, 6973337010216, 20240723-111521_6973337010216, 0.140, 0.777, 0.414
same, 6924187828544, 20240723-111602_6924187828544, 0.359, 0.859, 0.718
same, 6934024590268, 20240723-112004_6934024590268, 0.184, 0.727, 0.583
same, 6924187828544, 20240723-112505_6924187828544, 0.281, 0.875, 0.573
same, 6974158894528, 20240723-155423_6974158894528, 0.433, 0.890, 0.788
same, 6970399922518, 20240723-160227_6970399922518, 0.078, 0.564, 0.215
same, 6974158894528, 20240723-160942_6974158894528, 0.417, 0.895, 0.832
diff, 6908355010450, 20240715-144627_6954256905319, 0.001, 0.539, 0.003
diff, 6924187828544, 20240719-143603_6930364600025, 0.019, 0.434, 0.038
diff, 6918149576536, 20240719-143630_6924509902839, 0.031, 0.324, 0.062
diff, 6918149576536, 20240719-143729_6902007115524, -0.022, 0.311, -0.040
diff, 6924509902839, 20240719-143807_6930628801472, 0.067, 0.524, 0.144
diff, 6937962111526, 20240719-144335_6908355010450, 0.005, 0.471, 0.015
diff, 6901668006011, 20240719-144454_6924509902754, 0.025, 0.442, 0.046
diff, 6970470331529, 20240719-144916_6925843410158, 0.038, 0.452, 0.096
diff, 6911988027191, 20240719-145022_6941499112529, 0.071, 0.483, 0.153
diff, 6930364600001, 20240719-145058_6918149576536, -0.015, 0.484, -0.034
diff, 6930628801472, 20240719-145542_6928002374551, -0.008, 0.441, -0.026
diff, 6924187828544, 20240719-150000_6930364600001, -0.025, 0.438, -0.052
diff, 6925303795535, 20240719-150209_6937962111526, 0.193, 0.660, 0.414
diff, 6924509902754, 20240719-150345_6924509902839, 0.061, 0.544, 0.182
diff, 6928002374551, 20240719-150458_6924509902839, -0.006, 0.472, -0.016
diff, 6902265587712, 20240719-150623_6924187895423, 0.005, 0.433, 0.010
diff, 6924187895423, 20240719-150716_6916749306102, 0.074, 0.447, 0.167
diff, 6941499112529, 20240719-150750_6951469100067, -0.003, 0.501, -0.007
diff, 6902007115524, 20240719-151215_6958350501101, -0.098, 0.328, -0.193
diff, 6924187895423, 20240719-151325_6951469100067, 0.063, 0.477, 0.112
diff, 6941499112529, 20240719-151349_6937962111526, -0.018, 0.404, -0.047
diff, 6937962111526, 20240719-151416_6916749306102, 0.007, 0.438, 0.023
diff, 6918149576536, 20240719-151535_6930364600001, -0.035, 0.398, -0.082
diff, 4897073991658, 20240719-151724_6911988027191, 0.116, 0.518, 0.219
diff, 6901668006011, 20240719-151800_6972219890632, -0.029, 0.352, -0.062
diff, 6902265587712, 20240719-152125_6901668935908, 0.096, 0.444, 0.184
diff, 6918149576536, 20240719-153117_6930364600001, -0.015, 0.400, -0.031
diff, 6954256905319, 20240722-144630_6902265587712, 0.025, 0.413, 0.072
diff, 6928002374551, 20240722-160713_4897073991658, 0.041, 0.491, 0.131
diff, 6924509902754, 20240722-160857_4892655902237, 0.048, 0.475, 0.094
diff, 6951469100067, 20240722-161533_6920907803020, 0.064, 0.470, 0.129
diff, 6937221716189, 20240722-163428_6920912342002, 0.051, 0.503, 0.122
diff, 6920907803020, 20240722-164859_6916196422325, 0.059, 0.594, 0.157
diff, 6972219890632, 20240722-165548_6901668006011, 0.035, 0.369, 0.067
diff, 6916196422325, 20240723-094426_6937221716189, 0.075, 0.368, 0.107
diff, 6930364600001, 20240723-094447_4897098800133, 0.009, 0.429, 0.019
diff, 4892655902237, 20240723-094617_6970470331529, 0.018, 0.236, 0.037
diff, 6973337010216, 20240723-095103_6918598120014, 0.031, 0.472, 0.084
diff, 6928002374551, 20240723-095527_6938737200650, 0.124, 0.656, 0.348
diff, 6974158894528, 20240723-095858_6902890022558, -0.034, 0.384, -0.090
diff, 6908355010450, 20240723-100031_6925303795535, -0.054, 0.450, -0.104
diff, 6901668006011, 20240723-100113_6920382723257, -0.037, 0.492, -0.072
diff, 6908355010450, 20240723-100416_6938737200650, 0.113, 0.560, 0.222
diff, 6937962111526, 20240723-100501_6918598120014, 0.043, 0.602, 0.126
diff, 6920907803020, 20240723-100726_6937221716189, 0.079, 0.475, 0.181
diff, 6925843410158, 20240723-100845_4897098800133, -0.051, 0.328, -0.144
diff, 6924509902754, 20240723-101829_6918598120014, -0.056, 0.319, -0.092
diff, 6970470331529, 20240723-102033_6920382723257, -0.001, 0.592, -0.003
diff, 6954256905319, 20240723-102206_6902890022558, 0.007, 0.479, 0.021
diff, 4897073991658, 20240723-102409_6970470331529, -0.036, 0.346, -0.101
diff, 6951469100067, 20240723-102515_6938737200650, -0.022, 0.355, -0.036
diff, 6924187828544, 20240723-102833_6937221716189, 0.025, 0.585, 0.068
diff, 6954256905319, 20240723-110216_6937451883132, -0.067, 0.341, -0.181
diff, 6930628801472, 20240723-110224_6973337010216, -0.008, 0.412, -0.023
diff, 6951469100067, 20240723-111446_6937451883132, 0.077, 0.479, 0.119
diff, 6958350501101, 20240723-111521_6973337010216, -0.105, 0.340, -0.184
diff, 6925843410158, 20240723-111602_6924187828544, 0.039, 0.430, 0.096
diff, 6928002374551, 20240723-112004_6934024590268, -0.004, 0.378, -0.010
diff, 6916196422325, 20240723-112505_6924187828544, -0.089, 0.286, -0.140
diff, 6973337010216, 20240723-155423_6974158894528, 0.062, 0.470, 0.139
diff, 6925843410158, 20240723-160227_6970399922518, 0.020, 0.436, 0.056
diff, 6924187895423, 20240723-160942_6974158894528, -0.028, 0.392, -0.048

Binary file not shown.

View File

@ -0,0 +1,124 @@
same, 6954256905319, 20240715-144627_6954256905319, 0.211, 0.750, 0.630
same, 6930364600025, 20240719-143603_6930364600025, 0.283, 0.771, 0.616
same, 6924509902839, 20240719-143630_6924509902839, 0.182, 0.727, 0.462
same, 6902007115524, 20240719-143729_6902007115524, 0.221, 0.723, 0.519
same, 6930628801472, 20240719-143807_6930628801472, 0.249, 0.804, 0.672
same, 6908355010450, 20240719-144335_6908355010450, 0.255, 0.812, 0.575
same, 6924509902754, 20240719-144454_6924509902754, 0.458, 0.882, 0.836
same, 6925843410158, 20240719-144916_6925843410158, 0.229, 0.829, 0.686
same, 6941499112529, 20240719-145022_6941499112529, 0.190, 0.795, 0.359
same, 6918149576536, 20240719-145058_6918149576536, 0.493, 0.906, 0.765
same, 6928002374551, 20240719-145542_6928002374551, 0.165, 0.773, 0.531
same, 6930364600001, 20240719-150000_6930364600001, 0.322, 0.831, 0.736
same, 6937962111526, 20240719-150209_6937962111526, 0.225, 0.794, 0.605
same, 6924509902839, 20240719-150345_6924509902839, 0.161, 0.816, 0.502
same, 6924509902839, 20240719-150458_6924509902839, 0.319, 0.746, 0.623
same, 6924187895423, 20240719-150623_6924187895423, 0.430, 0.906, 0.903
same, 6916749306102, 20240719-150716_6916749306102, 0.269, 0.764, 0.737
same, 6951469100067, 20240719-150750_6951469100067, 0.547, 0.938, 0.896
same, 6958350501101, 20240719-151215_6958350501101, 0.578, 0.906, 0.877
same, 6951469100067, 20240719-151325_6951469100067, 0.610, 0.930, 0.904
same, 6937962111526, 20240719-151349_6937962111526, 0.138, 0.762, 0.496
same, 6916749306102, 20240719-151416_6916749306102, 0.243, 0.728, 0.630
same, 6930364600001, 20240719-151535_6930364600001, 0.144, 0.787, 0.482
same, 6911988027191, 20240719-151724_6911988027191, 0.035, 0.502, 0.076
same, 6972219890632, 20240719-151800_6972219890632, 0.315, 0.880, 0.700
same, 6901668935908, 20240719-152125_6901668935908, 0.203, 0.856, 0.426
same, 6930364600001, 20240719-153117_6930364600001, 0.057, 0.775, 0.165
same, 6902265587712, 20240722-144630_6902265587712, 0.364, 0.833, 0.669
same, 4897073991658, 20240722-160713_4897073991658, 0.101, 0.514, 0.247
same, 4892655902237, 20240722-160857_4892655902237, 0.459, 0.760, 0.812
same, 6920907803020, 20240722-161533_6920907803020, 0.211, 0.769, 0.678
same, 6920912342002, 20240722-163428_6920912342002, 0.281, 0.825, 0.853
same, 6916196422325, 20240722-164859_6916196422325, 0.392, 0.837, 0.665
same, 6901668006011, 20240722-165548_6901668006011, 0.284, 0.752, 0.530
same, 6937221716189, 20240723-094426_6937221716189, 0.407, 0.850, 0.705
same, 4897098800133, 20240723-094447_4897098800133, 0.382, 0.846, 0.784
same, 6970470331529, 20240723-094617_6970470331529, 0.238, 0.925, 0.586
same, 6918598120014, 20240723-095103_6918598120014, 0.407, 0.905, 0.819
same, 6938737200650, 20240723-095527_6938737200650, 0.208, 0.825, 0.543
same, 6902890022558, 20240723-095858_6902890022558, 0.162, 0.769, 0.628
same, 6925303795535, 20240723-100031_6925303795535, 0.304, 0.835, 0.671
same, 6920382723257, 20240723-100113_6920382723257, 0.274, 0.854, 0.539
same, 6938737200650, 20240723-100416_6938737200650, 0.237, 0.719, 0.581
same, 6918598120014, 20240723-100501_6918598120014, 0.099, 0.791, 0.209
same, 6937221716189, 20240723-100726_6937221716189, 0.347, 0.771, 0.611
same, 4897098800133, 20240723-100845_4897098800133, 0.304, 0.770, 0.718
same, 6918598120014, 20240723-101829_6918598120014, 0.502, 0.919, 0.857
same, 6920382723257, 20240723-102033_6920382723257, 0.343, 0.849, 0.748
same, 6902890022558, 20240723-102206_6902890022558, 0.117, 0.745, 0.389
same, 6970470331529, 20240723-102409_6970470331529, 0.102, 0.734, 0.305
same, 6938737200650, 20240723-102515_6938737200650, 0.183, 0.725, 0.469
same, 6937221716189, 20240723-102833_6937221716189, 0.067, 0.623, 0.175
same, 6937451883132, 20240723-110216_6937451883132, 0.323, 0.860, 0.717
same, 6973337010216, 20240723-110224_6973337010216, 0.202, 0.760, 0.622
same, 6937451883132, 20240723-111446_6937451883132, 0.367, 0.817, 0.806
same, 6973337010216, 20240723-111521_6973337010216, 0.140, 0.777, 0.414
same, 6924187828544, 20240723-111602_6924187828544, 0.359, 0.859, 0.718
same, 6934024590268, 20240723-112004_6934024590268, 0.184, 0.727, 0.583
same, 6924187828544, 20240723-112505_6924187828544, 0.281, 0.875, 0.573
same, 6974158894528, 20240723-155423_6974158894528, 0.433, 0.890, 0.788
same, 6970399922518, 20240723-160227_6970399922518, 0.078, 0.564, 0.215
same, 6974158894528, 20240723-160942_6974158894528, 0.417, 0.895, 0.832
diff, 6972219890632, 20240715-144627_6954256905319, 0.045, 0.441, 0.100
diff, 4897073991658, 20240719-143603_6930364600025, 0.030, 0.305, 0.060
diff, 6934024590268, 20240719-143630_6924509902839, -0.003, 0.922, -0.011
diff, 6920382723257, 20240719-143729_6902007115524, 0.064, 0.471, 0.140
diff, 6902890022558, 20240719-143807_6930628801472, 0.025, 0.560, 0.083
diff, 6930364600001, 20240719-144335_6908355010450, 0.024, 0.445, 0.063
diff, 6924509902839, 20240719-144454_6924509902754, 0.147, 0.521, 0.281
diff, 6918598120014, 20240719-144916_6925843410158, -0.119, 0.340, -0.288
diff, 6920382723257, 20240719-145022_6941499112529, 0.099, 0.417, 0.185
diff, 6902890022558, 20240719-145058_6918149576536, 0.006, 0.453, 0.019
diff, 6902007115524, 20240719-145542_6928002374551, -0.011, 0.392, -0.028
diff, 6958350501101, 20240719-150000_6930364600001, -0.030, 0.354, -0.049
diff, 6937451883132, 20240719-150209_6937962111526, -0.039, 0.302, -0.085
diff, 6916749306102, 20240719-150345_6924509902839, 0.125, 0.664, 0.441
diff, 6972219890632, 20240719-150458_6924509902839, 0.143, 0.548, 0.272
diff, 6924509902754, 20240719-150623_6924187895423, 0.016, 0.506, 0.034
diff, 6958350501101, 20240719-150716_6916749306102, -0.015, 0.388, -0.030
diff, 6973337010216, 20240719-150750_6951469100067, 0.013, 0.473, 0.037
diff, 4897073991658, 20240719-151215_6958350501101, 0.057, 0.383, 0.107
diff, 4897098800133, 20240719-151325_6951469100067, 0.164, 0.467, 0.321
diff, 6920912342002, 20240719-151349_6937962111526, -0.005, 0.477, -0.016
diff, 4897098800133, 20240719-151416_6916749306102, -0.052, 0.289, -0.122
diff, 6973337010216, 20240719-151535_6930364600001, 0.036, 0.507, 0.146
diff, 6908355010450, 20240719-151724_6911988027191, -0.031, 0.363, -0.057
diff, 6924187895423, 20240719-151800_6972219890632, 0.056, 0.421, 0.117
diff, 6928002374551, 20240719-152125_6901668935908, -0.007, 0.405, -0.020
diff, 6954256905319, 20240719-153117_6930364600001, -0.016, 0.470, -0.057
diff, 6902890022558, 20240722-144630_6902265587712, -0.000, 0.477, -0.001
diff, 6918149576536, 20240722-160713_4897073991658, -0.043, 0.421, -0.083
diff, 6924509902839, 20240722-160857_4892655902237, 0.082, 0.573, 0.167
diff, 6920912342002, 20240722-161533_6920907803020, 0.016, 0.488, 0.049
diff, 6916749306102, 20240722-163428_6920912342002, 0.072, 0.584, 0.206
diff, 6901668935908, 20240722-164859_6916196422325, -0.060, 0.385, -0.124
diff, 6970399922518, 20240722-165548_6901668006011, 0.024, 0.378, 0.055
diff, 6924509902754, 20240723-094426_6937221716189, -0.109, 0.329, -0.190
diff, 6938737200650, 20240723-094447_4897098800133, 0.039, 0.540, 0.093
diff, 6901668006011, 20240723-094617_6970470331529, -0.074, 0.426, -0.168
diff, 4897073991658, 20240723-095103_6918598120014, 0.007, 0.402, 0.014
diff, 6925843410158, 20240723-095527_6938737200650, -0.035, 0.402, -0.096
diff, 6901668935908, 20240723-095858_6902890022558, -0.062, 0.342, -0.145
diff, 6951469100067, 20240723-100031_6925303795535, 0.002, 0.396, 0.003
diff, 4897098800133, 20240723-100113_6920382723257, 0.101, 0.407, 0.211
diff, 6925843410158, 20240723-100416_6938737200650, -0.068, 0.347, -0.172
diff, 6908355010450, 20240723-100501_6918598120014, -0.077, 0.424, -0.158
diff, 6920907803020, 20240723-100726_6937221716189, 0.079, 0.475, 0.181
diff, 6973337010216, 20240723-100845_4897098800133, 0.023, 0.449, 0.070
diff, 6920907803020, 20240723-101829_6918598120014, 0.140, 0.673, 0.296
diff, 4897073991658, 20240723-102033_6920382723257, 0.019, 0.319, 0.043
diff, 6908355010450, 20240723-102206_6902890022558, 0.060, 0.429, 0.123
diff, 4892655902237, 20240723-102409_6970470331529, 0.013, 0.320, 0.033
diff, 6925843410158, 20240723-102515_6938737200650, -0.005, 0.406, -0.013
diff, 6916749306102, 20240723-102833_6937221716189, 0.137, 0.625, 0.424
diff, 6930364600001, 20240723-110216_6937451883132, -0.018, 0.387, -0.040
diff, 6911988027191, 20240723-110224_6973337010216, -0.017, 0.518, -0.045
diff, 6925843410158, 20240723-111446_6937451883132, -0.026, 0.382, -0.066
diff, 6911988027191, 20240723-111521_6973337010216, -0.003, 0.430, -0.008
diff, 6924509902754, 20240723-111602_6924187828544, -0.058, 0.322, -0.109
diff, 6902265587712, 20240723-112004_6934024590268, -0.020, 0.345, -0.039
diff, 6901668935908, 20240723-112505_6924187828544, 0.039, 0.415, 0.074
diff, 6908355010450, 20240723-155423_6974158894528, 0.018, 0.420, 0.029
diff, 6937962111526, 20240723-160227_6970399922518, -0.026, 0.378, -0.084
diff, 6951469100067, 20240723-160942_6974158894528, 0.035, 0.375, 0.050

Binary file not shown.

Binary file not shown.

View File

@ -4,15 +4,13 @@ import torchvision.transforms as T
class Config:
# network settings
backbone = 'vit' # [resnet18, mobilevit_s, mobilenet_v2, mobilenetv3_small, mobilenetv3_large, mobilenet_v1, PPLCNET_x1_0, PPLCNET_x0_5, PPLCNET_x2_5]
metric = 'softmax' # [cosface, arcface, softmax]
backbone = 'resnet18' # [resnet18, mobilevit_s, mobilenet_v2, mobilenetv3_small, mobilenetv3_large, mobilenet_v1, PPLCNET_x1_0, PPLCNET_x0_5, PPLCNET_x2_5]
metric = 'arcface' # [cosface, arcface]
cbam = True
embedding_size = 256 # 256
embedding_size = 256
drop_ratio = 0.5
img_size = 224
teacher = 'vit' # [resnet18, mobilevit_s, mobilenet_v2, mobilenetv3_small, mobilenetv3_large, mobilenet_v1, PPLCNET_x1_0, PPLCNET_x0_5, PPLCNET_x2_5]
student = 'resnet'
# data preprocess
# input_shape = [1, 128, 128]
"""transforms.RandomCrop(size),
@ -24,7 +22,7 @@ class Config:
train_transform = T.Compose([
T.ToTensor(),
T.Resize((img_size, img_size)),
# T.RandomCrop(img_size*4//5),
# T.RandomCrop(img_size),
# T.RandomHorizontalFlip(p=0.5),
T.RandomRotation(180),
T.ColorJitter(brightness=0.5),
@ -39,39 +37,39 @@ class Config:
])
# dataset
train_root = './data/2250_train/train' # 初始筛选过一次的数据集
# train_root = './data/0625_train/train'
train_root = './data/2250_train/train' # 初始筛选过一次的数据集
# train_root = './data/0612_train/train'
test_root = "./data/2250_train/val/"
# test_root = "./data/0625_train/val"
# test_root = "./data/0612_train/val"
test_list = "./data/2250_train/val_pair.txt"
test_group_json = "./data/2250_train/cross_same.json"
# test_group_json = "./data/0625_train/cross_same.json"
test_group_json = "./2250_train/cross_same_0508.json"
# test_list = "./data/test_data_100/val_pair.txt"
# training settings
checkpoints = "checkpoints/vit_b_16_0815/" # [resnet18, mobilevit_s, mobilenet_v2, mobilenetv3]
restore = True
checkpoints = "checkpoints/resnet18_0613/" # [resnet18, mobilevit_s, mobilenet_v2, mobilenetv3]
restore = False
# restore_model = "checkpoints/renet18_2250_0315/best_resnet18_2250_0315.pth" # best_resnet18_1491_0306.pth
restore_model = "checkpoints/vit_b_16_0730/best.pth" # best_resnet18_1491_0306.pth
restore_model = "checkpoints/resnet18_0515/best.pth" # best_resnet18_1491_0306.pth
# test_model = "./checkpoints/renet18_1887_0311/best_resnet18_1887_0311.pth"
# test_model = "checkpoints/renet18_2250_0314/best_resnet18_2250_0314.pth"
testbackbone = 'resnet18' # [resnet18, mobilevit_s, mobilenet_v2, mobilenetv3_small, mobilenetv3_large, mobilenet_v1, PPLCNET_x1_0, PPLCNET_x0_5]
# test_val = "./data/2250_train"
test_val = "./data/0625_train"
test_model = "checkpoints/resnet18_0721/best.pth"
test_val = "D:/比对/cl"
# test_val = "./data/test_data_100"
test_model = "checkpoints/resnet18_0515/best.pth"
train_batch_size = 128 # 256
train_batch_size = 512 # 256
test_batch_size = 256 # 256
epoch = 300
optimizer = 'adamw' # ['sgd', 'adam' 'adamw']
lr = 1e-3 # 1e-2
lr_step = 10 # 10
optimizer = 'sgd' # ['sgd', 'adam']
lr = 1.5e-2 # 1e-2
lr_step = 5 # 10
lr_decay = 0.95 # 0.98
weight_decay = 5e-4
loss = 'focal_loss' # ['focal_loss', 'cross_entropy']
loss = 'cross_entropy' # ['focal_loss', 'cross_entropy']
device = torch.device('cuda:1' if torch.cuda.is_available() else 'cpu')
# device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
@ -79,6 +77,5 @@ class Config:
num_workers = 4 # dataloader
group_test = True
# group_test = False
config = Config()
config = Config()

View File

@ -33,150 +33,176 @@ import numpy as np
import cv2
import os
import sys
import random
import pickle
import torch
import time
import json
from config import config as conf
from model import resnet18
from inference import load_contrast_model
from inference import featurize
from pathlib import Path
from scipy.spatial.distance import cdist
import matplotlib.pyplot as plt
import shutil
from datetime import datetime
# Vit版resnet, 和现场特征不一致需将resnet_vit中文件提出
# from config import config as conf
# from model import resnet18
# from inference import load_contrast_model
# from inference import featurize
# embedding_size = conf.embedding_size
# img_size = conf.img_size
# device = conf.device
# model = load_contrast_model()
sys.path.append(r"D:\DetectTracking")
from tracking.utils.read_data import extract_data, read_tracking_output, read_deletedBarcode_file
from config import config as conf
from model import resnet18 as resnet18
from test_ori import inference_image
IMG_FORMAT = ['.bmp', '.jpg', '.jpeg', '.png']
model = resnet18().to(conf.device)
model = load_contrast_model()
print('load model {} '.format(conf.testbackbone))
# model = nn.DataParallel(model).to(conf.device)
model.load_state_dict(torch.load(conf.test_model, map_location=conf.device))
model.eval()
def creat_shopping_event(basePath, savePath, subimgPath=False):
eventList = []
def creat_shopping_event(eventPath, subimgPath=False):
'''构造放入商品事件字典,这些事件需满足条件:
1) 前后摄至少有一条轨迹输出
2) 保存有帧图像,以便裁剪出 boxe 子图
'''
# filename = "20240723-155413_6904406215720"
'''一、构造放入商品事件列表'''
k = 0
for filename in os.listdir(basePath):
# filename = "20240723-155413_6904406215720"
'''filename下为一次购物事件'''
filepath = os.path.join(basePath, filename)
'''filename下为一次购物事件'''
eventName = os.path.basename(eventPath)
'''================ 0. 检查 filename 及 filepath 正确性和有效性 ================'''
nmlist = filename.split('_')
if filename.find('2024')<0 or len(nmlist)!=2 or len(nmlist[0])!=15 or len(nmlist[1])<11:
continue
if not os.path.isdir(filepath): continue
'''================ 0. 检查 filename 及 eventPath 正确性和有效性 ================'''
nmlist = eventName.split('_')
if eventName.find('2024')<0 or len(nmlist)!=2 or len(nmlist[0])!=15 or len(nmlist[1])<11:
return
if not os.path.isdir(eventPath):
return
'''================ 1. 构造事件描述字典,暂定 9 items ==============='''
event = {}
event['barcode'] = eventName.split('_')[1]
event['type'] = 'input'
event['filepath'] = eventPath
event['back_imgpaths'] = []
event['front_imgpaths'] = []
event['back_boxes'] = np.empty((0, 9), dtype=np.float64)
event['front_boxes'] = np.empty((0, 9), dtype=np.float64)
event['back_feats'] = np.empty((0, 256), dtype=np.float64)
event['front_feats'] = np.empty((0, 256), dtype=np.float64)
event['feats_compose'] = np.empty((0, 256), dtype=np.float64)
# event['feats_select'] = np.empty((0, 256), dtype=np.float64)
'''================= 2. 读取 data 文件 ============================='''
for dataname in os.listdir(eventPath):
# filename = '1_track.data'
datapath = os.path.join(eventPath, dataname)
if not os.path.isfile(datapath): continue
'''================ 1. 构造事件描述字典,暂定 9 items ==============='''
event = {}
event['barcode'] = nmlist[1]
event['type'] = 'input'
event['filepath'] = filepath
event['back_imgpaths'] = []
event['front_imgpaths'] = []
event['back_boxes'] = np.empty((0, 9), dtype=np.float64)
event['front_boxes'] = np.empty((0, 9), dtype=np.float64)
event['back_feats'] = np.empty((0, 256), dtype=np.float64)
event['front_feats'] = np.empty((0, 256), dtype=np.float64)
event['feats_compose'] = np.empty((0, 256), dtype=np.float64)
# event['feats_select'] = np.empty((0, 256), dtype=np.float64)
'''================= 2. 读取 data 文件 ============================='''
for dataname in os.listdir(filepath):
# filename = '1_track.data'
datapath = os.path.join(filepath, dataname)
if not os.path.isfile(datapath): continue
CamerType = dataname.split('_')[0]
''' 2.1 读取 0/1_track.data 中数据,暂不考虑'''
# if dataname.find("_track.data")>0:
# bboxes, ffeats, trackerboxes, tracker_feat_dict, trackingboxes, tracking_feat_dict = extract_data(datapath)
CamerType = dataname.split('_')[0]
''' 2.1 读取 0/1_track.data 中数据,暂不考虑'''
# if dataname.find("_track.data")>0:
# bboxes, ffeats, trackerboxes, tracker_feat_dict, trackingboxes, tracking_feat_dict = extract_data(datapath)
''' 2.2 读取 0/1_tracking_output.data 中数据'''
if dataname.find("_tracking_output.data")>0:
tracking_output_boxes, tracking_output_feats = read_tracking_output(datapath)
if len(tracking_output_boxes) != len(tracking_output_feats): continue
if CamerType == '0':
event['back_boxes'] = tracking_output_boxes
event['back_feats'] = tracking_output_feats
elif CamerType == '1':
event['front_boxes'] = tracking_output_boxes
event['front_feats'] = tracking_output_feats
'''2.3 事件的特征表征方式: 特征选择、特征集成'''
bk_feats = event['back_feats']
ft_feats = event['front_feats']
'''2.3.1 特征集成'''
feats_compose = np.empty((0, 256), dtype=np.float64)
if len(ft_feats):
feats_compose = np.concatenate((feats_compose, ft_feats), axis=0)
if len(bk_feats):
feats_compose = np.concatenate((feats_compose, bk_feats), axis=0)
event['feats_compose'] = feats_compose
'''2.3.1 特征选择'''
if len(ft_feats):
event['feats_select'] = ft_feats
pickpath = os.path.join(savePath, f"{filename}.pickle")
with open(pickpath, 'wb') as f:
pickle.dump(event, f)
print(f"Event: {filename}")
if subimgPath==False:
eventList.append(event)
continue
'''================ 2. 读取图像文件地址并按照帧ID排序 ============='''
frontImgs, frontFid = [], []
backImgs, backFid = [], []
for imgname in os.listdir(filepath):
name, ext = os.path.splitext(imgname)
if ext not in IMG_FORMAT or name.find('frameId')<0: continue
CamerType = name.split('_')[0]
frameId = int(name.split('_')[3])
imgpath = os.path.join(filepath, imgname)
''' 2.2 读取 0/1_tracking_output.data 中数据'''
if dataname.find("_tracking_output.data")>0:
tracking_output_boxes, tracking_output_feats = read_tracking_output(datapath)
if len(tracking_output_boxes) != len(tracking_output_feats): continue
if CamerType == '0':
backImgs.append(imgpath)
backFid.append(frameId)
if CamerType == '1':
frontImgs.append(imgpath)
frontFid.append(frameId)
frontIdx = np.argsort(np.array(frontFid))
backIdx = np.argsort(np.array(backFid))
'''2.1 生成依据帧 ID 排序的前后摄图像地址列表'''
frontImgs = [frontImgs[i] for i in frontIdx]
backImgs = [backImgs[i] for i in backIdx]
event['back_boxes'] = tracking_output_boxes
event['back_feats'] = tracking_output_feats
elif CamerType == '1':
event['front_boxes'] = tracking_output_boxes
event['front_feats'] = tracking_output_feats
if len(event['back_boxes'])==0 or len(event['front_boxes'])==0:
return None
'''2.3 事件的特征表征方式: 特征选择、特征集成'''
bk_feats = event['back_feats']
ft_feats = event['front_feats']
'''2.3.1 特征集成'''
feats_compose = np.empty((0, 256), dtype=np.float64)
if len(ft_feats):
feats_compose = np.concatenate((feats_compose, ft_feats), axis=0)
if len(bk_feats):
feats_compose = np.concatenate((feats_compose, bk_feats), axis=0)
event['feats_compose'] = feats_compose
'''2.3.1 特征选择'''
if len(ft_feats):
event['feats_select'] = ft_feats
'''2.2 将前、后摄图像路径添加至事件字典'''
bfid = event['back_boxes'][:, 7].astype(np.int64)
ffid = event['front_boxes'][:, 7].astype(np.int64)
if len(bfid) and max(bfid) <= len(backImgs):
event['back_imgpaths'] = [backImgs[i-1] for i in bfid]
if len(ffid) and max(ffid) <= len(frontImgs):
event['front_imgpaths'] = [frontImgs[i-1] for i in ffid]
# pickpath = os.path.join(savePath, f"{filename}.pickle")
# with open(pickpath, 'wb') as f:
# pickle.dump(event, f)
# print(f"Event: {filename}")
# if subimgPath==False:
# eventList.append(event)
# continue
'''================ 3. 判断当前事件有效性,并添加至事件列表 =========='''
condt1 = len(event['back_imgpaths'])==0 or len(event['front_imgpaths'])==0
condt2 = len(event['front_feats'])==0 and len(event['back_feats'])==0
if condt1 or condt2:
print(f" Error, condt1: {condt1}, condt2: {condt2}")
continue
'''================ 2. 读取图像文件地址并按照帧ID排序 ============='''
frontImgs, frontFid = [], []
backImgs, backFid = [], []
for imgname in os.listdir(eventPath):
name, ext = os.path.splitext(imgname)
if ext not in IMG_FORMAT or name.find('frameId')<0: continue
eventList.append(event)
# k += 1
# if k==1:
# continue
'''一、构造放入商品事件列表,暂不处理'''
CamerType = name.split('_')[0]
frameId = int(name.split('_')[3])
imgpath = os.path.join(eventPath, imgname)
if CamerType == '0':
backImgs.append(imgpath)
backFid.append(frameId)
if CamerType == '1':
frontImgs.append(imgpath)
frontFid.append(frameId)
frontIdx = np.argsort(np.array(frontFid))
backIdx = np.argsort(np.array(backFid))
'''2.1 生成依据帧 ID 排序的前后摄图像地址列表'''
frontImgs = [frontImgs[i] for i in frontIdx]
backImgs = [backImgs[i] for i in backIdx]
'''2.2 将前、后摄图像路径添加至事件字典'''
bfid = event['back_boxes'][:, 7].astype(np.int64)
ffid = event['front_boxes'][:, 7].astype(np.int64)
if len(bfid) and max(bfid) <= len(backImgs):
event['back_imgpaths'] = [backImgs[i-1] for i in bfid]
if len(ffid) and max(ffid) <= len(frontImgs):
event['front_imgpaths'] = [frontImgs[i-1] for i in ffid]
'''================ 3. 判断当前事件有效性,并添加至事件列表 =========='''
condt1 = len(event['back_imgpaths'])==0 or len(event['front_imgpaths'])==0
condt2 = len(event['front_feats'])==0 and len(event['back_feats'])==0
if condt1 or condt2:
print(f"Event: {eventName}, Error, condt1: {condt1}, condt2: {condt2}")
return None
'''构造放入商品事件列表,暂不处理'''
# delepath = os.path.join(basePath, 'deletedBarcode.txt')
# bcdList = read_deletedBarcode_file(delepath)
# for slist in bcdList:
@ -192,9 +218,8 @@ def creat_shopping_event(basePath, savePath, subimgPath=False):
# event['barcode'] = slist['Deleted'].strip()
# event['type'] = 'getout'
# event['basePath'] = getoutPath
return eventList
return event
def get_std_barcodeDict(bcdpath, bpath):
'''
@ -206,7 +231,7 @@ def get_std_barcodeDict(bcdpath, bpath):
bpath: 字典存储地址
'''
# bpath = r'\\192.168.1.28\share\测试_202406\contrast\barcodes'
# bpath = r'\\192.168.1.28\share\测试_202406\contrast\std_barcodes'
'''读取数据集中 barcode 列表'''
stdBlist = []
@ -255,61 +280,41 @@ def get_std_barcodeDict(bcdpath, bpath):
return
def extract_save_trajture_subimgs(shoppingEventPath, shoppingFeatPath, subimgPath):
'''用于保存一次购物事件的轨迹图像子图'''
shoppingFeatPath = r"\\192.168.1.28\share\测试_202406\contrast\events"
subimgPath = r'\\192.168.1.28\share\测试_202406\contrast\subimgs'
eventList = creat_shopping_event(shoppingEventPath, shoppingFeatPath, subimgPath=True)
print("======= eventList have generated and features have saved! =======")
barcodeDict = {}
for event in eventList:
'''9 items: barcode, type, filepath, back_imgpaths, front_imgpaths,
back_boxes, front_boxes, back_feats, front_feats
'''
if len(event['feats_select']):
event_feats = event['feats_select']
elif len(event['back_feats']):
event_feats = event['back_feats']
def save_event_subimg(event, savepath):
'''
功能: 保存一次购物事件的轨迹子图
9 items: barcode, type, filepath, back_imgpaths, front_imgpaths,
back_boxes, front_boxes, back_feats, front_feats,
feats_compose, feats_select
子图保存次序:先前摄、后后摄,以 k 为编号,和 "feats_compose" 中次序相同
'''
cameras = ('front', 'back')
k = 0
for camera in cameras:
if camera == 'front':
boxes = event['front_boxes']
imgpaths = event['front_imgpaths']
else:
continue
boxes = event['back_boxes']
imgpaths = event['back_imgpaths']
'''保存一次购物事件的轨迹子图'''
basename = os.path.basename(event['filepath'])
spath = os.path.join(subimgPath, basename)
if not os.path.exists(spath):
os.makedirs(spath)
cameras = ('front', 'back')
for camera in cameras:
if camera == 'front':
boxes = event['front_boxes']
imgpaths = event['front_imgpaths']
else:
boxes = event['back_boxes']
imgpaths = event['back_imgpaths']
for i, box in enumerate(boxes):
x1, y1, x2, y2, tid, score, cls, fid, bid = box
imgpath = imgpaths[i]
image = cv2.imread(imgpath)
subimg = image[int(y1/2):int(y2/2), int(x1/2):int(x2/2), :]
camerType, timeTamp, _, frameID = os.path.basename(imgpath).split('.')[0].split('_')
subimgName = f"{camerType}_{tid}_fid({fid}, {frameID}).png"
subimgPath = os.path.join(spath, subimgName)
cv2.imwrite(subimgPath, subimg)
print(f"Image saved: {basename}")
for i, box in enumerate(boxes):
x1, y1, x2, y2, tid, score, cls, fid, bid = box
imgpath = imgpaths[i]
image = cv2.imread(imgpath)
subimg = image[int(y1/2):int(y2/2), int(x1/2):int(x2/2), :]
camerType, timeTamp, _, frameID = os.path.basename(imgpath).split('.')[0].split('_')
subimgName = f"{k}_cam-{camerType}_tid-{int(tid)}_fid-({int(fid)}, {frameID}).png"
spath = os.path.join(savepath, subimgName)
cv2.imwrite(spath, subimg)
k += 1
# basename = os.path.basename(event['filepath'])
print(f"Image saved: {os.path.basename(event['filepath'])}")
def batch_inference(imgpaths, batch):
size = len(imgpaths)
@ -326,7 +331,7 @@ def batch_inference(imgpaths, batch):
return features
def stdfeat_infer(imgPath, featPath):
def stdfeat_infer(imgPath, featPath, bcdSet=None):
'''
inputs:
imgPath: 该文件夹下的 pickle 文件格式 {barcode: [imgpath1, imgpath1, ...]}
@ -337,11 +342,15 @@ def stdfeat_infer(imgPath, featPath):
'''
# imgPath = r"\\192.168.1.28\share\测试_202406\contrast\barcodes"
# featPath = r"\\192.168.1.28\share\测试_202406\contrast\features"
# imgPath = r"\\192.168.1.28\share\测试_202406\contrast\std_barcodes"
# featPath = r"\\192.168.1.28\share\测试_202406\contrast\std_features"
stdBarcodeDict = {}
k = 0
for filename in os.listdir(imgPath):
bcd, ext = os.path.splitext(filename)
if bcdSet is not None and bcd not in bcdSet:
continue
filepath = os.path.join(imgPath, filename)
stdbDict = {}
@ -351,12 +360,21 @@ def stdfeat_infer(imgPath, featPath):
with open(filepath, 'rb') as f:
bpDict = pickle.load(f)
for barcode, imgpaths in bpDict.items():
feature = batch_inference(imgpaths, 8)
# feature = batch_inference(imgpaths, 8) #from vit distilled model of Lichen
feature = inference_image(imgpaths, conf.test_transform, model, conf.device)
feature /= np.linalg.norm(feature, axis=1)[:, None]
except Exception as e:
print(f"Error accured at: {filename}, with Exception is: {e}")
'''================ 保存单个barcode特征 ================'''
stdbDict[barcode] = feature
stdbDict["barcode"] = barcode
stdbDict["imgpaths"] = imgpaths
stdbDict["feats"] = feature
pkpath = os.path.join(featPath, f"{barcode}.pickle")
with open(pkpath, 'wb') as f:
pickle.dump(stdbDict, f)
@ -364,25 +382,210 @@ def stdfeat_infer(imgPath, featPath):
stdBarcodeDict[barcode] = feature
t2 = time.time()
print(f"Barcode: {barcode}, need time: {t2-t1:.1f} secs")
k += 1
if k == 10:
break
# k += 1
# if k == 10:
# break
pickpath = os.path.join(featPath, f"barcode_features_{k}.pickle")
with open(pickpath, 'wb') as f:
pickle.dump(stdBarcodeDict, f)
def contrast_performance_evaluate():
eventFeatPath = r"\\192.168.1.28\share\测试_202406\contrast\events"
stdFeatPath = r"\\192.168.1.28\share\测试_202406\contrast\features"
def generate_event_and_standard_features():
def contrast_performance_evaluate():
eventFeatPath = r"\\192.168.1.28\share\测试_202406\contrast\events"
stdBcdPath = r"\\192.168.1.28\share\测试_202406\contrast\std_barcodes"
stdFeatPath = r"\\192.168.1.28\share\测试_202406\contrast\std_features"
subimgPath = r"\\192.168.1.28\share\测试_202406\contrast\subimgs"
# stdBarcode = [p.stem for p in Path(stdFeatPath).iterdir() if p.is_file() and p.suffix=='.pickle']
stdBarcode = [p.stem for p in Path(stdBcdPath).iterdir() if p.is_file() and p.suffix=='.pickle']
'''购物事件列表,该列表中的 Barcode 存在于标准的 stdBarcode 内'''
# evtList = [(p.stem, p.stem.split('_')[1]) for p in Path(eventFeatPath).iterdir()
# if p.is_file()
# and p.suffix=='.pickle'
# and len(p.stem.split('_'))==2
# and p.stem.split('_')[1].isdigit()
# and p.stem.split('_')[1] in stdBarcode
# ]
evtList = [(p.stem, p.stem.split('_')[1]) for p in Path(eventFeatPath).iterdir()
if p.is_file()
and p.suffix=='.pickle'
and len(p.stem.split('_'))==2
and p.stem.split('_')[1].isdigit()
and p.stem.split('_')[1] in stdBarcode
]
barcodes = set([bcd for _, bcd in evtList])
'''标准特征集图像样本经特征提取并保存,运行一次后无需再运行'''
# stdfeat_infer(stdBcdPath, stdFeatPath, barcodes)
'''========= 构建用于比对的标准特征字典 ============='''
stdDict = {}
for barcode in barcodes:
stdpath = os.path.join(stdFeatPath, barcode+'.pickle')
with open(stdpath, 'rb') as f:
stddata = pickle.load(f)
stdDict[barcode] = stddata
'''========= 构建用于比对的操作事件字典 ============='''
evtDict = {}
for event, barcode in evtList:
evtpath = os.path.join(eventFeatPath, event+'.pickle')
with open(evtpath, 'rb') as f:
evtdata = pickle.load(f)
evtDict[event] = evtdata
'''===== 构造 3 个事件对: 扫 A 放 A, 扫 A 放 B, 合并 ===================='''
AA_list = [(event, barcode, "same") for event, barcode in evtList]
AB_list = []
for event, barcode in evtList:
dset = list(barcodes.symmetric_difference(set([barcode])))
idx = random.randint(0, len(dset)-1)
AB_list.append((event, dset[idx], "diff"))
mergePairs = AA_list + AB_list
'''读取事件、标准特征文件中数据,以 AA_list 和 AB_list 中关键字为 key 生成字典'''
results = []
for evt, stdbcd, label in mergePairs:
## 标准特征字典的构造方式不合适需改进不能用具体的barcode做key值
event = evtDict[evt]
## 判断是否存在轨迹图像文件夹,不存在则创建文件夹并保存轨迹图像
pairpath = os.path.join(subimgPath, f"{evt}")
if not os.path.exists(pairpath):
os.makedirs(pairpath)
save_event_subimg(event, pairpath)
## 判断是否存在 barcode 样本集图像文件夹,不存在则创建文件夹并存储 barcode 样本集图像
stdImgpath = stdDict[stdbcd]["imgpaths"]
pstdpath = os.path.join(subimgPath, f"{stdbcd}")
if not os.path.exists(pstdpath):
os.makedirs(pstdpath)
ii = 1
for filepath in stdImgpath:
stdpath = os.path.join(pstdpath, f"{stdbcd}_{ii}.png")
shutil.copy2(filepath, stdpath)
ii += 1
stdfeat = stdDict[stdbcd]["feats"]
evtfeat = event["feats_compose"]
# 比较特征归一化前后的相似度变化情况
matrix = 1 - cdist(stdfeat, evtfeat, 'cosine')
simi_mean = np.mean(matrix)
simi_max = np.max(matrix)
stdfeatm = np.mean(stdfeat, axis=0, keepdims=True)
evtfeatm = np.mean(evtfeat, axis=0, keepdims=True)
simi_mfeat = 1- np.maximum(0.0, cdist(stdfeatm, evtfeatm, 'cosine'))
results.append((label, stdbcd, evt, simi_mean, simi_max, simi_mfeat[0,0]))
print("contrast performance evaluate have done!")
tm = datetime.fromtimestamp(time.time()).strftime('%Y%m%d_%H%M%S')
with open(f'{tm}.pickle', 'wb') as f:
pickle.dump(results, f)
with open(f'{tm}.txt', 'w', encoding='utf-8') as f:
for result in results:
part = [f"{x:.3f}" if isinstance(x, float) else str(x) for x in result]
line = ', '.join(part)
f.write(line + '\n')
def compute_contrast_accuracy(pickpath):
pickfile = os.path.basename(pickpath)
file, _ = os.path.splitext(pickfile)
# tm = datetime.fromtimestamp(time.time()).strftime('%Y%m%d_%H%M%S')
with open(pickpath, 'rb') as f:
results = pickle.load(f)
Same, Cross = [], []
for label, stdbcd, evt, simi_mean, simi_max, simi_mft in results:
if label == "same":
Same.append(simi_max)
if label == "diff":
Cross.append(simi_max)
Same = np.array(Same)
Cross = np.array(Cross)
TPFN = len(Same)
TNFP = len(Cross)
fig, axs = plt.subplots(2, 1)
axs[0].hist(Same, bins=60, edgecolor='black')
axs[0].set_xlim([-0.2, 1])
axs[0].set_title(f'Same Barcode, Num: {TPFN}')
axs[1].hist(Cross, bins=60, edgecolor='black')
axs[1].set_xlim([-0.2, 1])
axs[1].set_title(f'Cross Barcode, Num: {TNFP}')
plt.savefig(f'./result/{file}_hist.png') # svg, png, pdf
Recall_Pos, Recall_Neg = [], []
Precision_Pos, Precision_Neg = [], []
Correct = []
Thresh = np.linspace(-0.2, 1, 100)
for th in Thresh:
TP = np.sum(Same > th)
FN = TPFN - TP
TN = np.sum(Cross < th)
FP = TNFP - TN
Recall_Pos.append(TP/TPFN)
Recall_Neg.append(TN/TNFP)
Precision_Pos.append(TP/(TP+FP+1e-6))
Precision_Neg.append(TN/(TN+FN+1e-6))
Correct.append((TN+TP)/(TPFN+TNFP))
fig, ax = plt.subplots()
ax.plot(Thresh, Correct, 'r', label='Correct: (TN+TP)/(TPFN+TNFP)')
ax.plot(Thresh, Recall_Pos, 'b', label='Recall_Pos: TP/TPFN')
ax.plot(Thresh, Recall_Neg, 'g', label='Recall_Neg: TN/TNFP')
ax.plot(Thresh, Precision_Pos, 'c', label='Precision_Pos: TP/(TP+FP)')
ax.plot(Thresh, Precision_Neg, 'm', label='Precision_Neg: TN/(TN+FN)')
ax.set_xlim([0, 1])
ax.set_ylim([0, 1])
ax.grid(True)
ax.set_title('PrecisePos & PreciseNeg')
ax.set_xlabel(f"Same Num: {TPFN}, Cross Num: {TNFP}")
ax.legend()
plt.show()
plt.savefig(f'./result/{file}_pr.png') # svg, png, pdf
print("Haved done!!!")
def generate_event_and_stdfeatures():
stdSamplePath = r"\\192.168.1.28\share\已标注数据备份\对比数据\barcode\barcode_1771"
stdBarcodePath = r"\\192.168.1.28\share\测试_202406\contrast\barcodes"
stdFeaturePath = r"\\192.168.1.28\share\测试_202406\contrast\features"
stdBarcodePath = r"\\192.168.1.28\share\测试_202406\contrast\std_barcodes"
stdFeaturePath = r"\\192.168.1.28\share\测试_202406\contrast\std_features"
'''=========================== 1. 生成标准特征集 ========================'''
'''1.1 提取并保存标准特征库原始图像文件地址字典'''
@ -390,46 +593,78 @@ def generate_event_and_standard_features():
# print("standard imgpath have extracted and saved")
'''1.2 特征提取,并保存至文件夹 stdFeaturePath 中'''
stdfeat_infer(stdBarcodePath, stdFeaturePath)
'''1.2 特征提取,并保存至文件夹 stdFeaturePath 中也可在运行过程中根据barcodes交集执行'''
# stdfeat_infer(stdBarcodePath, stdFeaturePath, bcdSet=None)
# print("standard features have generated!")
'''=========================== 2. 提取并存储事件特征 ========================'''
shoppingEventPath = [r'\\192.168.1.28\share\测试_202406\0723\0723_1',
r'\\192.168.1.28\share\测试_202406\0723\0723_2',
r'\\192.168.1.28\share\测试_202406\0723\0723_3',
r'\\192.168.1.28\share\测试_202406\0722\0722_01',
r'\\192.168.1.28\share\测试_202406\0722\0722_02']
shoppingFeatPath = r"\\192.168.1.28\share\测试_202406\contrast\events"
# for sPath in shoppingEventPath:
# eventList = creat_shopping_event(sPath, shoppingFeatPath)
eventDatePath = [# r'\\192.168.1.28\share\测试_202406\0723\0723_1',
# r'\\192.168.1.28\share\测试_202406\0723\0723_2',
# r'\\192.168.1.28\share\测试_202406\0723\0723_3',
# r'\\192.168.1.28\share\测试_202406\0722\0722_01',
# r'\\192.168.1.28\share\测试_202406\0722\0722_02'
# r'\\192.168.1.28\share\测试_202406\0719\719_3',
# r'\\192.168.1.28\share\测试_202406\0716\0716_1',
# r'\\192.168.1.28\share\测试_202406\0716\0716_2',
# r'\\192.168.1.28\share\测试_202406\0716\0716_3',
# r'\\192.168.1.28\share\测试_202406\0712\0712_1', # 无帧图像
# r'\\192.168.1.28\share\测试_202406\0712\0712_2', # 无帧图像
]
eventFeatPath = r"\\192.168.1.28\share\测试_202406\contrast\events"
subimgPath = r'\\192.168.1.28\share\测试_202406\contrast\subimgs'
eventList = []
# k = 0
for datePath in eventDatePath:
for eventName in os.listdir(datePath):
pickpath = os.path.join(eventFeatPath, f"{eventName}.pickle")
if os.path.isfile(pickpath):
continue
eventPath = os.path.join(datePath, eventName)
eventDict = creat_shopping_event(eventPath)
if eventDict:
eventList.append(eventDict)
with open(pickpath, 'wb') as f:
pickle.dump(eventDict, f)
print(f"Event: {eventName}, have saved!")
# k += 1
# if k==1:
# break
## 保存轨迹中 boxes 子图
# for event in eventList:
# basename = os.path.basename(event['filepath'])
# savepath = os.path.join(subimgPath, basename)
# if not os.path.exists(savepath):
# os.makedirs(savepath)
# save_event_subimg(event, savepath)
print("eventList have generated and features have saved!")
def shopping_event_test():
fplist = [#r'\\192.168.1.28\share\测试_202406\0723\0723_1',
#r'\\192.168.1.28\share\测试_202406\0723\0723_2',
r'\\192.168.1.28\share\测试_202406\0723\0723_3',
#r'\\192.168.1.28\share\测试_202406\0722\0722_01',
#r'\\192.168.1.28\share\测试_202406\0722\0722_02'
]
shoppingFeatPath = r"\\192.168.1.28\share\测试_202406\contrast\events"
subimgPath = r'\\192.168.1.28\share\测试_202406\contrast\subimgs'
for filepath in fplist:
'''用于保存一次购物事件的轨迹轨迹特征、及对应的图像子图'''
extract_save_trajture_subimgs(filepath, shoppingFeatPath, subimgPath)
def main():
generate_event_and_standard_features()
# shopping_event_test()
# generate_event_and_stdfeatures()
contrast_performance_evaluate()
ppath = r"D:\DetectTracking\contrast"
for filename in os.listdir(ppath):
if filename.find('.pickle') < 0:
continue
pickpath = os.path.join(ppath, filename)
compute_contrast_accuracy(pickpath)
pass
if __name__ == '__main__':

88
contrast/model/BAM.py Normal file
View File

@ -0,0 +1,88 @@
import torch.nn as nn
import torchvision
from torch.nn import init
class Flatten(nn.Module):
def forward(self, x):
return x.view(x.shape[0], -1)
class ChannelAttention(nn.Module):
def __int__(self, channel, reduction, num_layers):
super(ChannelAttention, self).__init__()
self.avgpool = nn.AdaptiveAvgPool2d(1)
gate_channels = [channel]
gate_channels += [len(channel) // reduction] * num_layers
gate_channels += [channel]
self.ca = nn.Sequential()
self.ca.add_module('flatten', Flatten())
for i in range(len(gate_channels) - 2):
self.ca.add_module('', nn.Linear(gate_channels[i], gate_channels[i + 1]))
self.ca.add_module('', nn.BatchNorm1d(gate_channels[i + 1]))
self.ca.add_module('', nn.ReLU())
self.ca.add_module('', nn.Linear(gate_channels[-2], gate_channels[-1]))
def forward(self, x):
res = self.avgpool(x)
res = self.ca(res)
res = res.unsqueeze(-1).unsqueeze(-1).expand_as(x)
return res
class SpatialAttention(nn.Module):
def __int__(self, channel, reduction=16, num_lay=3, dilation=2):
super(SpatialAttention).__init__()
self.sa = nn.Sequential()
self.sa.add_module('', nn.Conv2d(kernel_size=1, in_channels=channel, out_channels=(channel // reduction) * 3))
self.sa.add_module('', nn.BatchNorm2d(num_features=(channel // reduction)))
self.sa.add_module('', nn.ReLU())
for i in range(num_lay):
self.sa.add_module('', nn.Conv2d(kernel_size=3,
in_channels=(channel // reduction),
out_channels=(channel // reduction),
padding=1,
dilation=2))
self.sa.add_module('', nn.BatchNorm2d(channel // reduction))
self.sa.add_module('', nn.ReLU())
self.sa.add_module('', nn.Conv2d(channel // reduction, 1, kernel_size=1))
def forward(self, x):
res = self.sa(x)
res = res.expand_as(x)
return res
class BAMblock(nn.Module):
def __init__(self, channel=512, reduction=16, dia_val=2):
super(BAMblock, self).__init__()
self.ca = ChannelAttention(channel, reduction)
self.sa = SpatialAttention(channel, reduction, dia_val)
self.sigmoid = nn.Sigmoid()
def init_weights(self):
for m in self.modules():
if isinstance(m, nn.Conv2d):
init.kaiming_normal(m.weight, mode='fan_out')
if m.bais is not None:
init.constant_(m.bias, 0)
elif isinstance(m, nn.BatchNorm2d):
init.constant_(m.weight, 1)
init.constant_(m.bias, 0)
elif isinstance(m, nn.Linear):
init.normal_(m.weight, std=0.001)
if m.bias is not None:
init.constant_(m.bias, 0)
def forward(self, x):
b, c, _, _ = x.size()
sa_out = self.sa(x)
ca_out = self.ca(x)
weight = self.sigmoid(sa_out + ca_out)
out = (1 + weight) * x
return out
if __name__ == "__main__":
print(512 // 14)

70
contrast/model/CBAM.py Normal file
View File

@ -0,0 +1,70 @@
import torch
import torch.nn as nn
import torch.nn.init as init
class channelAttention(nn.Module):
def __init__(self, channel, reduction=16):
super(channelAttention, self).__init__()
self.Maxpooling = nn.AdaptiveMaxPool2d(1)
self.Avepooling = nn.AdaptiveAvgPool2d(1)
self.ca = nn.Sequential()
self.ca.add_module('conv1',nn.Conv2d(channel, channel//reduction, 1, bias=False))
self.ca.add_module('Relu', nn.ReLU())
self.ca.add_module('conv2',nn.Conv2d(channel//reduction, channel, 1, bias=False))
self.sigmod = nn.Sigmoid()
def forward(self, x):
M_out = self.Maxpooling(x)
A_out = self.Avepooling(x)
M_out = self.ca(M_out)
A_out = self.ca(A_out)
out = self.sigmod(M_out+A_out)
return out
class SpatialAttention(nn.Module):
def __init__(self, kernel_size=7):
super().__init__()
self.conv = nn.Conv2d(in_channels=2, out_channels=1, kernel_size=kernel_size, padding=kernel_size // 2)
self.sigmoid = nn.Sigmoid()
def forward(self, x):
max_result, _ = torch.max(x, dim=1, keepdim=True)
avg_result = torch.mean(x, dim=1, keepdim=True)
result = torch.cat([max_result, avg_result], dim=1)
output = self.conv(result)
output = self.sigmoid(output)
return output
class CBAM(nn.Module):
def __init__(self, channel, reduction=16, kernel_size=7):
super().__init__()
self.ca = channelAttention(channel, reduction)
self.sa = SpatialAttention(kernel_size)
def init_weights(self):
for m in self.modules():#权重初始化
if isinstance(m, nn.Conv2d):
init.kaiming_normal_(m.weight, mode='fan_out')
if m.bias is not None:
init.constant_(m.bias, 0)
elif isinstance(m, nn.BatchNorm2d):
init.constant_(m.weight, 1)
init.constant_(m.bias, 0)
elif isinstance(m, nn.Linear):
init.normal_(m.weight, std=0.001)
if m.bias is not None:
init.constant_(m.bias, 0)
def forward(self, x):
# b,c_,_ = x.size()
# residual = x
out = x*self.ca(x)
out = out*self.sa(out)
return out
if __name__ == '__main__':
input=torch.randn(50,512,7,7)
kernel_size=input.shape[2]
cbam = CBAM(channel=512,reduction=16,kernel_size=kernel_size)
output=cbam(input)
print(output.shape)

33
contrast/model/Tool.py Normal file
View File

@ -0,0 +1,33 @@
import torch
import torch.nn as nn
import torch.nn.functional as F
class GeM(nn.Module):
def __init__(self, p=3, eps=1e-6):
super(GeM, self).__init__()
self.p = nn.Parameter(torch.ones(1) * p)
self.eps = eps
def forward(self, x):
return self.gem(x, p=self.p, eps=self.eps, stride = 2)
def gem(self, x, p=3, eps=1e-6, stride = 2):
return F.avg_pool2d(x.clamp(min=eps).pow(p), (x.size(-2), x.size(-1)), stride=2).pow(1. / p)
def __repr__(self):
return self.__class__.__name__ + \
'(' + 'p=' + '{:.4f}'.format(self.p.data.tolist()[0]) + \
', ' + 'eps=' + str(self.eps) + ')'
class TripletLoss(nn.Module):
def __init__(self, margin):
super(TripletLoss, self).__init__()
self.margin = margin
def forward(self, anchor, positive, negative, size_average = True):
distance_positive = (anchor-positive).pow(2).sum(1)
distance_negative = (anchor-negative).pow(2).sum(1)
losses = F.relu(distance_negative-distance_positive+self.margin)
return losses.mean() if size_average else losses.sum()
if __name__ == '__main__':
print('')

View File

@ -1 +1,11 @@
from .fmobilenet import FaceMobileNet
from .resnet_face import ResIRSE
from .mobilevit import mobilevit_s
from .metric import ArcFace, CosFace
from .loss import FocalLoss
from .resbam import resnet
from .resnet_pre import resnet18, resnet34, resnet50, resnet14
from .mobilenet_v2 import mobilenet_v2
from .mobilenet_v3 import MobileNetV3_Small, MobileNetV3_Large
# from .mobilenet_v1 import mobilenet_v1
from .lcnet import PPLCNET_x0_25, PPLCNET_x0_35, PPLCNET_x0_5, PPLCNET_x0_75, PPLCNET_x1_0, PPLCNET_x1_5, PPLCNET_x2_0, PPLCNET_x2_5

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

View File

@ -0,0 +1,124 @@
import torch
import torch.nn as nn
import torch.nn.functional as F
class Flatten(nn.Module):
def forward(self, x):
return x.view(x.shape[0], -1)
class ConvBn(nn.Module):
def __init__(self, in_c, out_c, kernel=(1, 1), stride=1, padding=0, groups=1):
super().__init__()
self.net = nn.Sequential(
nn.Conv2d(in_c, out_c, kernel, stride, padding, groups=groups, bias=False),
nn.BatchNorm2d(out_c)
)
def forward(self, x):
return self.net(x)
class ConvBnPrelu(nn.Module):
def __init__(self, in_c, out_c, kernel=(1, 1), stride=1, padding=0, groups=1):
super().__init__()
self.net = nn.Sequential(
ConvBn(in_c, out_c, kernel, stride, padding, groups),
nn.PReLU(out_c)
)
def forward(self, x):
return self.net(x)
class DepthWise(nn.Module):
def __init__(self, in_c, out_c, kernel=(3, 3), stride=2, padding=1, groups=1):
super().__init__()
self.net = nn.Sequential(
ConvBnPrelu(in_c, groups, kernel=(1, 1), stride=1, padding=0),
ConvBnPrelu(groups, groups, kernel=kernel, stride=stride, padding=padding, groups=groups),
ConvBn(groups, out_c, kernel=(1, 1), stride=1, padding=0),
)
def forward(self, x):
return self.net(x)
class DepthWiseRes(nn.Module):
"""DepthWise with Residual"""
def __init__(self, in_c, out_c, kernel=(3, 3), stride=2, padding=1, groups=1):
super().__init__()
self.net = DepthWise(in_c, out_c, kernel, stride, padding, groups)
def forward(self, x):
return self.net(x) + x
class MultiDepthWiseRes(nn.Module):
def __init__(self, num_block, channels, kernel=(3, 3), stride=1, padding=1, groups=1):
super().__init__()
self.net = nn.Sequential(*[
DepthWiseRes(channels, channels, kernel, stride, padding, groups)
for _ in range(num_block)
])
def forward(self, x):
return self.net(x)
class FaceMobileNet(nn.Module):
def __init__(self, embedding_size):
super().__init__()
self.conv1 = ConvBnPrelu(1, 64, kernel=(3, 3), stride=2, padding=1)
self.conv2 = ConvBn(64, 64, kernel=(3, 3), stride=1, padding=1, groups=64)
self.conv3 = DepthWise(64, 64, kernel=(3, 3), stride=2, padding=1, groups=128)
self.conv4 = MultiDepthWiseRes(num_block=4, channels=64, kernel=3, stride=1, padding=1, groups=128)
self.conv5 = DepthWise(64, 128, kernel=(3, 3), stride=2, padding=1, groups=256)
self.conv6 = MultiDepthWiseRes(num_block=6, channels=128, kernel=(3, 3), stride=1, padding=1, groups=256)
self.conv7 = DepthWise(128, 128, kernel=(3, 3), stride=2, padding=1, groups=512)
self.conv8 = MultiDepthWiseRes(num_block=2, channels=128, kernel=(3, 3), stride=1, padding=1, groups=256)
self.conv9 = ConvBnPrelu(128, 512, kernel=(1, 1))
self.conv10 = ConvBn(512, 512, groups=512, kernel=(7, 7))
self.flatten = Flatten()
self.linear = nn.Linear(2048, embedding_size, bias=False)
self.bn = nn.BatchNorm1d(embedding_size)
def forward(self, x):
#print('x',x.shape)
out = self.conv1(x)
out = self.conv2(out)
out = self.conv3(out)
out = self.conv4(out)
out = self.conv5(out)
out = self.conv6(out)
out = self.conv7(out)
out = self.conv8(out)
out = self.conv9(out)
out = self.conv10(out)
out = self.flatten(out)
out = self.linear(out)
out = self.bn(out)
return out
if __name__ == "__main__":
from PIL import Image
import numpy as np
x = Image.open("../samples/009.jpg").convert('L')
x = x.resize((128, 128))
x = np.asarray(x, dtype=np.float32)
x = x[None, None, ...]
x = torch.from_numpy(x)
net = FaceMobileNet(512)
net.eval()
with torch.no_grad():
out = net(x)
print(out.shape)

233
contrast/model/lcnet.py Normal file
View File

@ -0,0 +1,233 @@
import os
import torch
import torch.nn as nn
import thop
# try:
# import softpool_cuda
# from SoftPool import soft_pool2d, SoftPool2d
# except ImportError:
# print('Please install SoftPool first: https://github.com/alexandrosstergiou/SoftPool')
# exit(0)
NET_CONFIG = {
# k, in_c, out_c, s, use_se
"blocks2": [[3, 16, 32, 1, False]],
"blocks3": [[3, 32, 64, 2, False], [3, 64, 64, 1, False]],
"blocks4": [[3, 64, 128, 2, False], [3, 128, 128, 1, False]],
"blocks5": [[3, 128, 256, 2, False], [5, 256, 256, 1, False],
[5, 256, 256, 1, False], [5, 256, 256, 1, False],
[5, 256, 256, 1, False], [5, 256, 256, 1, False]],
"blocks6": [[5, 256, 512, 2, True], [5, 512, 512, 1, True]]
}
def autopad(k, p=None):
if p is None:
p = k // 2 if isinstance(k, int) else [x // 2 for x in k]
return p
def make_divisible(v, divisor=8, min_value=None):
if min_value is None:
min_value = divisor
new_v = max(min_value, int(v + divisor / 2) // divisor * divisor)
if new_v < 0.9 * v:
new_v += divisor
return new_v
class HardSwish(nn.Module):
def __init__(self, inplace=True):
super(HardSwish, self).__init__()
self.relu6 = nn.ReLU6(inplace=inplace)
def forward(self, x):
return x * self.relu6(x+3) / 6
class HardSigmoid(nn.Module):
def __init__(self, inplace=True):
super(HardSigmoid, self).__init__()
self.relu6 = nn.ReLU6(inplace=inplace)
def forward(self, x):
return (self.relu6(x+3)) / 6
class SELayer(nn.Module):
def __init__(self, channel, reduction=16):
super(SELayer, self).__init__()
self.avgpool = nn.AdaptiveAvgPool2d(1)
self.fc = nn.Sequential(
nn.Linear(channel, channel // reduction, bias=False),
nn.ReLU(inplace=True),
nn.Linear(channel // reduction, channel, bias=False),
HardSigmoid()
)
def forward(self, x):
b, c, h, w = x.size()
y = self.avgpool(x).view(b, c)
y = self.fc(y).view(b, c, 1, 1)
return x * y.expand_as(x)
class DepthwiseSeparable(nn.Module):
def __init__(self, inp, oup, dw_size, stride, use_se=False):
super(DepthwiseSeparable, self).__init__()
self.use_se = use_se
self.stride = stride
self.inp = inp
self.oup = oup
self.dw_size = dw_size
self.dw_sp = nn.Sequential(
nn.Conv2d(self.inp, self.inp, kernel_size=self.dw_size, stride=self.stride,
padding=autopad(self.dw_size, None), groups=self.inp, bias=False),
nn.BatchNorm2d(self.inp),
HardSwish(),
nn.Conv2d(self.inp, self.oup, kernel_size=1, stride=1, padding=0, bias=False),
nn.BatchNorm2d(self.oup),
HardSwish(),
)
self.se = SELayer(self.oup)
def forward(self, x):
x = self.dw_sp(x)
if self.use_se:
x = self.se(x)
return x
class PP_LCNet(nn.Module):
def __init__(self, scale=1.0, class_num=10, class_expand=1280, dropout_prob=0.2):
super(PP_LCNet, self).__init__()
self.scale = scale
self.conv1 = nn.Conv2d(3, out_channels=make_divisible(16 * self.scale),
kernel_size=3, stride=2, padding=1, bias=False)
# k, in_c, out_c, s, use_se inp, oup, dw_size, stride, use_se=False
self.blocks2 = nn.Sequential(*[
DepthwiseSeparable(inp=make_divisible(in_c * self.scale),
oup=make_divisible(out_c * self.scale),
dw_size=k, stride=s, use_se=use_se)
for i, (k, in_c, out_c, s, use_se) in enumerate(NET_CONFIG["blocks2"])
])
self.blocks3 = nn.Sequential(*[
DepthwiseSeparable(inp=make_divisible(in_c * self.scale),
oup=make_divisible(out_c * self.scale),
dw_size=k, stride=s, use_se=use_se)
for i, (k, in_c, out_c, s, use_se) in enumerate(NET_CONFIG["blocks3"])
])
self.blocks4 = nn.Sequential(*[
DepthwiseSeparable(inp=make_divisible(in_c * self.scale),
oup=make_divisible(out_c * self.scale),
dw_size=k, stride=s, use_se=use_se)
for i, (k, in_c, out_c, s, use_se) in enumerate(NET_CONFIG["blocks4"])
])
# k, in_c, out_c, s, use_se inp, oup, dw_size, stride, use_se=False
self.blocks5 = nn.Sequential(*[
DepthwiseSeparable(inp=make_divisible(in_c * self.scale),
oup=make_divisible(out_c * self.scale),
dw_size=k, stride=s, use_se=use_se)
for i, (k, in_c, out_c, s, use_se) in enumerate(NET_CONFIG["blocks5"])
])
self.blocks6 = nn.Sequential(*[
DepthwiseSeparable(inp=make_divisible(in_c * self.scale),
oup=make_divisible(out_c * self.scale),
dw_size=k, stride=s, use_se=use_se)
for i, (k, in_c, out_c, s, use_se) in enumerate(NET_CONFIG["blocks6"])
])
self.GAP = nn.AdaptiveAvgPool2d(1)
self.last_conv = nn.Conv2d(in_channels=make_divisible(NET_CONFIG["blocks6"][-1][2] * scale),
out_channels=class_expand,
kernel_size=1, stride=1, padding=0, bias=False)
self.hardswish = HardSwish()
self.dropout = nn.Dropout(p=dropout_prob)
self.fc = nn.Linear(class_expand, class_num)
def forward(self, x):
x = self.conv1(x)
print(x.shape)
x = self.blocks2(x)
print(x.shape)
x = self.blocks3(x)
print(x.shape)
x = self.blocks4(x)
print(x.shape)
x = self.blocks5(x)
print(x.shape)
x = self.blocks6(x)
print(x.shape)
x = self.GAP(x)
x = self.last_conv(x)
x = self.hardswish(x)
x = self.dropout(x)
x = torch.flatten(x, start_dim=1, end_dim=-1)
x = self.fc(x)
return x
def PPLCNET_x0_25(**kwargs):
model = PP_LCNet(scale=0.25, **kwargs)
return model
def PPLCNET_x0_35(**kwargs):
model = PP_LCNet(scale=0.35, **kwargs)
return model
def PPLCNET_x0_5(**kwargs):
model = PP_LCNet(scale=0.5, **kwargs)
return model
def PPLCNET_x0_75(**kwargs):
model = PP_LCNet(scale=0.75, **kwargs)
return model
def PPLCNET_x1_0(**kwargs):
model = PP_LCNet(scale=1.0, **kwargs)
return model
def PPLCNET_x1_5(**kwargs):
model = PP_LCNet(scale=1.5, **kwargs)
return model
def PPLCNET_x2_0(**kwargs):
model = PP_LCNet(scale=2.0, **kwargs)
return model
def PPLCNET_x2_5(**kwargs):
model = PP_LCNet(scale=2.5, **kwargs)
return model
if __name__ == '__main__':
# input = torch.randn(1, 3, 640, 640)
# model = PPLCNET_x2_5()
# flops, params = thop.profile(model, inputs=(input,))
# print('flops:', flops / 1000000000)
# print('params:', params / 1000000)
model = PPLCNET_x1_0()
# model_1 = PW_Conv(3, 16)
input = torch.randn(2, 3, 256, 256)
print(input.shape)
output = model(input)
print(output.shape) # [1, num_class]

18
contrast/model/loss.py Normal file
View File

@ -0,0 +1,18 @@
import torch
import torch.nn as nn
class FocalLoss(nn.Module):
def __init__(self, gamma=2):
super().__init__()
self.gamma = gamma
self.ce = torch.nn.CrossEntropyLoss()
def forward(self, input, target):
#print(f'theta {input.shape, input[0]}, target {target.shape, target}')
logp = self.ce(input, target)
p = torch.exp(-logp)
loss = (1 - p) ** self.gamma * logp
return loss.mean()

83
contrast/model/metric.py Normal file
View File

@ -0,0 +1,83 @@
# Definition of ArcFace loss and CosFace loss
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
class ArcFace(nn.Module):
def __init__(self, embedding_size, class_num, s=30.0, m=0.50):
"""ArcFace formula:
cos(m + theta) = cos(m)cos(theta) - sin(m)sin(theta)
Note that:
0 <= m + theta <= Pi
So if (m + theta) >= Pi, then theta >= Pi - m. In [0, Pi]
we have:
cos(theta) < cos(Pi - m)
So we can use cos(Pi - m) as threshold to check whether
(m + theta) go out of [0, Pi]
Args:
embedding_size: usually 128, 256, 512 ...
class_num: num of people when training
s: scale, see normface https://arxiv.org/abs/1704.06369
m: margin, see SphereFace, CosFace, and ArcFace paper
"""
super().__init__()
self.in_features = embedding_size
self.out_features = class_num
self.s = s
self.m = m
self.weight = nn.Parameter(torch.FloatTensor(class_num, embedding_size))
nn.init.xavier_uniform_(self.weight)
self.cos_m = math.cos(m)
self.sin_m = math.sin(m)
self.th = math.cos(math.pi - m)
self.mm = math.sin(math.pi - m) * m
def forward(self, input, label):
#print(f"embding {self.in_features}, class_num {self.out_features}, input {len(input)}, label {len(label)}")
cosine = F.linear(F.normalize(input), F.normalize(self.weight))
# print('F.normalize(input)',input.shape)
# print('F.normalize(self.weight)',F.normalize(self.weight).shape)
sine = ((1.0 - cosine.pow(2)).clamp(0, 1)).sqrt()
phi = cosine * self.cos_m - sine * self.sin_m
phi = torch.where(cosine > self.th, phi, cosine - self.mm) # drop to CosFace
#print(f'consine {cosine.shape, cosine}, sine {sine.shape, sine}, phi {phi.shape, phi}')
# update y_i by phi in cosine
output = cosine * 1.0 # make backward works
batch_size = len(output)
output[range(batch_size), label] = phi[range(batch_size), label]
# print(f'output {(output * self.s).shape}')
# print(f'phi[range(batch_size), label] {phi[range(batch_size), label]}')
return output * self.s
class CosFace(nn.Module):
def __init__(self, in_features, out_features, s=30.0, m=0.40):
"""
Args:
embedding_size: usually 128, 256, 512 ...
class_num: num of people when training
s: scale, see normface https://arxiv.org/abs/1704.06369
m: margin, see SphereFace, CosFace, and ArcFace paper
"""
super().__init__()
self.in_features = in_features
self.out_features = out_features
self.s = s
self.m = m
self.weight = nn.Parameter(torch.FloatTensor(out_features, in_features))
nn.init.xavier_uniform_(self.weight)
def forward(self, input, label):
cosine = F.linear(F.normalize(input), F.normalize(self.weight))
phi = cosine - self.m
output = cosine * 1.0 # make backward works
batch_size = len(output)
output[range(batch_size), label] = phi[range(batch_size), label]
return output * self.s

View File

@ -0,0 +1,148 @@
# Copyright 2022 Dakewe Biotech Corporation. All Rights Reserved.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
from typing import Callable, Any, Optional
import torch
from torch import Tensor
from torch import nn
from torchvision.ops.misc import Conv2dNormActivation
from config import config as conf
__all__ = [
"MobileNetV1",
"DepthWiseSeparableConv2d",
"mobilenet_v1",
]
class MobileNetV1(nn.Module):
def __init__(
self,
num_classes: int = conf.embedding_size,
) -> None:
super(MobileNetV1, self).__init__()
self.features = nn.Sequential(
Conv2dNormActivation(3,
32,
kernel_size=3,
stride=2,
padding=1,
norm_layer=nn.BatchNorm2d,
activation_layer=nn.ReLU,
inplace=True,
bias=False,
),
DepthWiseSeparableConv2d(32, 64, 1),
DepthWiseSeparableConv2d(64, 128, 2),
DepthWiseSeparableConv2d(128, 128, 1),
DepthWiseSeparableConv2d(128, 256, 2),
DepthWiseSeparableConv2d(256, 256, 1),
DepthWiseSeparableConv2d(256, 512, 2),
DepthWiseSeparableConv2d(512, 512, 1),
DepthWiseSeparableConv2d(512, 512, 1),
DepthWiseSeparableConv2d(512, 512, 1),
DepthWiseSeparableConv2d(512, 512, 1),
DepthWiseSeparableConv2d(512, 512, 1),
DepthWiseSeparableConv2d(512, 1024, 2),
DepthWiseSeparableConv2d(1024, 1024, 1),
)
self.avgpool = nn.AvgPool2d((7, 7))
self.classifier = nn.Linear(1024, num_classes)
# Initialize neural network weights
self._initialize_weights()
def forward(self, x: Tensor) -> Tensor:
out = self._forward_impl(x)
return out
# Support torch.script function
def _forward_impl(self, x: Tensor) -> Tensor:
out = self.features(x)
out = self.avgpool(out)
out = torch.flatten(out, 1)
out = self.classifier(out)
return out
def _initialize_weights(self) -> None:
for module in self.modules():
if isinstance(module, nn.Conv2d):
nn.init.kaiming_normal_(module.weight, mode="fan_out", nonlinearity="relu")
if module.bias is not None:
nn.init.zeros_(module.bias)
elif isinstance(module, (nn.BatchNorm2d, nn.GroupNorm)):
nn.init.ones_(module.weight)
nn.init.zeros_(module.bias)
elif isinstance(module, nn.Linear):
nn.init.normal_(module.weight, 0, 0.01)
nn.init.zeros_(module.bias)
class DepthWiseSeparableConv2d(nn.Module):
def __init__(
self,
in_channels: int,
out_channels: int,
stride: int,
norm_layer: Optional[Callable[..., nn.Module]] = None
) -> None:
super(DepthWiseSeparableConv2d, self).__init__()
self.stride = stride
if stride not in [1, 2]:
raise ValueError(f"stride should be 1 or 2 instead of {stride}")
if norm_layer is None:
norm_layer = nn.BatchNorm2d
self.conv = nn.Sequential(
Conv2dNormActivation(in_channels,
in_channels,
kernel_size=3,
stride=stride,
padding=1,
groups=in_channels,
norm_layer=norm_layer,
activation_layer=nn.ReLU,
inplace=True,
bias=False,
),
Conv2dNormActivation(in_channels,
out_channels,
kernel_size=1,
stride=1,
padding=0,
norm_layer=norm_layer,
activation_layer=nn.ReLU,
inplace=True,
bias=False,
),
)
def forward(self, x: Tensor) -> Tensor:
out = self.conv(x)
return out
def mobilenet_v1(**kwargs: Any) -> MobileNetV1:
model = MobileNetV1(**kwargs)
return model

View File

@ -0,0 +1,200 @@
from torch import nn
from .utils import load_state_dict_from_url
from config import config as conf
__all__ = ['MobileNetV2', 'mobilenet_v2']
model_urls = {
'mobilenet_v2': 'https://download.pytorch.org/models/mobilenet_v2-b0353104.pth',
}
def _make_divisible(v, divisor, min_value=None):
"""
This function is taken from the original tf repo.
It ensures that all layers have a channel number that is divisible by 8
It can be seen here:
https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet/mobilenet.py
:param v:
:param divisor:
:param min_value:
:return:
"""
if min_value is None:
min_value = divisor
new_v = max(min_value, int(v + divisor / 2) // divisor * divisor)
# Make sure that round down does not go down by more than 10%.
if new_v < 0.9 * v:
new_v += divisor
return new_v
class ConvBNReLU(nn.Sequential):
def __init__(self, in_planes, out_planes, kernel_size=3, stride=1, groups=1, norm_layer=None):
padding = (kernel_size - 1) // 2
if norm_layer is None:
norm_layer = nn.BatchNorm2d
super(ConvBNReLU, self).__init__(
nn.Conv2d(in_planes, out_planes, kernel_size, stride, padding, groups=groups, bias=False),
norm_layer(out_planes),
nn.ReLU6(inplace=True)
)
class InvertedResidual(nn.Module):
def __init__(self, inp, oup, stride, expand_ratio, norm_layer=None):
super(InvertedResidual, self).__init__()
self.stride = stride
assert stride in [1, 2]
if norm_layer is None:
norm_layer = nn.BatchNorm2d
hidden_dim = int(round(inp * expand_ratio))
self.use_res_connect = self.stride == 1 and inp == oup
layers = []
if expand_ratio != 1:
# pw
layers.append(ConvBNReLU(inp, hidden_dim, kernel_size=1, norm_layer=norm_layer))
layers.extend([
# dw
ConvBNReLU(hidden_dim, hidden_dim, stride=stride, groups=hidden_dim, norm_layer=norm_layer),
# pw-linear
nn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False),
norm_layer(oup),
])
self.conv = nn.Sequential(*layers)
def forward(self, x):
if self.use_res_connect:
return x + self.conv(x)
else:
return self.conv(x)
class MobileNetV2(nn.Module):
def __init__(self,
num_classes=conf.embedding_size,
width_mult=1.0,
inverted_residual_setting=None,
round_nearest=8,
block=None,
norm_layer=None):
"""
MobileNet V2 main class
Args:
num_classes (int): Number of classes
width_mult (float): Width multiplier - adjusts number of channels in each layer by this amount
inverted_residual_setting: Network structure
round_nearest (int): Round the number of channels in each layer to be a multiple of this number
Set to 1 to turn off rounding
block: Module specifying inverted residual building block for mobilenet
norm_layer: Module specifying the normalization layer to use
"""
super(MobileNetV2, self).__init__()
if block is None:
block = InvertedResidual
if norm_layer is None:
norm_layer = nn.BatchNorm2d
input_channel = 32
last_channel = 1280
if inverted_residual_setting is None:
inverted_residual_setting = [
# t, c, n, s
[1, 16, 1, 1],
[6, 24, 2, 2],
[6, 32, 3, 2],
[6, 64, 4, 2],
[6, 96, 3, 1],
[6, 160, 3, 2],
[6, 320, 1, 1],
]
# only check the first element, assuming user knows t,c,n,s are required
if len(inverted_residual_setting) == 0 or len(inverted_residual_setting[0]) != 4:
raise ValueError("inverted_residual_setting should be non-empty "
"or a 4-element list, got {}".format(inverted_residual_setting))
# building first layer
input_channel = _make_divisible(input_channel * width_mult, round_nearest)
self.last_channel = _make_divisible(last_channel * max(1.0, width_mult), round_nearest)
features = [ConvBNReLU(3, input_channel, stride=2, norm_layer=norm_layer)]
# building inverted residual blocks
for t, c, n, s in inverted_residual_setting:
output_channel = _make_divisible(c * width_mult, round_nearest)
for i in range(n):
stride = s if i == 0 else 1
features.append(block(input_channel, output_channel, stride, expand_ratio=t, norm_layer=norm_layer))
input_channel = output_channel
# building last several layers
features.append(ConvBNReLU(input_channel, self.last_channel, kernel_size=1, norm_layer=norm_layer))
# make it nn.Sequential
self.features = nn.Sequential(*features)
# building classifier
self.classifier = nn.Sequential(
nn.Dropout(0.2),
nn.Linear(self.last_channel, num_classes),
)
# weight initialization
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode='fan_out')
if m.bias is not None:
nn.init.zeros_(m.bias)
elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)):
nn.init.ones_(m.weight)
nn.init.zeros_(m.bias)
elif isinstance(m, nn.Linear):
nn.init.normal_(m.weight, 0, 0.01)
nn.init.zeros_(m.bias)
def _forward_impl(self, x):
# This exists since TorchScript doesn't support inheritance, so the superclass method
# (this one) needs to have a name other than `forward` that can be accessed in a subclass
x = self.features(x)
# Cannot use "squeeze" as batch-size can be 1 => must use reshape with x.shape[0]
x = nn.functional.adaptive_avg_pool2d(x, 1).reshape(x.shape[0], -1)
x = self.classifier(x)
return x
def forward(self, x):
return self._forward_impl(x)
def mobilenet_v2(pretrained=True, progress=True, **kwargs):
"""
Constructs a MobileNetV2 architecture from
`"MobileNetV2: Inverted Residuals and Linear Bottlenecks" <https://arxiv.org/abs/1801.04381>`_.
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
progress (bool): If True, displays a progress bar of the download to stderr
"""
model = MobileNetV2(**kwargs)
if pretrained:
state_dict = load_state_dict_from_url(model_urls['mobilenet_v2'],
progress=progress)
src_state_dict = state_dict
target_state_dict = model.state_dict()
skip_keys = []
# skip mismatch size tensors in case of pretraining
for k in src_state_dict.keys():
if k not in target_state_dict:
continue
if src_state_dict[k].size() != target_state_dict[k].size():
skip_keys.append(k)
for k in skip_keys:
del src_state_dict[k]
missing_keys, unexpected_keys = model.load_state_dict(src_state_dict, strict=False)
#.load_state_dict(state_dict)
return model

View File

@ -0,0 +1,200 @@
'''MobileNetV3 in PyTorch.
See the paper "Inverted Residuals and Linear Bottlenecks:
Mobile Networks for Classification, Detection and Segmentation" for more details.
'''
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn import init
from config import config as conf
class hswish(nn.Module):
def forward(self, x):
out = x * F.relu6(x + 3, inplace=True) / 6
return out
class hsigmoid(nn.Module):
def forward(self, x):
out = F.relu6(x + 3, inplace=True) / 6
return out
class SeModule(nn.Module):
def __init__(self, in_size, reduction=4):
super(SeModule, self).__init__()
self.se = nn.Sequential(
nn.AdaptiveAvgPool2d(1),
nn.Conv2d(in_size, in_size // reduction, kernel_size=1, stride=1, padding=0, bias=False),
nn.BatchNorm2d(in_size // reduction),
nn.ReLU(inplace=True),
nn.Conv2d(in_size // reduction, in_size, kernel_size=1, stride=1, padding=0, bias=False),
nn.BatchNorm2d(in_size),
hsigmoid()
)
def forward(self, x):
return x * self.se(x)
class Block(nn.Module):
'''expand + depthwise + pointwise'''
def __init__(self, kernel_size, in_size, expand_size, out_size, nolinear, semodule, stride):
super(Block, self).__init__()
self.stride = stride
self.se = semodule
self.conv1 = nn.Conv2d(in_size, expand_size, kernel_size=1, stride=1, padding=0, bias=False)
self.bn1 = nn.BatchNorm2d(expand_size)
self.nolinear1 = nolinear
self.conv2 = nn.Conv2d(expand_size, expand_size, kernel_size=kernel_size, stride=stride, padding=kernel_size//2, groups=expand_size, bias=False)
self.bn2 = nn.BatchNorm2d(expand_size)
self.nolinear2 = nolinear
self.conv3 = nn.Conv2d(expand_size, out_size, kernel_size=1, stride=1, padding=0, bias=False)
self.bn3 = nn.BatchNorm2d(out_size)
self.shortcut = nn.Sequential()
if stride == 1 and in_size != out_size:
self.shortcut = nn.Sequential(
nn.Conv2d(in_size, out_size, kernel_size=1, stride=1, padding=0, bias=False),
nn.BatchNorm2d(out_size),
)
def forward(self, x):
out = self.nolinear1(self.bn1(self.conv1(x)))
out = self.nolinear2(self.bn2(self.conv2(out)))
out = self.bn3(self.conv3(out))
if self.se != None:
out = self.se(out)
out = out + self.shortcut(x) if self.stride==1 else out
return out
class MobileNetV3_Large(nn.Module):
def __init__(self, num_classes=conf.embedding_size):
super(MobileNetV3_Large, self).__init__()
self.conv1 = nn.Conv2d(3, 16, kernel_size=3, stride=2, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(16)
self.hs1 = hswish()
self.bneck = nn.Sequential(
Block(3, 16, 16, 16, nn.ReLU(inplace=True), None, 1),
Block(3, 16, 64, 24, nn.ReLU(inplace=True), None, 2),
Block(3, 24, 72, 24, nn.ReLU(inplace=True), None, 1),
Block(5, 24, 72, 40, nn.ReLU(inplace=True), SeModule(40), 2),
Block(5, 40, 120, 40, nn.ReLU(inplace=True), SeModule(40), 1),
Block(5, 40, 120, 40, nn.ReLU(inplace=True), SeModule(40), 1),
Block(3, 40, 240, 80, hswish(), None, 2),
Block(3, 80, 200, 80, hswish(), None, 1),
Block(3, 80, 184, 80, hswish(), None, 1),
Block(3, 80, 184, 80, hswish(), None, 1),
Block(3, 80, 480, 112, hswish(), SeModule(112), 1),
Block(3, 112, 672, 112, hswish(), SeModule(112), 1),
Block(5, 112, 672, 160, hswish(), SeModule(160), 1),
Block(5, 160, 672, 160, hswish(), SeModule(160), 2),
Block(5, 160, 960, 160, hswish(), SeModule(160), 1),
)
self.conv2 = nn.Conv2d(160, 960, kernel_size=1, stride=1, padding=0, bias=False)
self.bn2 = nn.BatchNorm2d(960)
self.hs2 = hswish()
self.linear3 = nn.Linear(960, 1280)
self.bn3 = nn.BatchNorm1d(1280)
self.hs3 = hswish()
self.linear4 = nn.Linear(1280, num_classes)
self.init_params()
def init_params(self):
for m in self.modules():
if isinstance(m, nn.Conv2d):
init.kaiming_normal_(m.weight, mode='fan_out')
if m.bias is not None:
init.constant_(m.bias, 0)
elif isinstance(m, nn.BatchNorm2d):
init.constant_(m.weight, 1)
init.constant_(m.bias, 0)
elif isinstance(m, nn.Linear):
init.normal_(m.weight, std=0.001)
if m.bias is not None:
init.constant_(m.bias, 0)
def forward(self, x):
out = self.hs1(self.bn1(self.conv1(x)))
out = self.bneck(out)
out = self.hs2(self.bn2(self.conv2(out)))
out = F.avg_pool2d(out, conf.img_size // 32)
out = out.view(out.size(0), -1)
out = self.hs3(self.bn3(self.linear3(out)))
out = self.linear4(out)
return out
class MobileNetV3_Small(nn.Module):
def __init__(self, num_classes=conf.embedding_size):
super(MobileNetV3_Small, self).__init__()
self.conv1 = nn.Conv2d(3, 16, kernel_size=3, stride=2, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(16)
self.hs1 = hswish()
self.bneck = nn.Sequential(
Block(3, 16, 16, 16, nn.ReLU(inplace=True), SeModule(16), 2),
Block(3, 16, 72, 24, nn.ReLU(inplace=True), None, 2),
Block(3, 24, 88, 24, nn.ReLU(inplace=True), None, 1),
Block(5, 24, 96, 40, hswish(), SeModule(40), 2),
Block(5, 40, 240, 40, hswish(), SeModule(40), 1),
Block(5, 40, 240, 40, hswish(), SeModule(40), 1),
Block(5, 40, 120, 48, hswish(), SeModule(48), 1),
Block(5, 48, 144, 48, hswish(), SeModule(48), 1),
Block(5, 48, 288, 96, hswish(), SeModule(96), 2),
Block(5, 96, 576, 96, hswish(), SeModule(96), 1),
Block(5, 96, 576, 96, hswish(), SeModule(96), 1),
)
self.conv2 = nn.Conv2d(96, 576, kernel_size=1, stride=1, padding=0, bias=False)
self.bn2 = nn.BatchNorm2d(576)
self.hs2 = hswish()
self.linear3 = nn.Linear(576, 1280)
self.bn3 = nn.BatchNorm1d(1280)
self.hs3 = hswish()
self.linear4 = nn.Linear(1280, num_classes)
self.init_params()
def init_params(self):
for m in self.modules():
if isinstance(m, nn.Conv2d):
init.kaiming_normal_(m.weight, mode='fan_out')
if m.bias is not None:
init.constant_(m.bias, 0)
elif isinstance(m, nn.BatchNorm2d):
init.constant_(m.weight, 1)
init.constant_(m.bias, 0)
elif isinstance(m, nn.Linear):
init.normal_(m.weight, std=0.001)
if m.bias is not None:
init.constant_(m.bias, 0)
def forward(self, x):
out = self.hs1(self.bn1(self.conv1(x)))
out = self.bneck(out)
out = self.hs2(self.bn2(self.conv2(out)))
out = F.avg_pool2d(out, conf.img_size // 32)
out = out.view(out.size(0), -1)
out = self.hs3(self.bn3(self.linear3(out)))
out = self.linear4(out)
return out
def test():
net = MobileNetV3_Small()
x = torch.randn(2,3,224,224)
y = net(x)
print(y.size())
# test()

265
contrast/model/mobilevit.py Normal file
View File

@ -0,0 +1,265 @@
import torch
import torch.nn as nn
from einops import rearrange
from config import config as conf
def conv_1x1_bn(inp, oup):
return nn.Sequential(
nn.Conv2d(inp, oup, 1, 1, 0, bias=False),
nn.BatchNorm2d(oup),
nn.SiLU()
)
def conv_nxn_bn(inp, oup, kernal_size=3, stride=1):
return nn.Sequential(
nn.Conv2d(inp, oup, kernal_size, stride, 1, bias=False),
nn.BatchNorm2d(oup),
nn.SiLU()
)
class PreNorm(nn.Module):
def __init__(self, dim, fn):
super().__init__()
self.norm = nn.LayerNorm(dim)
self.fn = fn
def forward(self, x, **kwargs):
return self.fn(self.norm(x), **kwargs)
class FeedForward(nn.Module):
def __init__(self, dim, hidden_dim, dropout=0.):
super().__init__()
self.net = nn.Sequential(
nn.Linear(dim, hidden_dim),
nn.SiLU(),
nn.Dropout(dropout),
nn.Linear(hidden_dim, dim),
nn.Dropout(dropout)
)
def forward(self, x):
return self.net(x)
class Attention(nn.Module):
def __init__(self, dim, heads=8, dim_head=64, dropout=0.):
super().__init__()
inner_dim = dim_head * heads
project_out = not (heads == 1 and dim_head == dim)
self.heads = heads
self.scale = dim_head ** -0.5
self.attend = nn.Softmax(dim=-1)
self.to_qkv = nn.Linear(dim, inner_dim * 3, bias=False)
self.to_out = nn.Sequential(
nn.Linear(inner_dim, dim),
nn.Dropout(dropout)
) if project_out else nn.Identity()
def forward(self, x):
qkv = self.to_qkv(x).chunk(3, dim=-1)
q, k, v = map(lambda t: rearrange(t, 'b p n (h d) -> b p h n d', h=self.heads), qkv)
dots = torch.matmul(q, k.transpose(-1, -2)) * self.scale
attn = self.attend(dots)
out = torch.matmul(attn, v)
out = rearrange(out, 'b p h n d -> b p n (h d)')
return self.to_out(out)
class Transformer(nn.Module):
def __init__(self, dim, depth, heads, dim_head, mlp_dim, dropout=0.):
super().__init__()
self.layers = nn.ModuleList([])
for _ in range(depth):
self.layers.append(nn.ModuleList([
PreNorm(dim, Attention(dim, heads, dim_head, dropout)),
PreNorm(dim, FeedForward(dim, mlp_dim, dropout))
]))
def forward(self, x):
for attn, ff in self.layers:
x = attn(x) + x
x = ff(x) + x
return x
class MV2Block(nn.Module):
def __init__(self, inp, oup, stride=1, expansion=4):
super().__init__()
self.stride = stride
assert stride in [1, 2]
hidden_dim = int(inp * expansion)
self.use_res_connect = self.stride == 1 and inp == oup
if expansion == 1:
self.conv = nn.Sequential(
# dw
nn.Conv2d(hidden_dim, hidden_dim, 3, stride, 1, groups=hidden_dim, bias=False),
nn.BatchNorm2d(hidden_dim),
nn.SiLU(),
# pw-linear
nn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False),
nn.BatchNorm2d(oup),
)
else:
self.conv = nn.Sequential(
# pw
nn.Conv2d(inp, hidden_dim, 1, 1, 0, bias=False),
nn.BatchNorm2d(hidden_dim),
nn.SiLU(),
# dw
nn.Conv2d(hidden_dim, hidden_dim, 3, stride, 1, groups=hidden_dim, bias=False),
nn.BatchNorm2d(hidden_dim),
nn.SiLU(),
# pw-linear
nn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False),
nn.BatchNorm2d(oup),
)
def forward(self, x):
if self.use_res_connect:
return x + self.conv(x)
else:
return self.conv(x)
class MobileViTBlock(nn.Module):
def __init__(self, dim, depth, channel, kernel_size, patch_size, mlp_dim, dropout=0.):
super().__init__()
self.ph, self.pw = patch_size
self.conv1 = conv_nxn_bn(channel, channel, kernel_size)
self.conv2 = conv_1x1_bn(channel, dim)
self.transformer = Transformer(dim, depth, 4, 8, mlp_dim, dropout)
self.conv3 = conv_1x1_bn(dim, channel)
self.conv4 = conv_nxn_bn(2 * channel, channel, kernel_size)
def forward(self, x):
y = x.clone()
# Local representations
x = self.conv1(x)
x = self.conv2(x)
# Global representations
_, _, h, w = x.shape
x = rearrange(x, 'b d (h ph) (w pw) -> b (ph pw) (h w) d', ph=self.ph, pw=self.pw)
x = self.transformer(x)
x = rearrange(x, 'b (ph pw) (h w) d -> b d (h ph) (w pw)', h=h // self.ph, w=w // self.pw, ph=self.ph,
pw=self.pw)
# Fusion
x = self.conv3(x)
x = torch.cat((x, y), 1)
x = self.conv4(x)
return x
class MobileViT(nn.Module):
def __init__(self, image_size, dims, channels, num_classes, expansion=4, kernel_size=3, patch_size=(2, 2)):
super().__init__()
ih, iw = image_size
ph, pw = patch_size
assert ih % ph == 0 and iw % pw == 0
L = [2, 4, 3]
self.conv1 = conv_nxn_bn(3, channels[0], stride=2)
self.mv2 = nn.ModuleList([])
self.mv2.append(MV2Block(channels[0], channels[1], 1, expansion))
self.mv2.append(MV2Block(channels[1], channels[2], 2, expansion))
self.mv2.append(MV2Block(channels[2], channels[3], 1, expansion))
self.mv2.append(MV2Block(channels[2], channels[3], 1, expansion)) # Repeat
self.mv2.append(MV2Block(channels[3], channels[4], 2, expansion))
self.mv2.append(MV2Block(channels[5], channels[6], 2, expansion))
self.mv2.append(MV2Block(channels[7], channels[8], 2, expansion))
self.mvit = nn.ModuleList([])
self.mvit.append(MobileViTBlock(dims[0], L[0], channels[5], kernel_size, patch_size, int(dims[0] * 2)))
self.mvit.append(MobileViTBlock(dims[1], L[1], channels[7], kernel_size, patch_size, int(dims[1] * 4)))
self.mvit.append(MobileViTBlock(dims[2], L[2], channels[9], kernel_size, patch_size, int(dims[2] * 4)))
self.conv2 = conv_1x1_bn(channels[-2], channels[-1])
self.pool = nn.AvgPool2d(ih // 32, 1)
self.fc = nn.Linear(channels[-1], num_classes, bias=False)
def forward(self, x):
#print('x',x.shape)
x = self.conv1(x)
x = self.mv2[0](x)
x = self.mv2[1](x)
x = self.mv2[2](x)
x = self.mv2[3](x) # Repeat
x = self.mv2[4](x)
x = self.mvit[0](x)
x = self.mv2[5](x)
x = self.mvit[1](x)
x = self.mv2[6](x)
x = self.mvit[2](x)
x = self.conv2(x)
#print('pool_before',x.shape)
x = self.pool(x).view(-1, x.shape[1])
#print('self_pool',self.pool)
#print('pool_after',x.shape)
x = self.fc(x)
return x
def mobilevit_xxs():
dims = [64, 80, 96]
channels = [16, 16, 24, 24, 48, 48, 64, 64, 80, 80, 320]
return MobileViT((256, 256), dims, channels, num_classes=1000, expansion=2)
def mobilevit_xs():
dims = [96, 120, 144]
channels = [16, 32, 48, 48, 64, 64, 80, 80, 96, 96, 384]
return MobileViT((256, 256), dims, channels, num_classes=1000)
def mobilevit_s():
dims = [144, 192, 240]
channels = [16, 32, 64, 64, 96, 96, 128, 128, 160, 160, 640]
return MobileViT((conf.img_size, conf.img_size), dims, channels, num_classes=conf.embedding_size)
def count_parameters(model):
return sum(p.numel() for p in model.parameters() if p.requires_grad)
if __name__ == '__main__':
img = torch.randn(5, 3, 256, 256)
vit = mobilevit_xxs()
out = vit(img)
print(out.shape)
print(count_parameters(vit))
vit = mobilevit_xs()
out = vit(img)
print(out.shape)
print(count_parameters(vit))
vit = mobilevit_s()
out = vit(img)
print(out.shape)
print(count_parameters(vit))

142
contrast/model/resbam.py Normal file
View File

@ -0,0 +1,142 @@
from model.CBAM import CBAM
import torch
import torch.nn as nn
from model.Tool import GeM as gem
class Bottleneck(nn.Module):
expansion = 4
def __init__(self, inchannel, outchannel, stride=1, dowsample=None):
# super(Bottleneck, self).__init__()
super().__init__()
self.conv1 = nn.Conv2d(in_channels=inchannel, out_channels=outchannel, kernel_size=1, stride=1, bias=False)
self.bn1 = nn.BatchNorm2d(outchannel)
self.conv2 = nn.Conv2d(in_channels=outchannel, out_channels=outchannel, kernel_size=3, bias=False,
stride=stride, padding=1)
self.bn2 = nn.BatchNorm2d(outchannel)
self.conv3 = nn.Conv2d(in_channels=outchannel, out_channels=outchannel * self.expansion, stride=1, bias=False,
kernel_size=1)
self.bn3 = nn.BatchNorm2d(outchannel * self.expansion)
self.relu = nn.ReLU(inplace=True)
self.downsample = dowsample
def forward(self, x):
self.identity = x
# print('>>>>>>>>',type(x))
if self.downsample is not None:
# print('>>>>downsample>>>>', type(self.downsample))
self.identity = self.downsample(x)
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
out = self.relu(out)
out = self.conv3(out)
out = self.bn3(out)
# print('>>>>out>>>identity',out.size(),self.identity.size())
out = out + self.identity
out = self.relu(out)
return out
class resnet(nn.Module):
def __init__(self, block=Bottleneck, block_num=[3, 4, 6, 3], num_class=1000):
super().__init__()
self.in_channel = 64
self.conv1 = nn.Conv2d(in_channels=3,
out_channels=self.in_channel,
stride=2,
kernel_size=7,
padding=3,
bias=False)
self.bn1 = nn.BatchNorm2d(self.in_channel)
self.relu = nn.ReLU(inplace=True)
self.cbam = CBAM(self.in_channel)
self.cbam1 = CBAM(2048)
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.layer1 = self._make_layer(block, 64, block_num[0], stride=1)
self.layer2 = self._make_layer(block, 128, block_num[1], stride=2)
self.layer3 = self._make_layer(block, 256, block_num[2], stride=2)
self.layer4 = self._make_layer(block, 512, block_num[3], stride=2)
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
self.gem = gem()
self.fc = nn.Linear(512 * block.expansion, num_class)
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal(m.weight, mode='fan_out',
nonlinearity='relu')
if isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)):
nn.init.constant_(m.weight, 1.0)
nn.init.constant_(m.bias, 1.0)
def _make_layer(self, block, channel, block_num, stride=1):
downsample = None
if stride != 1 or self.in_channel != channel * block.expansion:
downsample = nn.Sequential(
nn.Conv2d(self.in_channel, channel * block.expansion, kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(channel * block.expansion))
layer = []
layer.append(block(self.in_channel, channel, stride, downsample))
self.in_channel = channel * block.expansion
for _ in range(1, block_num):
layer.append(block(self.in_channel, channel))
return nn.Sequential(*layer)
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.maxpool(x)
x = self.cbam(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
x = self.cbam1(x)
# x = self.avgpool(x)
x = self.gem(x)
x = torch.flatten(x, 1)
x = self.fc(x)
return x
class TripletNet(nn.Module):
def __init__(self, num_class, flag=True):
super(TripletNet, self).__init__()
self.initnet = rescbam(num_class)
self.flag = flag
def forward(self, x1, x2=None, x3=None):
if self.flag:
output1 = self.initnet(x1)
output2 = self.initnet(x2)
output3 = self.initnet(x3)
return output1, output2, output3
else:
output = self.initnet(x1)
return output
def rescbam(num_class):
return resnet(block=Bottleneck, block_num=[3, 4, 6, 3], num_class=num_class)
if __name__ == '__main__':
input1 = torch.randn(4, 3, 640, 640)
input2 = torch.randn(4, 3, 640, 640)
input3 = torch.randn(4, 3, 640, 640)
# rescbam测试
# Resnet50 = rescbam(512)
# output = Resnet50.forward(input1)
# print(Resnet50)
# trnet测试
trnet = TripletNet(512)
output = trnet(input1, input2, input3)
print(output)

189
contrast/model/resnet.py Normal file
View File

@ -0,0 +1,189 @@
"""resnet in pytorch
[1] Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun.
Deep Residual Learning for Image Recognition
https://arxiv.org/abs/1512.03385v1
"""
import torch
import torch.nn as nn
from config import config as conf
from CBAM import CBAM
class BasicBlock(nn.Module):
"""Basic Block for resnet 18 and resnet 34
"""
#BasicBlock and BottleNeck block
#have different output size
#we use class attribute expansion
#to distinct
expansion = 1
def __init__(self, in_channels, out_channels, stride=1):
super().__init__()
#residual function
self.residual_function = nn.Sequential(
nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=stride, padding=1, bias=False),
nn.BatchNorm2d(out_channels),
nn.ReLU(inplace=True),
nn.Conv2d(out_channels, out_channels * BasicBlock.expansion, kernel_size=3, padding=1, bias=False),
nn.BatchNorm2d(out_channels * BasicBlock.expansion)
)
#shortcut
self.shortcut = nn.Sequential()
#the shortcut output dimension is not the same with residual function
#use 1*1 convolution to match the dimension
if stride != 1 or in_channels != BasicBlock.expansion * out_channels:
self.shortcut = nn.Sequential(
nn.Conv2d(in_channels, out_channels * BasicBlock.expansion, kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(out_channels * BasicBlock.expansion)
)
def forward(self, x):
return nn.ReLU(inplace=True)(self.residual_function(x) + self.shortcut(x))
class BottleNeck(nn.Module):
"""Residual block for resnet over 50 layers
"""
expansion = 4
def __init__(self, in_channels, out_channels, stride=1):
super().__init__()
self.residual_function = nn.Sequential(
nn.Conv2d(in_channels, out_channels, kernel_size=1, bias=False),
nn.BatchNorm2d(out_channels),
nn.ReLU(inplace=True),
nn.Conv2d(out_channels, out_channels, stride=stride, kernel_size=3, padding=1, bias=False),
nn.BatchNorm2d(out_channels),
nn.ReLU(inplace=True),
nn.Conv2d(out_channels, out_channels * BottleNeck.expansion, kernel_size=1, bias=False),
nn.BatchNorm2d(out_channels * BottleNeck.expansion),
)
self.shortcut = nn.Sequential()
if stride != 1 or in_channels != out_channels * BottleNeck.expansion:
self.shortcut = nn.Sequential(
nn.Conv2d(in_channels, out_channels * BottleNeck.expansion, stride=stride, kernel_size=1, bias=False),
nn.BatchNorm2d(out_channels * BottleNeck.expansion)
)
def forward(self, x):
return nn.ReLU(inplace=True)(self.residual_function(x) + self.shortcut(x))
class ResNet(nn.Module):
def __init__(self, block, num_block, cbam = False, num_classes=conf.embedding_size):
super().__init__()
self.in_channels = 64
# self.conv1 = nn.Sequential(
# nn.Conv2d(3, 64, kernel_size=3, padding=1, bias=False),
# nn.BatchNorm2d(64),
# nn.ReLU(inplace=True))
self.conv1 = nn.Sequential(
nn.Conv2d(3, 64,stride=2,kernel_size=7,padding=3,bias=False),
nn.BatchNorm2d(64),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=3, stride=2, padding=1))
self.cbam = CBAM(self.in_channels)
#we use a different inputsize than the original paper
#so conv2_x's stride is 1
self.conv2_x = self._make_layer(block, 64, num_block[0], 1)
self.conv3_x = self._make_layer(block, 128, num_block[1], 2)
self.conv4_x = self._make_layer(block, 256, num_block[2], 2)
self.conv5_x = self._make_layer(block, 512, num_block[3], 2)
self.cbam1 = CBAM(self.in_channels)
self.avg_pool = nn.AdaptiveAvgPool2d((1, 1))
self.fc = nn.Linear(512 * block.expansion, num_classes)
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal(m.weight,mode = 'fan_out',
nonlinearity='relu')
if isinstance(m, (nn.BatchNorm2d)):
nn.init.constant_(m.weight, 1.0)
nn.init.constant_(m.bias, 1.0)
def _make_layer(self, block, out_channels, num_blocks, stride):
"""make resnet layers(by layer i didnt mean this 'layer' was the
same as a neuron netowork layer, ex. conv layer), one layer may
contain more than one residual block
Args:
block: block type, basic block or bottle neck block
out_channels: output depth channel number of this layer
num_blocks: how many blocks per layer
stride: the stride of the first block of this layer
Return:
return a resnet layer
"""
# we have num_block blocks per layer, the first block
# could be 1 or 2, other blocks would always be 1
strides = [stride] + [1] * (num_blocks - 1)
layers = []
for stride in strides:
layers.append(block(self.in_channels, out_channels, stride))
self.in_channels = out_channels * block.expansion
return nn.Sequential(*layers)
def forward(self, x):
output = self.conv1(x)
if cbam:
output = self.cbam(x)
output = self.conv2_x(output)
output = self.conv3_x(output)
output = self.conv4_x(output)
output = self.conv5_x(output)
if cbam:
output = self.cbam1(x)
print('pollBefore',output.shape)
output = self.avg_pool(output)
print('poolAfter',output.shape)
output = output.view(output.size(0), -1)
print('fcBefore',output.shape)
output = self.fc(output)
return output
def resnet18(cbam = False):
""" return a ResNet 18 object
"""
return ResNet(BasicBlock, [2, 2, 2, 2], cbam)
def resnet34():
""" return a ResNet 34 object
"""
return ResNet(BasicBlock, [3, 4, 6, 3])
def resnet50():
""" return a ResNet 50 object
"""
return ResNet(BottleNeck, [3, 4, 6, 3])
def resnet101():
""" return a ResNet 101 object
"""
return ResNet(BottleNeck, [3, 4, 23, 3])
def resnet152():
""" return a ResNet 152 object
"""
return ResNet(BottleNeck, [3, 8, 36, 3])

View File

@ -0,0 +1,121 @@
""" Resnet_IR_SE in ArcFace """
import torch
import torch.nn as nn
import torch.nn.functional as F
class Flatten(nn.Module):
def forward(self, x):
return x.reshape(x.shape[0], -1)
class SEConv(nn.Module):
"""Use Convolution instead of FullyConnection in SE"""
def __init__(self, channels, reduction):
super().__init__()
self.net = nn.Sequential(
nn.AdaptiveAvgPool2d(1),
nn.Conv2d(channels, channels // reduction, kernel_size=1, bias=False),
nn.ReLU(inplace=True),
nn.Conv2d(channels // reduction, channels, kernel_size=1, bias=False),
nn.Sigmoid(),
)
def forward(self, x):
return self.net(x) * x
class SE(nn.Module):
def __init__(self, channels, reduction):
super().__init__()
self.net = nn.Sequential(
nn.AdaptiveAvgPool2d(1),
nn.Linear(channels, channels // reduction),
nn.ReLU(inplace=True),
nn.Linear(channels // reduction, channels),
nn.Sigmoid(),
)
def forward(self, x):
return self.net(x) * x
class IRSE(nn.Module):
def __init__(self, channels, depth, stride):
super().__init__()
if channels == depth:
self.shortcut = nn.MaxPool2d(kernel_size=1, stride=stride)
else:
self.shortcut = nn.Sequential(
nn.Conv2d(channels, depth, (1, 1), stride, bias=False),
nn.BatchNorm2d(depth),
)
self.residual = nn.Sequential(
nn.BatchNorm2d(channels),
nn.Conv2d(channels, depth, (3, 3), 1, 1, bias=False),
nn.PReLU(depth),
nn.Conv2d(depth, depth, (3, 3), stride, 1, bias=False),
nn.BatchNorm2d(depth),
SEConv(depth, 16),
)
def forward(self, x):
return self.shortcut(x) + self.residual(x)
class ResIRSE(nn.Module):
"""Resnet50-IRSE backbone"""
def __init__(self, ih, embedding_size, drop_ratio):
super().__init__()
ih_last = ih // 16
self.input_layer = nn.Sequential(
nn.Conv2d(3, 64, (3, 3), 1, 1, bias=False),
nn.BatchNorm2d(64),
nn.PReLU(64),
)
self.output_layer = nn.Sequential(
nn.BatchNorm2d(512),
nn.Dropout(drop_ratio),
Flatten(),
nn.Linear(512 * ih_last * ih_last, embedding_size),
nn.BatchNorm1d(embedding_size),
)
# ["channels", "depth", "stride"],
self.res50_arch = [
[64, 64, 2], [64, 64, 1], [64, 64, 1],
[64, 128, 2], [128, 128, 1], [128, 128, 1], [128, 128, 1],
[128, 256, 2], [256, 256, 1], [256, 256, 1], [256, 256, 1], [256, 256, 1],
[256, 256, 1], [256, 256, 1], [256, 256, 1], [256, 256, 1], [256, 256, 1],
[256, 256, 1], [256, 256, 1], [256, 256, 1], [256, 256, 1],
[256, 512, 2], [512, 512, 1], [512, 512, 1],
]
self.body = nn.Sequential(*[IRSE(a, b, c) for (a, b, c) in self.res50_arch])
def forward(self, x):
x = self.input_layer(x)
x = self.body(x)
x = self.output_layer(x)
return x
if __name__ == "__main__":
from PIL import Image
import numpy as np
x = Image.open("../samples/009.jpg").convert('L')
x = x.resize((128, 128))
x = np.asarray(x, dtype=np.float32)
x = x[None, None, ...]
x = torch.from_numpy(x)
net = ResIRSE(512, 0.6)
net.eval()
with torch.no_grad():
out = net(x)
print(out.shape)

4
contrast/model/utils.py Normal file
View File

@ -0,0 +1,4 @@
try:
from torch.hub import load_state_dict_from_url
except ImportError:
from torch.utils.model_zoo import load_url as load_state_dict_from_url

137
contrast/model/vit.py Normal file
View File

@ -0,0 +1,137 @@
import torch
from vit_pytorch.mobile_vit import MobileViT
from vit_pytorch import vit
from vit_pytorch import SimpleViT
import torch
from torch import nn
from einops import rearrange, repeat
from einops.layers.torch import Rearrange
# helpers
def pair(t):
return t if isinstance(t, tuple) else (t, t)
# classes
class FeedForward(nn.Module):
def __init__(self, dim, hidden_dim, dropout=0.):
super().__init__()
self.net = nn.Sequential(
nn.LayerNorm(dim),
nn.Linear(dim, hidden_dim),
nn.GELU(),
nn.Dropout(dropout),
nn.Linear(hidden_dim, dim),
nn.Dropout(dropout)
)
def forward(self, x):
return self.net(x)
class Attention(nn.Module):
def __init__(self, dim, heads=8, dim_head=64, dropout=0.):
super().__init__()
inner_dim = dim_head * heads
project_out = not (heads == 1 and dim_head == dim)
self.heads = heads
self.scale = dim_head ** -0.5
self.norm = nn.LayerNorm(dim)
self.attend = nn.Softmax(dim=-1)
self.dropout = nn.Dropout(dropout)
self.to_qkv = nn.Linear(dim, inner_dim * 3, bias=False)
self.to_out = nn.Sequential(
nn.Linear(inner_dim, dim),
nn.Dropout(dropout)
) if project_out else nn.Identity()
def forward(self, x):
x = self.norm(x)
qkv = self.to_qkv(x).chunk(3, dim=-1)
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h=self.heads), qkv)
dots = torch.matmul(q, k.transpose(-1, -2)) * self.scale
attn = self.attend(dots)
attn = self.dropout(attn)
out = torch.matmul(attn, v)
out = rearrange(out, 'b h n d -> b n (h d)')
return self.to_out(out)
class Transformer(nn.Module):
def __init__(self, dim, depth, heads, dim_head, mlp_dim, dropout=0.):
super().__init__()
self.norm = nn.LayerNorm(dim)
self.layers = nn.ModuleList([])
for _ in range(depth):
self.layers.append(nn.ModuleList([
Attention(dim, heads=heads, dim_head=dim_head, dropout=dropout),
FeedForward(dim, mlp_dim, dropout=dropout)
]))
def forward(self, x):
for attn, ff in self.layers:
x = attn(x) + x
x = ff(x) + x
return self.norm(x)
class ViT(nn.Module):
def __init__(self, *, image_size, patch_size, num_classes, dim, depth, heads, mlp_dim, pool='cls', channels=3,
dim_head=64, dropout=0., emb_dropout=0.):
super().__init__()
image_height, image_width = pair(image_size)
patch_height, patch_width = pair(patch_size)
assert image_height % patch_height == 0 and image_width % patch_width == 0, 'Image dimensions must be divisible by the patch size.'
num_patches = (image_height // patch_height) * (image_width // patch_width)
patch_dim = channels * patch_height * patch_width
assert pool in {'cls', 'mean'}, 'pool type must be either cls (cls token) or mean (mean pooling)'
self.to_patch_embedding = nn.Sequential(
Rearrange('b c (h p1) (w p2) -> b (h w) (p1 p2 c)', p1=patch_height, p2=patch_width),
nn.LayerNorm(patch_dim),
nn.Linear(patch_dim, dim),
nn.LayerNorm(dim),
)
self.pos_embedding = nn.Parameter(torch.randn(1, num_patches + 1, dim))
self.cls_token = nn.Parameter(torch.randn(1, 1, dim))
self.dropout = nn.Dropout(emb_dropout)
self.transformer = Transformer(dim, depth, heads, dim_head, mlp_dim, dropout)
self.pool = pool
self.to_latent = nn.Identity()
self.mlp_head = nn.Linear(dim, num_classes)
def forward(self, img):
x = self.to_patch_embedding(img)
b, n, _ = x.shape
cls_tokens = repeat(self.cls_token, '1 1 d -> b 1 d', b=b)
x = torch.cat((cls_tokens, x), dim=1)
x += self.pos_embedding[:, :(n + 1)]
x = self.dropout(x)
x = self.transformer(x)
x = x.mean(dim=1) if self.pool == 'mean' else x[:, 0]
x = self.to_latent(x)
return self.mlp_head(x)

Binary file not shown.

View File

@ -0,0 +1,84 @@
import torch
import torchvision.transforms as T
class Config:
# network settings
backbone = 'vit' # [resnet18, mobilevit_s, mobilenet_v2, mobilenetv3_small, mobilenetv3_large, mobilenet_v1, PPLCNET_x1_0, PPLCNET_x0_5, PPLCNET_x2_5]
metric = 'softmax' # [cosface, arcface, softmax]
cbam = True
embedding_size = 256 # 256
drop_ratio = 0.5
img_size = 224
teacher = 'vit' # [resnet18, mobilevit_s, mobilenet_v2, mobilenetv3_small, mobilenetv3_large, mobilenet_v1, PPLCNET_x1_0, PPLCNET_x0_5, PPLCNET_x2_5]
student = 'resnet'
# data preprocess
# input_shape = [1, 128, 128]
"""transforms.RandomCrop(size),
transforms.RandomVerticalFlip(p=0.5),
transforms.RandomHorizontalFlip(),
RandomRotate(15, 0.3),
# RandomGaussianBlur()"""
train_transform = T.Compose([
T.ToTensor(),
T.Resize((img_size, img_size)),
# T.RandomCrop(img_size*4//5),
# T.RandomHorizontalFlip(p=0.5),
T.RandomRotation(180),
T.ColorJitter(brightness=0.5),
T.ConvertImageDtype(torch.float32),
T.Normalize(mean=[0.5], std=[0.5]),
])
test_transform = T.Compose([
T.ToTensor(),
T.Resize((img_size, img_size)),
T.ConvertImageDtype(torch.float32),
T.Normalize(mean=[0.5], std=[0.5]),
])
# dataset
train_root = './data/2250_train/train' # 初始筛选过一次的数据集
# train_root = './data/0625_train/train'
test_root = "./data/2250_train/val/"
# test_root = "./data/0625_train/val"
test_list = "./data/2250_train/val_pair.txt"
test_group_json = "./data/2250_train/cross_same.json"
# test_group_json = "./data/0625_train/cross_same.json"
# test_list = "./data/test_data_100/val_pair.txt"
# training settings
checkpoints = "checkpoints/vit_b_16_0815/" # [resnet18, mobilevit_s, mobilenet_v2, mobilenetv3]
restore = True
# restore_model = "checkpoints/renet18_2250_0315/best_resnet18_2250_0315.pth" # best_resnet18_1491_0306.pth
restore_model = "checkpoints/vit_b_16_0730/best.pth" # best_resnet18_1491_0306.pth
# test_model = "./checkpoints/renet18_1887_0311/best_resnet18_1887_0311.pth"
testbackbone = 'resnet18' # [resnet18, mobilevit_s, mobilenet_v2, mobilenetv3_small, mobilenetv3_large, mobilenet_v1, PPLCNET_x1_0, PPLCNET_x0_5]
# test_val = "./data/2250_train"
test_val = "./data/0625_train"
test_model = "checkpoints/resnet18_0721/best.pth"
train_batch_size = 128 # 256
test_batch_size = 256 # 256
epoch = 300
optimizer = 'adamw' # ['sgd', 'adam' 'adamw']
lr = 1e-3 # 1e-2
lr_step = 10 # 10
lr_decay = 0.95 # 0.98
weight_decay = 5e-4
loss = 'focal_loss' # ['focal_loss', 'cross_entropy']
device = torch.device('cuda:1' if torch.cuda.is_available() else 'cpu')
# device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
pin_memory = True # if memory is large, set it True to speed up a bit
num_workers = 4 # dataloader
group_test = True
# group_test = False
config = Config()

View File

@ -0,0 +1 @@
from .resnet_pre import resnet18, resnet34, resnet50, resnet14

View File

@ -0,0 +1,462 @@
import torch
import torch.nn as nn
from config import config as conf
try:
from torch.hub import load_state_dict_from_url
except ImportError:
from torch.utils.model_zoo import load_url as load_state_dict_from_url
# from .utils import load_state_dict_from_url
__all__ = ['ResNet', 'resnet18', 'resnet34', 'resnet50', 'resnet101',
'resnet152', 'resnext50_32x4d', 'resnext101_32x8d',
'wide_resnet50_2', 'wide_resnet101_2']
model_urls = {
'resnet18': 'https://download.pytorch.org/models/resnet18-5c106cde.pth',
'resnet34': 'https://download.pytorch.org/models/resnet34-333f7ec4.pth',
'resnet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth',
'resnet101': 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth',
'resnet152': 'https://download.pytorch.org/models/resnet152-b121ed2d.pth',
'resnext50_32x4d': 'https://download.pytorch.org/models/resnext50_32x4d-7cdf4587.pth',
'resnext101_32x8d': 'https://download.pytorch.org/models/resnext101_32x8d-8ba56ff5.pth',
'wide_resnet50_2': 'https://download.pytorch.org/models/wide_resnet50_2-95faca4d.pth',
'wide_resnet101_2': 'https://download.pytorch.org/models/wide_resnet101_2-32ee1156.pth',
}
def conv3x3(in_planes, out_planes, stride=1, groups=1, dilation=1):
"""3x3 convolution with padding"""
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
padding=dilation, groups=groups, bias=False, dilation=dilation)
def conv1x1(in_planes, out_planes, stride=1):
"""1x1 convolution"""
return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False)
class SpatialAttention(nn.Module):
def __init__(self, kernel_size=7):
super(SpatialAttention, self).__init__()
assert kernel_size in (3, 7), 'kernel size must be 3 or 7'
padding = 3 if kernel_size == 7 else 1
self.conv1 = nn.Conv2d(2, 1, kernel_size, padding=padding, bias=False)
self.sigmoid = nn.Sigmoid()
def forward(self, x):
avg_out = torch.mean(x, dim=1, keepdim=True)
max_out, _ = torch.max(x, dim=1, keepdim=True)
x = torch.cat([avg_out, max_out], dim=1)
x = self.conv1(x)
return self.sigmoid(x)
class BasicBlock(nn.Module):
expansion = 1
def __init__(self, inplanes, planes, stride=1, downsample=None, groups=1,
base_width=64, dilation=1, norm_layer=None, cam=False, bam=False):
super(BasicBlock, self).__init__()
if norm_layer is None:
norm_layer = nn.BatchNorm2d
if groups != 1 or base_width != 64:
raise ValueError('BasicBlock only supports groups=1 and base_width=64')
if dilation > 1:
raise NotImplementedError("Dilation > 1 not supported in BasicBlock")
self.cam = cam
self.bam = bam
# Both self.conv1 and self.downsample layers downsample the input when stride != 1
self.conv1 = conv3x3(inplanes, planes, stride)
self.bn1 = norm_layer(planes)
self.relu = nn.ReLU(inplace=True)
self.conv2 = conv3x3(planes, planes)
self.bn2 = norm_layer(planes)
self.downsample = downsample
self.stride = stride
if self.cam:
if planes == 64:
self.globalAvgPool = nn.AvgPool2d(56, stride=1)
elif planes == 128:
self.globalAvgPool = nn.AvgPool2d(28, stride=1)
elif planes == 256:
self.globalAvgPool = nn.AvgPool2d(14, stride=1)
elif planes == 512:
self.globalAvgPool = nn.AvgPool2d(7, stride=1)
self.fc1 = nn.Linear(in_features=planes, out_features=round(planes / 16))
self.fc2 = nn.Linear(in_features=round(planes / 16), out_features=planes)
self.sigmod = nn.Sigmoid()
if self.bam:
self.bam = SpatialAttention()
def forward(self, x):
identity = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
if self.downsample is not None:
identity = self.downsample(x)
if self.cam:
ori_out = self.globalAvgPool(out)
out = out.view(out.size(0), -1)
out = self.fc1(out)
out = self.relu(out)
out = self.fc2(out)
out = self.sigmod(out)
out = out.view(out.size(0), out.size(-1), 1, 1)
out = out * ori_out
if self.bam:
out = out*self.bam(out)
out += identity
out = self.relu(out)
return out
class Bottleneck(nn.Module):
# Bottleneck in torchvision places the stride for downsampling at 3x3 convolution(self.conv2)
# while original implementation places the stride at the first 1x1 convolution(self.conv1)
# according to "Deep residual learning for image recognition"https://arxiv.org/abs/1512.03385.
# This variant is also known as ResNet V1.5 and improves accuracy according to
# https://ngc.nvidia.com/catalog/model-scripts/nvidia:resnet_50_v1_5_for_pytorch.
expansion = 4
def __init__(self, inplanes, planes, stride=1, downsample=None, groups=1,
base_width=64, dilation=1, norm_layer=None, cam=False, bam=False):
super(Bottleneck, self).__init__()
if norm_layer is None:
norm_layer = nn.BatchNorm2d
width = int(planes * (base_width / 64.)) * groups
self.cam = cam
self.bam = bam
# Both self.conv2 and self.downsample layers downsample the input when stride != 1
self.conv1 = conv1x1(inplanes, width)
self.bn1 = norm_layer(width)
self.conv2 = conv3x3(width, width, stride, groups, dilation)
self.bn2 = norm_layer(width)
self.conv3 = conv1x1(width, planes * self.expansion)
self.bn3 = norm_layer(planes * self.expansion)
self.relu = nn.ReLU(inplace=True)
self.downsample = downsample
self.stride = stride
if self.cam:
if planes == 64:
self.globalAvgPool = nn.AvgPool2d(56, stride=1)
elif planes == 128:
self.globalAvgPool = nn.AvgPool2d(28, stride=1)
elif planes == 256:
self.globalAvgPool = nn.AvgPool2d(14, stride=1)
elif planes == 512:
self.globalAvgPool = nn.AvgPool2d(7, stride=1)
self.fc1 = nn.Linear(planes * self.expansion, round(planes / 4))
self.fc2 = nn.Linear(round(planes / 4), planes * self.expansion)
self.sigmod = nn.Sigmoid()
def forward(self, x):
identity = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
out = self.relu(out)
out = self.conv3(out)
out = self.bn3(out)
if self.downsample is not None:
identity = self.downsample(x)
if self.cam:
ori_out = self.globalAvgPool(out)
out = out.view(out.size(0), -1)
out = self.fc1(out)
out = self.relu(out)
out = self.fc2(out)
out = self.sigmod(out)
out = out.view(out.size(0), out.size(-1), 1, 1)
out = out * ori_out
out += identity
out = self.relu(out)
return out
class ResNet(nn.Module):
def __init__(self, block, layers, num_classes=conf.embedding_size, zero_init_residual=False,
groups=1, width_per_group=64, replace_stride_with_dilation=None,
norm_layer=None, scale=0.75):
super(ResNet, self).__init__()
if norm_layer is None:
norm_layer = nn.BatchNorm2d
self._norm_layer = norm_layer
self.inplanes = 64
self.dilation = 1
if replace_stride_with_dilation is None:
# each element in the tuple indicates if we should replace
# the 2x2 stride with a dilated convolution instead
replace_stride_with_dilation = [False, False, False]
if len(replace_stride_with_dilation) != 3:
raise ValueError("replace_stride_with_dilation should be None "
"or a 3-element tuple, got {}".format(replace_stride_with_dilation))
self.groups = groups
self.base_width = width_per_group
self.conv1 = nn.Conv2d(3, self.inplanes, kernel_size=7, stride=2, padding=3,
bias=False)
self.bn1 = norm_layer(self.inplanes)
self.relu = nn.ReLU(inplace=True)
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.layer1 = self._make_layer(block, int(64*scale), layers[0])
self.layer2 = self._make_layer(block, int(128*scale), layers[1], stride=2,
dilate=replace_stride_with_dilation[0])
self.layer3 = self._make_layer(block, int(256*scale), layers[2], stride=2,
dilate=replace_stride_with_dilation[1])
self.layer4 = self._make_layer(block, int(512*scale), layers[3], stride=2,
dilate=replace_stride_with_dilation[2])
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
self.fc = nn.Linear(int(512 * block.expansion*scale), num_classes)
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
# Zero-initialize the last BN in each residual branch,
# so that the residual branch starts with zeros, and each residual block behaves like an identity.
# This improves the model by 0.2~0.3% according to https://arxiv.org/abs/1706.02677
if zero_init_residual:
for m in self.modules():
if isinstance(m, Bottleneck):
nn.init.constant_(m.bn3.weight, 0)
elif isinstance(m, BasicBlock):
nn.init.constant_(m.bn2.weight, 0)
def _make_layer(self, block, planes, blocks, stride=1, dilate=False):
norm_layer = self._norm_layer
downsample = None
previous_dilation = self.dilation
if dilate:
self.dilation *= stride
stride = 1
if stride != 1 or self.inplanes != planes * block.expansion:
downsample = nn.Sequential(
conv1x1(self.inplanes, planes * block.expansion, stride),
norm_layer(planes * block.expansion),
)
layers = []
layers.append(block(self.inplanes, planes, stride, downsample, self.groups,
self.base_width, previous_dilation, norm_layer))
self.inplanes = planes * block.expansion
for _ in range(1, blocks):
layers.append(block(self.inplanes, planes, groups=self.groups,
base_width=self.base_width, dilation=self.dilation,
norm_layer=norm_layer))
return nn.Sequential(*layers)
def _forward_impl(self, x):
# See note [TorchScript super()]
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.maxpool(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
# print('poolBefore', x.shape)
x = self.avgpool(x)
# print('poolAfter', x.shape)
x = torch.flatten(x, 1)
# print('fcBefore',x.shape)
x = self.fc(x)
# print('fcAfter',x.shape)
return x
def forward(self, x):
return self._forward_impl(x)
# def _resnet(arch, block, layers, pretrained, progress, **kwargs):
# model = ResNet(block, layers, **kwargs)
# if pretrained:
# state_dict = load_state_dict_from_url(model_urls[arch],
# progress=progress)
# model.load_state_dict(state_dict, strict=False)
# return model
def _resnet(arch, block, layers, pretrained, progress, **kwargs):
model = ResNet(block, layers, **kwargs)
if pretrained:
state_dict = load_state_dict_from_url(model_urls[arch],
progress=progress)
src_state_dict = state_dict
target_state_dict = model.state_dict()
skip_keys = []
# skip mismatch size tensors in case of pretraining
for k in src_state_dict.keys():
if k not in target_state_dict:
continue
if src_state_dict[k].size() != target_state_dict[k].size():
skip_keys.append(k)
for k in skip_keys:
del src_state_dict[k]
missing_keys, unexpected_keys = model.load_state_dict(src_state_dict, strict=False)
return model
def resnet14(pretrained=True, progress=True, **kwargs):
r"""ResNet-14 model from
`"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
progress (bool): If True, displays a progress bar of the download to stderr
"""
return _resnet('resnet18', BasicBlock, [2, 1, 1, 2], pretrained, progress,
**kwargs)
def resnet18(pretrained=True, progress=True, **kwargs):
r"""ResNet-18 model from
`"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
progress (bool): If True, displays a progress bar of the download to stderr
"""
return _resnet('resnet18', BasicBlock, [2, 2, 2, 2], pretrained, progress,
**kwargs)
def resnet34(pretrained=False, progress=True, **kwargs):
r"""ResNet-34 model from
`"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
progress (bool): If True, displays a progress bar of the download to stderr
"""
return _resnet('resnet34', BasicBlock, [3, 4, 6, 3], pretrained, progress,
**kwargs)
def resnet50(pretrained=False, progress=True, **kwargs):
r"""ResNet-50 model from
`"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
progress (bool): If True, displays a progress bar of the download to stderr
"""
return _resnet('resnet50', Bottleneck, [3, 4, 6, 3], pretrained, progress,
**kwargs)
def resnet101(pretrained=False, progress=True, **kwargs):
r"""ResNet-101 model from
`"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
progress (bool): If True, displays a progress bar of the download to stderr
"""
return _resnet('resnet101', Bottleneck, [3, 4, 23, 3], pretrained, progress,
**kwargs)
def resnet152(pretrained=False, progress=True, **kwargs):
r"""ResNet-152 model from
`"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
progress (bool): If True, displays a progress bar of the download to stderr
"""
return _resnet('resnet152', Bottleneck, [3, 8, 36, 3], pretrained, progress,
**kwargs)
def resnext50_32x4d(pretrained=False, progress=True, **kwargs):
r"""ResNeXt-50 32x4d model from
`"Aggregated Residual Transformation for Deep Neural Networks" <https://arxiv.org/pdf/1611.05431.pdf>`_
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
progress (bool): If True, displays a progress bar of the download to stderr
"""
kwargs['groups'] = 32
kwargs['width_per_group'] = 4
return _resnet('resnext50_32x4d', Bottleneck, [3, 4, 6, 3],
pretrained, progress, **kwargs)
def resnext101_32x8d(pretrained=False, progress=True, **kwargs):
r"""ResNeXt-101 32x8d model from
`"Aggregated Residual Transformation for Deep Neural Networks" <https://arxiv.org/pdf/1611.05431.pdf>`_
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
progress (bool): If True, displays a progress bar of the download to stderr
"""
kwargs['groups'] = 32
kwargs['width_per_group'] = 8
return _resnet('resnext101_32x8d', Bottleneck, [3, 4, 23, 3],
pretrained, progress, **kwargs)
def wide_resnet50_2(pretrained=False, progress=True, **kwargs):
r"""Wide ResNet-50-2 model from
`"Wide Residual Networks" <https://arxiv.org/pdf/1605.07146.pdf>`_
The model is the same as ResNet except for the bottleneck number of channels
which is twice larger in every block. The number of channels in outer 1x1
convolutions is the same, e.g. last block in ResNet-50 has 2048-512-2048
channels, and in Wide ResNet-50-2 has 2048-1024-2048.
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
progress (bool): If True, displays a progress bar of the download to stderr
"""
kwargs['width_per_group'] = 64 * 2
return _resnet('wide_resnet50_2', Bottleneck, [3, 4, 6, 3],
pretrained, progress, **kwargs)
def wide_resnet101_2(pretrained=False, progress=True, **kwargs):
r"""Wide ResNet-101-2 model from
`"Wide Residual Networks" <https://arxiv.org/pdf/1605.07146.pdf>`_
The model is the same as ResNet except for the bottleneck number of channels
which is twice larger in every block. The number of channels in outer 1x1
convolutions is the same, e.g. last block in ResNet-50 has 2048-512-2048
channels, and in Wide ResNet-50-2 has 2048-1024-2048.
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
progress (bool): If True, displays a progress bar of the download to stderr
"""
kwargs['width_per_group'] = 64 * 2
return _resnet('wide_resnet101_2', Bottleneck, [3, 4, 23, 3],
pretrained, progress, **kwargs)

124
contrast/results.txt Normal file
View File

@ -0,0 +1,124 @@
same, 6954256905319, 20240715-144627_6954256905319, 0.211, 0.750, 0.630
same, 6930364600025, 20240719-143603_6930364600025, 0.283, 0.771, 0.616
same, 6924509902839, 20240719-143630_6924509902839, 0.182, 0.727, 0.462
same, 6902007115524, 20240719-143729_6902007115524, 0.221, 0.723, 0.519
same, 6930628801472, 20240719-143807_6930628801472, 0.249, 0.804, 0.672
same, 6908355010450, 20240719-144335_6908355010450, 0.255, 0.812, 0.575
same, 6924509902754, 20240719-144454_6924509902754, 0.458, 0.882, 0.836
same, 6925843410158, 20240719-144916_6925843410158, 0.229, 0.829, 0.686
same, 6941499112529, 20240719-145022_6941499112529, 0.190, 0.795, 0.359
same, 6918149576536, 20240719-145058_6918149576536, 0.493, 0.906, 0.765
same, 6928002374551, 20240719-145542_6928002374551, 0.165, 0.773, 0.531
same, 6930364600001, 20240719-150000_6930364600001, 0.322, 0.831, 0.736
same, 6937962111526, 20240719-150209_6937962111526, 0.225, 0.794, 0.605
same, 6924509902839, 20240719-150345_6924509902839, 0.161, 0.816, 0.502
same, 6924509902839, 20240719-150458_6924509902839, 0.319, 0.746, 0.623
same, 6924187895423, 20240719-150623_6924187895423, 0.430, 0.906, 0.903
same, 6916749306102, 20240719-150716_6916749306102, 0.269, 0.764, 0.737
same, 6951469100067, 20240719-150750_6951469100067, 0.547, 0.938, 0.896
same, 6958350501101, 20240719-151215_6958350501101, 0.578, 0.906, 0.877
same, 6951469100067, 20240719-151325_6951469100067, 0.610, 0.930, 0.904
same, 6937962111526, 20240719-151349_6937962111526, 0.138, 0.762, 0.496
same, 6916749306102, 20240719-151416_6916749306102, 0.243, 0.728, 0.630
same, 6930364600001, 20240719-151535_6930364600001, 0.144, 0.787, 0.482
same, 6911988027191, 20240719-151724_6911988027191, 0.035, 0.502, 0.076
same, 6972219890632, 20240719-151800_6972219890632, 0.315, 0.880, 0.700
same, 6901668935908, 20240719-152125_6901668935908, 0.203, 0.856, 0.426
same, 6930364600001, 20240719-153117_6930364600001, 0.057, 0.775, 0.165
same, 6902265587712, 20240722-144630_6902265587712, 0.364, 0.833, 0.669
same, 4897073991658, 20240722-160713_4897073991658, 0.101, 0.514, 0.247
same, 4892655902237, 20240722-160857_4892655902237, 0.459, 0.760, 0.812
same, 6920907803020, 20240722-161533_6920907803020, 0.211, 0.769, 0.678
same, 6920912342002, 20240722-163428_6920912342002, 0.281, 0.825, 0.853
same, 6916196422325, 20240722-164859_6916196422325, 0.392, 0.837, 0.665
same, 6901668006011, 20240722-165548_6901668006011, 0.284, 0.752, 0.530
same, 6937221716189, 20240723-094426_6937221716189, 0.407, 0.850, 0.705
same, 4897098800133, 20240723-094447_4897098800133, 0.382, 0.846, 0.784
same, 6970470331529, 20240723-094617_6970470331529, 0.238, 0.925, 0.586
same, 6918598120014, 20240723-095103_6918598120014, 0.407, 0.905, 0.819
same, 6938737200650, 20240723-095527_6938737200650, 0.208, 0.825, 0.543
same, 6902890022558, 20240723-095858_6902890022558, 0.162, 0.769, 0.628
same, 6925303795535, 20240723-100031_6925303795535, 0.304, 0.835, 0.671
same, 6920382723257, 20240723-100113_6920382723257, 0.274, 0.854, 0.539
same, 6938737200650, 20240723-100416_6938737200650, 0.237, 0.719, 0.581
same, 6918598120014, 20240723-100501_6918598120014, 0.099, 0.791, 0.209
same, 6937221716189, 20240723-100726_6937221716189, 0.347, 0.771, 0.611
same, 4897098800133, 20240723-100845_4897098800133, 0.304, 0.770, 0.718
same, 6918598120014, 20240723-101829_6918598120014, 0.502, 0.919, 0.857
same, 6920382723257, 20240723-102033_6920382723257, 0.343, 0.849, 0.748
same, 6902890022558, 20240723-102206_6902890022558, 0.117, 0.745, 0.389
same, 6970470331529, 20240723-102409_6970470331529, 0.102, 0.734, 0.305
same, 6938737200650, 20240723-102515_6938737200650, 0.183, 0.725, 0.469
same, 6937221716189, 20240723-102833_6937221716189, 0.067, 0.623, 0.175
same, 6937451883132, 20240723-110216_6937451883132, 0.323, 0.860, 0.717
same, 6973337010216, 20240723-110224_6973337010216, 0.202, 0.760, 0.622
same, 6937451883132, 20240723-111446_6937451883132, 0.367, 0.817, 0.806
same, 6973337010216, 20240723-111521_6973337010216, 0.140, 0.777, 0.414
same, 6924187828544, 20240723-111602_6924187828544, 0.359, 0.859, 0.718
same, 6934024590268, 20240723-112004_6934024590268, 0.184, 0.727, 0.583
same, 6924187828544, 20240723-112505_6924187828544, 0.281, 0.875, 0.573
same, 6974158894528, 20240723-155423_6974158894528, 0.433, 0.890, 0.788
same, 6970399922518, 20240723-160227_6970399922518, 0.078, 0.564, 0.215
same, 6974158894528, 20240723-160942_6974158894528, 0.417, 0.895, 0.832
diff, 6902007115524, 20240715-144627_6954256905319, -0.042, 0.389, -0.098
diff, 6924509902839, 20240719-143603_6930364600025, 0.028, 0.527, 0.056
diff, 6934024590268, 20240719-143630_6924509902839, -0.003, 0.922, -0.011
diff, 6918598120014, 20240719-143729_6902007115524, 0.061, 0.422, 0.138
diff, 6916196422325, 20240719-143807_6930628801472, 0.046, 0.412, 0.077
diff, 6973337010216, 20240719-144335_6908355010450, 0.019, 0.578, 0.058
diff, 6902265587712, 20240719-144454_6924509902754, -0.026, 0.471, -0.042
diff, 4892655902237, 20240719-144916_6925843410158, -0.066, 0.312, -0.140
diff, 6958350501101, 20240719-145022_6941499112529, 0.028, 0.355, 0.043
diff, 6925843410158, 20240719-145058_6918149576536, -0.026, 0.432, -0.064
diff, 4897098800133, 20240719-145542_6928002374551, 0.017, 0.265, 0.044
diff, 6930628801472, 20240719-150000_6930364600001, 0.037, 0.559, 0.095
diff, 6974158894528, 20240719-150209_6937962111526, -0.064, 0.433, -0.137
diff, 6930628801472, 20240719-150345_6924509902839, 0.001, 0.509, 0.004
diff, 6937221716189, 20240719-150458_6924509902839, -0.038, 0.455, -0.071
diff, 6902007115524, 20240719-150623_6924187895423, 0.020, 0.429, 0.046
diff, 6930364600001, 20240719-150716_6916749306102, 0.051, 0.454, 0.138
diff, 6938737200650, 20240719-150750_6951469100067, -0.007, 0.403, -0.017
diff, 6924187895423, 20240719-151215_6958350501101, 0.012, 0.411, 0.021
diff, 6974158894528, 20240719-151325_6951469100067, -0.002, 0.394, -0.004
diff, 6916196422325, 20240719-151349_6937962111526, -0.013, 0.322, -0.026
diff, 6920907803020, 20240719-151416_6916749306102, 0.012, 0.501, 0.034
diff, 6941499112529, 20240719-151535_6930364600001, 0.003, 0.467, 0.007
diff, 6902265587712, 20240719-151724_6911988027191, -0.001, 0.464, -0.002
diff, 6916196422325, 20240719-151800_6972219890632, -0.033, 0.330, -0.058
diff, 6930364600025, 20240719-152125_6901668935908, -0.073, 0.411, -0.174
diff, 6916749306102, 20240719-153117_6930364600001, 0.082, 0.604, 0.245
diff, 6902890022558, 20240722-144630_6902265587712, -0.000, 0.477, -0.001
diff, 6920907803020, 20240722-160713_4897073991658, 0.083, 0.569, 0.255
diff, 6937962111526, 20240722-160857_4892655902237, -0.026, 0.351, -0.073
diff, 6925303795535, 20240722-161533_6920907803020, 0.149, 0.645, 0.421
diff, 6934024590268, 20240722-163428_6920912342002, 0.062, 0.519, 0.215
diff, 6972219890632, 20240722-164859_6916196422325, 0.048, 0.512, 0.102
diff, 6972219890632, 20240722-165548_6901668006011, 0.035, 0.369, 0.067
diff, 6918598120014, 20240723-094426_6937221716189, 0.078, 0.435, 0.142
diff, 6937451883132, 20240723-094447_4897098800133, 0.071, 0.606, 0.157
diff, 6954256905319, 20240723-094617_6970470331529, 0.019, 0.570, 0.062
diff, 6930628801472, 20240723-095103_6918598120014, 0.022, 0.404, 0.057
diff, 6902007115524, 20240723-095527_6938737200650, 0.013, 0.421, 0.030
diff, 6930364600001, 20240723-095858_6902890022558, -0.014, 0.410, -0.039
diff, 6930628801472, 20240723-100031_6925303795535, 0.005, 0.471, 0.013
diff, 6930628801472, 20240723-100113_6920382723257, -0.009, 0.458, -0.023
diff, 6924187828544, 20240723-100416_6938737200650, 0.127, 0.534, 0.266
diff, 6920907803020, 20240723-100501_6918598120014, 0.024, 0.569, 0.062
diff, 6918598120014, 20240723-100726_6937221716189, 0.038, 0.409, 0.070
diff, 6930628801472, 20240723-100845_4897098800133, -0.000, 0.414, -0.000
diff, 6902007115524, 20240723-101829_6918598120014, 0.027, 0.533, 0.047
diff, 6970470331529, 20240723-102033_6920382723257, -0.001, 0.592, -0.003
diff, 6974158894528, 20240723-102206_6902890022558, -0.039, 0.424, -0.089
diff, 6920907803020, 20240723-102409_6970470331529, 0.046, 0.441, 0.164
diff, 6970470331529, 20240723-102515_6938737200650, -0.048, 0.388, -0.107
diff, 6924187895423, 20240723-102833_6937221716189, 0.066, 0.511, 0.169
diff, 6920907803020, 20240723-110216_6937451883132, -0.051, 0.370, -0.128
diff, 6924187828544, 20240723-110224_6973337010216, 0.033, 0.452, 0.078
diff, 6908355010450, 20240723-111446_6937451883132, 0.137, 0.453, 0.264
diff, 6930628801472, 20240723-111521_6973337010216, -0.001, 0.403, -0.003
diff, 4897073991658, 20240723-111602_6924187828544, 0.032, 0.306, 0.062
diff, 6937221716189, 20240723-112004_6934024590268, 0.056, 0.468, 0.125
diff, 4897098800133, 20240723-112505_6924187828544, -0.039, 0.258, -0.080
diff, 6916749306102, 20240723-155423_6974158894528, -0.001, 0.378, -0.003
diff, 6973337010216, 20240723-160227_6970399922518, -0.015, 0.477, -0.048
diff, 6958350501101, 20240723-160942_6974158894528, 0.042, 0.426, 0.062

476
contrast/test_ori.py Normal file
View File

@ -0,0 +1,476 @@
# -*- coding: utf-8 -*-
import os
import os.path as osp
import pdb
import numpy as np
import shutil
from scipy.spatial.distance import cdist
import torch
import torch.nn as nn
from PIL import Image
import json
from config import config as conf
from model import resnet18
# from model import (mobilevit_s, resnet14, resnet18, resnet34, resnet50, mobilenet_v2,
# MobileNetV3_Small, mobilenet_v1, PPLCNET_x1_0, PPLCNET_x0_5, PPLCNET_x2_5)
import matplotlib.pyplot as plt
import statistics
embedding_size = conf.embedding_size
img_size = conf.img_size
device = conf.device
def unique_image(pair_list) -> set:
"""Return unique image path in pair_list.txt"""
with open(pair_list, 'r') as fd:
pairs = fd.readlines()
unique = set()
for pair in pairs:
id1, id2, _ = pair.split()
unique.add(id1)
unique.add(id2)
return unique
def group_image(images: set, batch) -> list:
"""Group image paths by batch size"""
images = list(images)
size = len(images)
res = []
for i in range(0, size, batch):
end = min(batch + i, size)
res.append(images[i: end])
return res
def _preprocess(images: list, transform) -> torch.Tensor:
res = []
for img in images:
im = Image.open(img)
im = transform(im)
res.append(im)
# data = torch.cat(res, dim=0) # shape: (batch, 128, 128)
# data = data[:, None, :, :] # shape: (batch, 1, 128, 128)
data = torch.stack(res)
return data
def test_preprocess(images: list, transform) -> torch.Tensor:
res = []
for img in images:
im = Image.open(img)
im = transform(im)
res.append(im)
# data = torch.cat(res, dim=0) # shape: (batch, 128, 128)
# data = data[:, None, :, :] # shape: (batch, 1, 128, 128)
data = torch.stack(res)
return data
def featurize(images: list, transform, net, device, train=False) -> dict:
"""featurize each image and save into a dictionary
Args:
images: image paths
transform: test transform
net: pretrained model
device: cpu or cuda
Returns:
Dict (key: imagePath, value: feature)
"""
if train:
data = _preprocess(images, transform)
data = data.to(device)
net = net.to(device)
with torch.no_grad():
features = net(data)
res = {img: feature for (img, feature) in zip(images, features)}
else:
data = test_preprocess(images, transform)
data = data.to(device)
net = net.to(device)
with torch.no_grad():
features = net(data)
res = {img: feature for (img, feature) in zip(images, features)}
return res
def inference_image(images: list, transform, net, device, bs=16, embedding_size=256) -> dict:
batch_patches = []
patches = []
for d, img in enumerate(images):
img = Image.open(img)
patch = transform(img)
if str(device) != "cpu":
patch = patch.to(device).half()
else:
patch = patch.to(device)
patches.append(patch)
if (d + 1) % bs == 0:
patches = torch.stack(patches, dim=0)
batch_patches.append(patches)
patches = []
if len(patches):
patches = torch.stack(patches, dim=0)
batch_patches.append(patches)
features = np.zeros((0, embedding_size))
for patches in batch_patches:
pred = net(patches)
pred[torch.isinf(pred)] = 1.0
feat = pred.cpu().data.numpy()
features = np.vstack((features, feat))
return features
def featurize_1(images: list, transform, net, device, train=False) -> dict:
"""featurize each image and save into a dictionary
Args:
images: image paths
transform: test transform
net: pretrained model
device: cpu or cuda
Returns:
Dict (key: imagePath, value: feature)
"""
data = test_preprocess(images, transform)
data = data.to(device)
net = net.to(device)
with torch.no_grad():
features = net(data).data.numpy()
return features
def cosin_metric(x1, x2):
return np.dot(x1, x2) / (np.linalg.norm(x1) * np.linalg.norm(x2))
def threshold_search(y_score, y_true):
y_score = np.asarray(y_score)
y_true = np.asarray(y_true)
best_acc = 0
best_th = 0
for i in range(len(y_score)):
th = y_score[i]
y_test = (y_score >= th)
acc = np.mean((y_test == y_true).astype(int))
if acc > best_acc:
best_acc = acc
best_th = th
return best_acc, best_th
def showgrid(recall, recall_TN, PrecisePos, PreciseNeg):
x = np.linspace(start=-1.0, stop=1.0, num=50, endpoint=True).tolist()
plt.figure(figsize=(10, 6))
plt.plot(x, recall, color='red', label='recall')
plt.plot(x, recall_TN, color='black', label='recall_TN')
plt.plot(x, PrecisePos, color='blue', label='PrecisePos')
plt.plot(x, PreciseNeg, color='green', label='PreciseNeg')
plt.legend()
plt.xlabel('threshold')
# plt.ylabel('Similarity')
plt.grid(True, linestyle='--', alpha=0.5)
plt.savefig('accuracy_recall_grid.png')
plt.show()
plt.close()
def compute_accuracy_recall(score, labels):
th = 0.1
squence = np.linspace(-1, 1, num=50)
# squence = [0.4]
recall, PrecisePos, PreciseNeg, recall_TN = [], [], [], []
for th in squence:
t_score = (score > th)
t_labels = (labels == 1)
# print(t_score)
# print(t_labels)
TP = np.sum(np.logical_and(t_score, t_labels))
FN = np.sum(np.logical_and(np.logical_not(t_score), t_labels))
f_score = (score < th)
f_labels = (labels == 0)
TN = np.sum(np.logical_and(f_score, f_labels))
FP = np.sum(np.logical_and(np.logical_not(f_score), f_labels))
print("Threshold:{} TP:{},FP:{},TN:{},FN:{}".format(th, TP, FP, TN, FN))
PrecisePos.append(0 if TP / (TP + FP) == 'nan' else TP / (TP + FP))
PreciseNeg.append(0 if TN == 0 else TN / (TN + FN))
recall.append(0 if TP == 0 else TP / (TP + FN))
recall_TN.append(0 if TN == 0 else TN / (TN + FP))
showgrid(recall, recall_TN, PrecisePos, PreciseNeg)
def compute_accuracy(feature_dict, pair_list, test_root):
with open(pair_list, 'r') as f:
pairs = f.readlines()
similarities = []
labels = []
for pair in pairs:
img1, img2, label = pair.split()
img1 = osp.join(test_root, img1)
img2 = osp.join(test_root, img2)
feature1 = feature_dict[img1].cpu().numpy()
feature2 = feature_dict[img2].cpu().numpy()
label = int(label)
similarity = cosin_metric(feature1, feature2)
similarities.append(similarity)
labels.append(label)
accuracy, threshold = threshold_search(similarities, labels)
# print('similarities >> {}'.format(similarities))
# print('labels >> {}'.format(labels))
compute_accuracy_recall(np.array(similarities), np.array(labels))
return accuracy, threshold
def deal_group_pair(pairList1, pairList2):
allsimilarity = []
one_similarity = []
for pair1 in pairList1:
for pair2 in pairList2:
similarity = cosin_metric(pair1.cpu().numpy(), pair2.cpu().numpy())
one_similarity.append(similarity)
allsimilarity.append(max(one_similarity)) # 最大值
# allsimilarity.append(sum(one_similarity)/len(one_similarity)) # 均值
# allsimilarity.append(statistics.median(one_similarity)) # 中位数
# print(allsimilarity)
# print(labels)
return allsimilarity
def compute_group_accuracy(content_list_read):
allSimilarity, allLabel= [], []
for data_loaded in content_list_read:
one_group_list = []
for i in range(2):
images = [osp.join(conf.test_val, img) for img in data_loaded[i]]
group = group_image(images, conf.test_batch_size)
d = featurize(group[0], conf.test_transform, model, conf.device)
one_group_list.append(d.values())
similarity = deal_group_pair(one_group_list[0], one_group_list[1])
allLabel.append(data_loaded[-1])
allSimilarity.extend(similarity)
# print(allSimilarity)
# print(allLabel)
return allSimilarity, allLabel
def compute_contrast_accuracy(content_list_read):
npairs = 50
same_folder_pairs = content_list_read['same_folder_pairs']
cross_folder_pairs = content_list_read['cross_folder_pairs']
npairs = min((len(same_folder_pairs), len(cross_folder_pairs)))
same_pairs = same_folder_pairs[:npairs]
cross_pairs = cross_folder_pairs[:npairs]
same_pairs_similarity = []
for i in range(len(same_pairs)):
images_a = [osp.join(conf.test_val, img) for img in same_pairs[i][0]]
images_b = [osp.join(conf.test_val, img) for img in same_pairs[i][1]]
feats_a = inference_image(images_a, conf.test_transform, model, conf.device)
feats_b = inference_image(images_b, conf.test_transform, model, conf.device)
# matrix = 1- np.maximum(0.0, cdist(feats_a, feats_b, 'cosine'))
matrix = 1 - cdist(feats_a, feats_b, 'cosine')
feats_am = np.mean(feats_a, axis=0, keepdims=True)
feats_bm = np.mean(feats_b, axis=0, keepdims=True)
matrixm = 1- np.maximum(0.0, cdist(feats_am, feats_bm, 'cosine'))
same_pairs_similarity.append(np.mean(matrix))
'''保存相同 Barcode 图像对'''
# foldi = os.path.join('./result/same', f'{i}')
# if os.path.exists(foldi):
# shutil.rmtree(foldi)
# os.makedirs(foldi)
# else:
# os.makedirs(foldi)
# for ipt in range(len(images_a)):
# source_path = images_a[ipt]
# destination_path = os.path.join(foldi, f'a_{ipt}.png')
# shutil.copy2(source_path, destination_path)
# for ipt in range(len(images_b)):
# source_path = images_b[ipt]
# destination_path = os.path.join(foldi, f'b_{ipt}.png')
# shutil.copy2(source_path, destination_path)
cross_pairs_similarity = []
for i in range(len(cross_pairs)):
images_a = [osp.join(conf.test_val, img) for img in cross_pairs[i][0]]
images_b = [osp.join(conf.test_val, img) for img in cross_pairs[i][1]]
feats_a = inference_image(images_a, conf.test_transform, model, conf.device)
feats_b = inference_image(images_b, conf.test_transform, model, conf.device)
# matrix = 1- np.maximum(0.0, cdist(feats_a, feats_b, 'cosine'))
matrix = 1 - cdist(feats_a, feats_b, 'cosine')
feats_am = np.mean(feats_a, axis=0, keepdims=True)
feats_bm = np.mean(feats_b, axis=0, keepdims=True)
matrixm = 1- np.maximum(0.0, cdist(feats_am, feats_bm, 'cosine'))
cross_pairs_similarity.append(np.mean(matrix))
'''保存不同 Barcode 图像对'''
# foldi = os.path.join('./result/cross', f'{i}')
# if os.path.exists(foldi):
# shutil.rmtree(foldi)
# os.makedirs(foldi)
# else:
# os.makedirs(foldi)
# for ipt in range(len(images_a)):
# source_path = images_a[ipt]
# destination_path = os.path.join(foldi, f'a_{ipt}.png')
# shutil.copy2(source_path, destination_path)
# for ipt in range(len(images_b)):
# source_path = images_b[ipt]
# destination_path = os.path.join(foldi, f'b_{ipt}.png')
# shutil.copy2(source_path, destination_path)
Thresh = np.linspace(-0.2, 1, 100)
Same = np.array(same_pairs_similarity)
Cross = np.array(cross_pairs_similarity)
fig, axs = plt.subplots(2, 1)
axs[0].hist(Same, bins=60, edgecolor='black')
axs[0].set_xlim([-0.2, 1])
axs[0].set_title('Same Barcode')
axs[1].hist(Cross, bins=60, edgecolor='black')
axs[1].set_xlim([-0.2, 1])
axs[1].set_title('Cross Barcode')
TPFN = len(Same)
TNFP = len(Cross)
Recall_Pos, Recall_Neg = [], []
Precision_Pos, Precision_Neg = [], []
Correct = []
for th in Thresh:
TP = np.sum(Same > th)
FN = TPFN - TP
TN = np.sum(Cross < th)
FP = TNFP - TN
Recall_Pos.append(TP/TPFN)
Recall_Neg.append(TN/TNFP)
Precision_Pos.append(TP/(TP+FP))
Precision_Neg.append(TN/(TN+FN))
Correct.append((TN+TP)/(TPFN+TNFP))
fig, ax = plt.subplots()
ax.plot(Thresh, Correct, 'r', label='Correct: (TN+TP)/(TPFN+TNFP)')
ax.plot(Thresh, Recall_Pos, 'b', label='Recall_Pos: TP/TPFN')
ax.plot(Thresh, Recall_Neg, 'g', label='Recall_Neg: TN/TNFP')
ax.plot(Thresh, Precision_Pos, 'c', label='Precision_Pos: TP/(TP+FP)')
ax.plot(Thresh, Precision_Neg, 'm', label='Precision_Neg: TN/(TN+FN)')
ax.set_xlim([0, 1])
ax.set_ylim([0, 1])
ax.grid(True)
ax.set_title('PrecisePos & PreciseNeg')
ax.legend()
plt.show()
print("Haved done!!!")
if __name__ == '__main__':
# Network Setup
if conf.testbackbone == 'resnet18':
# model = ResIRSE(img_size, embedding_size, conf.drop_ratio).to(device)
model = resnet18().to(device)
# elif conf.testbackbone == 'resnet34':
# model = resnet34().to(device)
# elif conf.testbackbone == 'resnet50':
# model = resnet50().to(device)
# elif conf.testbackbone == 'mobilevit_s':
# model = mobilevit_s().to(device)
# elif conf.testbackbone == 'mobilenetv3':
# model = MobileNetV3_Small().to(device)
# elif conf.testbackbone == 'mobilenet_v1':
# model = mobilenet_v1().to(device)
# elif conf.testbackbone == 'PPLCNET_x1_0':
# model = PPLCNET_x1_0().to(device)
# elif conf.testbackbone == 'PPLCNET_x0_5':
# model = PPLCNET_x0_5().to(device)
# elif conf.backbone == 'PPLCNET_x2_5':
# model = PPLCNET_x2_5().to(device)
# elif conf.testbackbone == 'mobilenet_v2':
# model = mobilenet_v2().to(device)
# elif conf.testbackbone == 'resnet14':
# model = resnet14().to(device)
else:
raise ValueError('Have not model {}'.format(conf.backbone))
print('load model {} '.format(conf.testbackbone))
# model = nn.DataParallel(model).to(conf.device)
model.load_state_dict(torch.load(conf.test_model, map_location=conf.device))
model.eval()
if not conf.group_test:
images = unique_image(conf.test_list)
images = [osp.join(conf.test_val, img) for img in images]
groups = group_image(images, conf.test_batch_size) ##根据batch_size取图片
feature_dict = dict()
for group in groups:
d = featurize(group, conf.test_transform, model, conf.device)
feature_dict.update(d)
# print('feature_dict', feature_dict)
accuracy, threshold = compute_accuracy(feature_dict, conf.test_list, conf.test_val)
print(
f"Test Model: {conf.test_model}\n"
f"Accuracy: {accuracy:.3f}\n"
f"Threshold: {threshold:.3f}\n"
)
elif conf.group_test:
"""
conf.test_val: 测试数据集地址
conf.test_group_json测试数据分组配置文件
"""
filename = conf.test_group_json
filename = "../cl/images_1.json"
with open(filename, 'r', encoding='utf-8') as file:
content_list_read = json.load(file)
compute_contrast_accuracy(content_list_read)
# =============================================================================
# Similarity, Label = compute_group_accuracy(content_list_read)
# print('allSimilarity >> {}'.format(Similarity))
# print('allLabel >> {}'.format(Label))
# compute_accuracy_recall(np.array(Similarity), np.array(Label))
# # compute_group_accuracy(data_loaded)
#
# =============================================================================