709 lines
24 KiB
Python
709 lines
24 KiB
Python
# -*- coding: utf-8 -*-
|
||
"""
|
||
Created on Fri Aug 30 17:53:03 2024
|
||
|
||
1. 确认在相同CamerType下,track.data 中 CamerID 项数量 = 图像数 = 帧ID数 = 最大帧ID
|
||
|
||
2. 读取0/1_tracking_output.data 中数据,boxes、feats,len(boxes)=len(feats)
|
||
帧ID约束
|
||
|
||
3. 优先选择前摄
|
||
|
||
4. 保存图像数据
|
||
|
||
5. 一次购物事件类型
|
||
shopEvent: {barcode:
|
||
type: getout, input
|
||
front_traj:[{imgpath: str,
|
||
box: arrar(1, 9),
|
||
feat: array(1, 256)
|
||
}]
|
||
back_traj: [{imgpath: str,
|
||
box: arrar(1, 9),
|
||
feat: array(1, 256)
|
||
}]
|
||
}
|
||
|
||
|
||
|
||
@author: ym
|
||
|
||
"""
|
||
import numpy as np
|
||
import cv2
|
||
import os
|
||
import sys
|
||
import random
|
||
import pickle
|
||
import torch
|
||
import time
|
||
import json
|
||
from pathlib import Path
|
||
from scipy.spatial.distance import cdist
|
||
import matplotlib.pyplot as plt
|
||
import shutil
|
||
from datetime import datetime
|
||
|
||
# Vit版resnet, 和现场特征不一致,需将resnet_vit中文件提出
|
||
# from config import config as conf
|
||
# from model import resnet18
|
||
# from inference import load_contrast_model
|
||
# from inference import featurize
|
||
# embedding_size = conf.embedding_size
|
||
# img_size = conf.img_size
|
||
# device = conf.device
|
||
# model = load_contrast_model()
|
||
|
||
sys.path.append(r"D:\DetectTracking")
|
||
from tracking.utils.read_data import extract_data, read_tracking_output, read_deletedBarcode_file
|
||
|
||
from config import config as conf
|
||
from model import resnet18 as resnet18
|
||
from test_ori import inference_image
|
||
|
||
|
||
IMG_FORMAT = ['.bmp', '.jpg', '.jpeg', '.png']
|
||
model = resnet18().to(conf.device)
|
||
|
||
print('load model {} '.format(conf.testbackbone))
|
||
# model = nn.DataParallel(model).to(conf.device)
|
||
model.load_state_dict(torch.load(conf.test_model, map_location=conf.device))
|
||
model.eval()
|
||
|
||
|
||
def creat_shopping_event(eventPath, subimgPath=False):
|
||
'''构造放入商品事件字典,这些事件需满足条件:
|
||
1) 前后摄至少有一条轨迹输出
|
||
2) 保存有帧图像,以便裁剪出 boxe 子图
|
||
'''
|
||
# filename = "20240723-155413_6904406215720"
|
||
|
||
'''filename下为一次购物事件'''
|
||
eventName = os.path.basename(eventPath)
|
||
|
||
'''================ 0. 检查 filename 及 eventPath 正确性和有效性 ================'''
|
||
nmlist = eventName.split('_')
|
||
if eventName.find('2024')<0 or len(nmlist)!=2 or len(nmlist[0])!=15 or len(nmlist[1])<11:
|
||
return
|
||
if not os.path.isdir(eventPath):
|
||
return
|
||
|
||
|
||
|
||
'''================ 1. 构造事件描述字典,暂定 9 items ==============='''
|
||
event = {}
|
||
event['barcode'] = eventName.split('_')[1]
|
||
event['type'] = 'input'
|
||
event['filepath'] = eventPath
|
||
event['back_imgpaths'] = []
|
||
event['front_imgpaths'] = []
|
||
event['back_boxes'] = np.empty((0, 9), dtype=np.float64)
|
||
event['front_boxes'] = np.empty((0, 9), dtype=np.float64)
|
||
event['back_feats'] = np.empty((0, 256), dtype=np.float64)
|
||
event['front_feats'] = np.empty((0, 256), dtype=np.float64)
|
||
event['feats_compose'] = np.empty((0, 256), dtype=np.float64)
|
||
# event['feats_select'] = np.empty((0, 256), dtype=np.float64)
|
||
|
||
|
||
'''================= 2. 读取 data 文件 ============================='''
|
||
for dataname in os.listdir(eventPath):
|
||
# filename = '1_track.data'
|
||
datapath = os.path.join(eventPath, dataname)
|
||
if not os.path.isfile(datapath): continue
|
||
|
||
CamerType = dataname.split('_')[0]
|
||
''' 2.1 读取 0/1_track.data 中数据,暂不考虑'''
|
||
# if dataname.find("_track.data")>0:
|
||
# bboxes, ffeats, trackerboxes, tracker_feat_dict, trackingboxes, tracking_feat_dict = extract_data(datapath)
|
||
|
||
''' 2.2 读取 0/1_tracking_output.data 中数据'''
|
||
if dataname.find("_tracking_output.data")>0:
|
||
tracking_output_boxes, tracking_output_feats = read_tracking_output(datapath)
|
||
if len(tracking_output_boxes) != len(tracking_output_feats): continue
|
||
if CamerType == '0':
|
||
event['back_boxes'] = tracking_output_boxes
|
||
event['back_feats'] = tracking_output_feats
|
||
elif CamerType == '1':
|
||
event['front_boxes'] = tracking_output_boxes
|
||
event['front_feats'] = tracking_output_feats
|
||
|
||
|
||
if len(event['back_boxes'])==0 or len(event['front_boxes'])==0:
|
||
return None
|
||
|
||
'''2.3 事件的特征表征方式: 特征选择、特征集成'''
|
||
bk_feats = event['back_feats']
|
||
ft_feats = event['front_feats']
|
||
|
||
'''2.3.1 特征集成'''
|
||
feats_compose = np.empty((0, 256), dtype=np.float64)
|
||
if len(ft_feats):
|
||
feats_compose = np.concatenate((feats_compose, ft_feats), axis=0)
|
||
if len(bk_feats):
|
||
feats_compose = np.concatenate((feats_compose, bk_feats), axis=0)
|
||
event['feats_compose'] = feats_compose
|
||
|
||
'''2.3.1 特征选择'''
|
||
if len(ft_feats):
|
||
event['feats_select'] = ft_feats
|
||
|
||
# pickpath = os.path.join(savePath, f"{filename}.pickle")
|
||
# with open(pickpath, 'wb') as f:
|
||
# pickle.dump(event, f)
|
||
# print(f"Event: {filename}")
|
||
|
||
# if subimgPath==False:
|
||
# eventList.append(event)
|
||
# continue
|
||
|
||
'''================ 2. 读取图像文件地址,并按照帧ID排序 ============='''
|
||
frontImgs, frontFid = [], []
|
||
backImgs, backFid = [], []
|
||
for imgname in os.listdir(eventPath):
|
||
name, ext = os.path.splitext(imgname)
|
||
if ext not in IMG_FORMAT or name.find('frameId')<0: continue
|
||
|
||
CamerType = name.split('_')[0]
|
||
frameId = int(name.split('_')[3])
|
||
imgpath = os.path.join(eventPath, imgname)
|
||
if CamerType == '0':
|
||
backImgs.append(imgpath)
|
||
backFid.append(frameId)
|
||
if CamerType == '1':
|
||
frontImgs.append(imgpath)
|
||
frontFid.append(frameId)
|
||
|
||
frontIdx = np.argsort(np.array(frontFid))
|
||
backIdx = np.argsort(np.array(backFid))
|
||
|
||
'''2.1 生成依据帧 ID 排序的前后摄图像地址列表'''
|
||
frontImgs = [frontImgs[i] for i in frontIdx]
|
||
backImgs = [backImgs[i] for i in backIdx]
|
||
|
||
'''2.2 将前、后摄图像路径添加至事件字典'''
|
||
|
||
|
||
bfid = event['back_boxes'][:, 7].astype(np.int64)
|
||
ffid = event['front_boxes'][:, 7].astype(np.int64)
|
||
if len(bfid) and max(bfid) <= len(backImgs):
|
||
event['back_imgpaths'] = [backImgs[i-1] for i in bfid]
|
||
if len(ffid) and max(ffid) <= len(frontImgs):
|
||
event['front_imgpaths'] = [frontImgs[i-1] for i in ffid]
|
||
|
||
|
||
'''================ 3. 判断当前事件有效性,并添加至事件列表 =========='''
|
||
condt1 = len(event['back_imgpaths'])==0 or len(event['front_imgpaths'])==0
|
||
condt2 = len(event['front_feats'])==0 and len(event['back_feats'])==0
|
||
|
||
if condt1 or condt2:
|
||
print(f"Event: {eventName}, Error, condt1: {condt1}, condt2: {condt2}")
|
||
return None
|
||
|
||
|
||
|
||
|
||
'''构造放入商品事件列表,暂不处理'''
|
||
# delepath = os.path.join(basePath, 'deletedBarcode.txt')
|
||
# bcdList = read_deletedBarcode_file(delepath)
|
||
# for slist in bcdList:
|
||
# getoutFold = slist['SeqDir'].strip()
|
||
# getoutPath = os.path.join(basePath, getoutFold)
|
||
|
||
# '''取出事件文件夹不存在,跳出循环'''
|
||
# if not os.path.exists(getoutPath) and not os.path.isdir(getoutPath):
|
||
# continue
|
||
|
||
# ''' 生成取出事件字典 '''
|
||
# event = {}
|
||
# event['barcode'] = slist['Deleted'].strip()
|
||
# event['type'] = 'getout'
|
||
# event['basePath'] = getoutPath
|
||
|
||
return event
|
||
|
||
def get_std_barcodeDict(bcdpath, bpath):
|
||
'''
|
||
inputs:
|
||
bcdpath: 已清洗的barcode样本图像,如果barcode下有'base'文件夹,只选用该文件夹下图像
|
||
(default = r'\\192.168.1.28\share\已标注数据备份\对比数据\barcode\barcode_1771')
|
||
功能:
|
||
生成并保存只有一个key值的字典 {barcode: [imgpath1, imgpath1, ...]},
|
||
bpath: 字典存储地址
|
||
'''
|
||
|
||
# bpath = r'\\192.168.1.28\share\测试_202406\contrast\std_barcodes'
|
||
|
||
'''读取数据集中 barcode 列表'''
|
||
stdBlist = []
|
||
for filename in os.listdir(bcdpath):
|
||
filepath = os.path.join(bcdpath, filename)
|
||
if not os.path.isdir(filepath) or not filename.isdigit(): continue
|
||
stdBlist.append(filename)
|
||
|
||
|
||
bcdpaths = [(barcode, os.path.join(bcdpath, barcode)) for barcode in stdBlist]
|
||
|
||
'''遍历数据集,针对每一个barcode,生成并保存字典{barcode: [imgpath1, imgpath1, ...]}'''
|
||
k = 0
|
||
for barcode, bpath in bcdpaths:
|
||
stdBarcodeDict = {}
|
||
stdBarcodeDict[barcode] = []
|
||
for root, dirs, files in os.walk(bpath):
|
||
imgpaths = []
|
||
if "base" in dirs:
|
||
broot = os.path.join(root, "base")
|
||
for imgname in os.listdir(broot):
|
||
imgpath = os.path.join(broot, imgname)
|
||
_, ext = os.path.splitext(imgpath)
|
||
if ext not in IMG_FORMAT: continue
|
||
imgpaths.append(imgpath)
|
||
|
||
stdBarcodeDict[barcode].extend(imgpaths)
|
||
break
|
||
|
||
else:
|
||
for imgname in files:
|
||
imgpath = os.path.join(root, imgname)
|
||
_, ext = os.path.splitext(imgpath)
|
||
if ext not in IMG_FORMAT: continue
|
||
imgpaths.append(imgpath)
|
||
stdBarcodeDict[barcode].extend(imgpaths)
|
||
|
||
pickpath = os.path.join(bpath, f"{barcode}.pickle")
|
||
with open(pickpath, 'wb') as f:
|
||
pickle.dump(stdBarcodeDict, f)
|
||
print(f"Barcode: {barcode}")
|
||
|
||
# k += 1
|
||
# if k == 10:
|
||
# break
|
||
|
||
return
|
||
|
||
def save_event_subimg(event, savepath):
|
||
'''
|
||
功能: 保存一次购物事件的轨迹子图
|
||
9 items: barcode, type, filepath, back_imgpaths, front_imgpaths,
|
||
back_boxes, front_boxes, back_feats, front_feats,
|
||
feats_compose, feats_select
|
||
子图保存次序:先前摄、后后摄,以 k 为编号,和 "feats_compose" 中次序相同
|
||
'''
|
||
cameras = ('front', 'back')
|
||
k = 0
|
||
for camera in cameras:
|
||
if camera == 'front':
|
||
boxes = event['front_boxes']
|
||
imgpaths = event['front_imgpaths']
|
||
else:
|
||
boxes = event['back_boxes']
|
||
imgpaths = event['back_imgpaths']
|
||
|
||
for i, box in enumerate(boxes):
|
||
x1, y1, x2, y2, tid, score, cls, fid, bid = box
|
||
|
||
imgpath = imgpaths[i]
|
||
image = cv2.imread(imgpath)
|
||
subimg = image[int(y1/2):int(y2/2), int(x1/2):int(x2/2), :]
|
||
|
||
camerType, timeTamp, _, frameID = os.path.basename(imgpath).split('.')[0].split('_')
|
||
subimgName = f"{k}_cam-{camerType}_tid-{int(tid)}_fid-({int(fid)}, {frameID}).png"
|
||
spath = os.path.join(savepath, subimgName)
|
||
|
||
cv2.imwrite(spath, subimg)
|
||
k += 1
|
||
# basename = os.path.basename(event['filepath'])
|
||
print(f"Image saved: {os.path.basename(event['filepath'])}")
|
||
|
||
|
||
|
||
def batch_inference(imgpaths, batch):
|
||
size = len(imgpaths)
|
||
groups = []
|
||
for i in range(0, size, batch):
|
||
end = min(batch + i, size)
|
||
groups.append(imgpaths[i: end])
|
||
|
||
features = []
|
||
for group in groups:
|
||
feature = featurize(group, conf.test_transform, model, conf.device)
|
||
features.append(feature)
|
||
features = np.concatenate(features, axis=0)
|
||
|
||
return features
|
||
|
||
def stdfeat_infer(imgPath, featPath, bcdSet=None):
|
||
'''
|
||
inputs:
|
||
imgPath: 该文件夹下的 pickle 文件格式 {barcode: [imgpath1, imgpath1, ...]}
|
||
featPath: imgPath图像对应特征的存储地址
|
||
功能:
|
||
对 imgPath中图像进行特征提取,生成只有一个key值的字典,
|
||
{barcode: features},features.shape=(nsample, 256),并保存至 featPath 中
|
||
|
||
'''
|
||
|
||
# imgPath = r"\\192.168.1.28\share\测试_202406\contrast\std_barcodes"
|
||
# featPath = r"\\192.168.1.28\share\测试_202406\contrast\std_features"
|
||
stdBarcodeDict = {}
|
||
k = 0
|
||
for filename in os.listdir(imgPath):
|
||
bcd, ext = os.path.splitext(filename)
|
||
if bcdSet is not None and bcd not in bcdSet:
|
||
continue
|
||
|
||
filepath = os.path.join(imgPath, filename)
|
||
|
||
stdbDict = {}
|
||
t1 = time.time()
|
||
|
||
try:
|
||
with open(filepath, 'rb') as f:
|
||
bpDict = pickle.load(f)
|
||
for barcode, imgpaths in bpDict.items():
|
||
# feature = batch_inference(imgpaths, 8) #from vit distilled model of Lichen
|
||
feature = inference_image(imgpaths, conf.test_transform, model, conf.device)
|
||
|
||
feature /= np.linalg.norm(feature, axis=1)[:, None]
|
||
|
||
except Exception as e:
|
||
print(f"Error accured at: {filename}, with Exception is: {e}")
|
||
|
||
'''================ 保存单个barcode特征 ================'''
|
||
stdbDict["barcode"] = barcode
|
||
stdbDict["imgpaths"] = imgpaths
|
||
stdbDict["feats"] = feature
|
||
|
||
|
||
|
||
pkpath = os.path.join(featPath, f"{barcode}.pickle")
|
||
with open(pkpath, 'wb') as f:
|
||
pickle.dump(stdbDict, f)
|
||
|
||
stdBarcodeDict[barcode] = feature
|
||
t2 = time.time()
|
||
print(f"Barcode: {barcode}, need time: {t2-t1:.1f} secs")
|
||
# k += 1
|
||
# if k == 10:
|
||
# break
|
||
|
||
pickpath = os.path.join(featPath, f"barcode_features_{k}.pickle")
|
||
with open(pickpath, 'wb') as f:
|
||
pickle.dump(stdBarcodeDict, f)
|
||
|
||
|
||
|
||
|
||
|
||
|
||
def contrast_performance_evaluate():
|
||
eventFeatPath = r"\\192.168.1.28\share\测试_202406\contrast\events"
|
||
stdBcdPath = r"\\192.168.1.28\share\测试_202406\contrast\std_barcodes"
|
||
|
||
stdFeatPath = r"\\192.168.1.28\share\测试_202406\contrast\std_features"
|
||
|
||
subimgPath = r"\\192.168.1.28\share\测试_202406\contrast\subimgs"
|
||
|
||
|
||
# stdBarcode = [p.stem for p in Path(stdFeatPath).iterdir() if p.is_file() and p.suffix=='.pickle']
|
||
stdBarcode = [p.stem for p in Path(stdBcdPath).iterdir() if p.is_file() and p.suffix=='.pickle']
|
||
|
||
|
||
'''购物事件列表,该列表中的 Barcode 存在于标准的 stdBarcode 内'''
|
||
# evtList = [(p.stem, p.stem.split('_')[1]) for p in Path(eventFeatPath).iterdir()
|
||
# if p.is_file()
|
||
# and p.suffix=='.pickle'
|
||
# and len(p.stem.split('_'))==2
|
||
# and p.stem.split('_')[1].isdigit()
|
||
# and p.stem.split('_')[1] in stdBarcode
|
||
# ]
|
||
|
||
evtList = [(p.stem, p.stem.split('_')[1]) for p in Path(eventFeatPath).iterdir()
|
||
if p.is_file()
|
||
and p.suffix=='.pickle'
|
||
and len(p.stem.split('_'))==2
|
||
and p.stem.split('_')[1].isdigit()
|
||
and p.stem.split('_')[1] in stdBarcode
|
||
]
|
||
|
||
barcodes = set([bcd for _, bcd in evtList])
|
||
|
||
'''标准特征集图像样本经特征提取并保存,运行一次后无需再运行'''
|
||
# stdfeat_infer(stdBcdPath, stdFeatPath, barcodes)
|
||
|
||
'''========= 构建用于比对的标准特征字典 ============='''
|
||
stdDict = {}
|
||
for barcode in barcodes:
|
||
stdpath = os.path.join(stdFeatPath, barcode+'.pickle')
|
||
with open(stdpath, 'rb') as f:
|
||
stddata = pickle.load(f)
|
||
stdDict[barcode] = stddata
|
||
|
||
'''========= 构建用于比对的操作事件字典 ============='''
|
||
evtDict = {}
|
||
for event, barcode in evtList:
|
||
evtpath = os.path.join(eventFeatPath, event+'.pickle')
|
||
with open(evtpath, 'rb') as f:
|
||
evtdata = pickle.load(f)
|
||
evtDict[event] = evtdata
|
||
|
||
|
||
'''===== 构造 3 个事件对: 扫 A 放 A, 扫 A 放 B, 合并 ===================='''
|
||
AA_list = [(event, barcode, "same") for event, barcode in evtList]
|
||
AB_list = []
|
||
for event, barcode in evtList:
|
||
dset = list(barcodes.symmetric_difference(set([barcode])))
|
||
idx = random.randint(0, len(dset)-1)
|
||
AB_list.append((event, dset[idx], "diff"))
|
||
|
||
mergePairs = AA_list + AB_list
|
||
|
||
'''读取事件、标准特征文件中数据,以 AA_list 和 AB_list 中关键字为 key 生成字典'''
|
||
results = []
|
||
for evt, stdbcd, label in mergePairs:
|
||
## 标准特征字典的构造方式不合适,需改进,不能用具体的barcode做key值
|
||
|
||
|
||
event = evtDict[evt]
|
||
|
||
|
||
## 判断是否存在轨迹图像文件夹,不存在则创建文件夹并保存轨迹图像
|
||
pairpath = os.path.join(subimgPath, f"{evt}")
|
||
if not os.path.exists(pairpath):
|
||
os.makedirs(pairpath)
|
||
save_event_subimg(event, pairpath)
|
||
|
||
## 判断是否存在 barcode 样本集图像文件夹,不存在则创建文件夹并存储 barcode 样本集图像
|
||
stdImgpath = stdDict[stdbcd]["imgpaths"]
|
||
pstdpath = os.path.join(subimgPath, f"{stdbcd}")
|
||
if not os.path.exists(pstdpath):
|
||
os.makedirs(pstdpath)
|
||
ii = 1
|
||
for filepath in stdImgpath:
|
||
stdpath = os.path.join(pstdpath, f"{stdbcd}_{ii}.png")
|
||
shutil.copy2(filepath, stdpath)
|
||
ii += 1
|
||
|
||
|
||
stdfeat = stdDict[stdbcd]["feats"]
|
||
evtfeat = event["feats_compose"]
|
||
|
||
# 比较特征归一化前后的相似度变化情况
|
||
|
||
matrix = 1 - cdist(stdfeat, evtfeat, 'cosine')
|
||
simi_mean = np.mean(matrix)
|
||
simi_max = np.max(matrix)
|
||
|
||
stdfeatm = np.mean(stdfeat, axis=0, keepdims=True)
|
||
evtfeatm = np.mean(evtfeat, axis=0, keepdims=True)
|
||
simi_mfeat = 1- np.maximum(0.0, cdist(stdfeatm, evtfeatm, 'cosine'))
|
||
|
||
results.append((label, stdbcd, evt, simi_mean, simi_max, simi_mfeat[0,0]))
|
||
|
||
print("contrast performance evaluate have done!")
|
||
|
||
tm = datetime.fromtimestamp(time.time()).strftime('%Y%m%d_%H%M%S')
|
||
with open(f'{tm}.pickle', 'wb') as f:
|
||
pickle.dump(results, f)
|
||
|
||
with open(f'{tm}.txt', 'w', encoding='utf-8') as f:
|
||
for result in results:
|
||
part = [f"{x:.3f}" if isinstance(x, float) else str(x) for x in result]
|
||
line = ', '.join(part)
|
||
f.write(line + '\n')
|
||
|
||
def compute_contrast_accuracy(pickpath):
|
||
|
||
pickfile = os.path.basename(pickpath)
|
||
file, _ = os.path.splitext(pickfile)
|
||
|
||
# tm = datetime.fromtimestamp(time.time()).strftime('%Y%m%d_%H%M%S')
|
||
|
||
|
||
with open(pickpath, 'rb') as f:
|
||
results = pickle.load(f)
|
||
|
||
Same, Cross = [], []
|
||
for label, stdbcd, evt, simi_mean, simi_max, simi_mft in results:
|
||
if label == "same":
|
||
Same.append(simi_max)
|
||
if label == "diff":
|
||
Cross.append(simi_max)
|
||
|
||
|
||
Same = np.array(Same)
|
||
Cross = np.array(Cross)
|
||
TPFN = len(Same)
|
||
TNFP = len(Cross)
|
||
|
||
fig, axs = plt.subplots(2, 1)
|
||
axs[0].hist(Same, bins=60, edgecolor='black')
|
||
axs[0].set_xlim([-0.2, 1])
|
||
axs[0].set_title(f'Same Barcode, Num: {TPFN}')
|
||
|
||
axs[1].hist(Cross, bins=60, edgecolor='black')
|
||
axs[1].set_xlim([-0.2, 1])
|
||
axs[1].set_title(f'Cross Barcode, Num: {TNFP}')
|
||
plt.savefig(f'./result/{file}_hist.png') # svg, png, pdf
|
||
|
||
|
||
Recall_Pos, Recall_Neg = [], []
|
||
Precision_Pos, Precision_Neg = [], []
|
||
Correct = []
|
||
Thresh = np.linspace(-0.2, 1, 100)
|
||
for th in Thresh:
|
||
TP = np.sum(Same > th)
|
||
FN = TPFN - TP
|
||
TN = np.sum(Cross < th)
|
||
FP = TNFP - TN
|
||
|
||
Recall_Pos.append(TP/TPFN)
|
||
Recall_Neg.append(TN/TNFP)
|
||
Precision_Pos.append(TP/(TP+FP+1e-6))
|
||
Precision_Neg.append(TN/(TN+FN+1e-6))
|
||
Correct.append((TN+TP)/(TPFN+TNFP))
|
||
|
||
fig, ax = plt.subplots()
|
||
ax.plot(Thresh, Correct, 'r', label='Correct: (TN+TP)/(TPFN+TNFP)')
|
||
ax.plot(Thresh, Recall_Pos, 'b', label='Recall_Pos: TP/TPFN')
|
||
ax.plot(Thresh, Recall_Neg, 'g', label='Recall_Neg: TN/TNFP')
|
||
ax.plot(Thresh, Precision_Pos, 'c', label='Precision_Pos: TP/(TP+FP)')
|
||
ax.plot(Thresh, Precision_Neg, 'm', label='Precision_Neg: TN/(TN+FN)')
|
||
|
||
ax.set_xlim([0, 1])
|
||
ax.set_ylim([0, 1])
|
||
ax.grid(True)
|
||
ax.set_title('PrecisePos & PreciseNeg')
|
||
ax.set_xlabel(f"Same Num: {TPFN}, Cross Num: {TNFP}")
|
||
ax.legend()
|
||
plt.show()
|
||
plt.savefig(f'./result/{file}_pr.png') # svg, png, pdf
|
||
|
||
print("Haved done!!!")
|
||
|
||
|
||
|
||
def generate_event_and_stdfeatures():
|
||
stdSamplePath = r"\\192.168.1.28\share\已标注数据备份\对比数据\barcode\barcode_1771"
|
||
stdBarcodePath = r"\\192.168.1.28\share\测试_202406\contrast\std_barcodes"
|
||
stdFeaturePath = r"\\192.168.1.28\share\测试_202406\contrast\std_features"
|
||
|
||
'''=========================== 1. 生成标准特征集 ========================'''
|
||
'''1.1 提取并保存标准特征库原始图像文件地址字典'''
|
||
# get_std_barcodeDict(stdSamplePath, stdBarcodePath)
|
||
# print("standard imgpath have extracted and saved")
|
||
|
||
|
||
'''1.2 特征提取,并保存至文件夹 stdFeaturePath 中,也可在运行过程中根据barcodes交集执行'''
|
||
# stdfeat_infer(stdBarcodePath, stdFeaturePath, bcdSet=None)
|
||
# print("standard features have generated!")
|
||
|
||
|
||
'''=========================== 2. 提取并存储事件特征 ========================'''
|
||
eventDatePath = [# r'\\192.168.1.28\share\测试_202406\0723\0723_1',
|
||
# r'\\192.168.1.28\share\测试_202406\0723\0723_2',
|
||
# r'\\192.168.1.28\share\测试_202406\0723\0723_3',
|
||
# r'\\192.168.1.28\share\测试_202406\0722\0722_01',
|
||
# r'\\192.168.1.28\share\测试_202406\0722\0722_02'
|
||
# r'\\192.168.1.28\share\测试_202406\0719\719_3',
|
||
# r'\\192.168.1.28\share\测试_202406\0716\0716_1',
|
||
# r'\\192.168.1.28\share\测试_202406\0716\0716_2',
|
||
# r'\\192.168.1.28\share\测试_202406\0716\0716_3',
|
||
# r'\\192.168.1.28\share\测试_202406\0712\0712_1', # 无帧图像
|
||
# r'\\192.168.1.28\share\测试_202406\0712\0712_2', # 无帧图像
|
||
]
|
||
eventFeatPath = r"\\192.168.1.28\share\测试_202406\contrast\events"
|
||
subimgPath = r'\\192.168.1.28\share\测试_202406\contrast\subimgs'
|
||
|
||
eventList = []
|
||
# k = 0
|
||
for datePath in eventDatePath:
|
||
for eventName in os.listdir(datePath):
|
||
pickpath = os.path.join(eventFeatPath, f"{eventName}.pickle")
|
||
if os.path.isfile(pickpath):
|
||
continue
|
||
|
||
eventPath = os.path.join(datePath, eventName)
|
||
|
||
eventDict = creat_shopping_event(eventPath)
|
||
if eventDict:
|
||
eventList.append(eventDict)
|
||
with open(pickpath, 'wb') as f:
|
||
pickle.dump(eventDict, f)
|
||
print(f"Event: {eventName}, have saved!")
|
||
|
||
# k += 1
|
||
# if k==1:
|
||
# break
|
||
|
||
## 保存轨迹中 boxes 子图
|
||
# for event in eventList:
|
||
# basename = os.path.basename(event['filepath'])
|
||
# savepath = os.path.join(subimgPath, basename)
|
||
# if not os.path.exists(savepath):
|
||
# os.makedirs(savepath)
|
||
# save_event_subimg(event, savepath)
|
||
|
||
print("eventList have generated and features have saved!")
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
def main():
|
||
# generate_event_and_stdfeatures()
|
||
|
||
contrast_performance_evaluate()
|
||
|
||
ppath = r"D:\DetectTracking\contrast"
|
||
for filename in os.listdir(ppath):
|
||
if filename.find('.pickle') < 0:
|
||
continue
|
||
|
||
pickpath = os.path.join(ppath, filename)
|
||
compute_contrast_accuracy(pickpath)
|
||
|
||
|
||
|
||
if __name__ == '__main__':
|
||
main()
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|