update for bakeup

This commit is contained in:
王庆刚
2024-08-06 20:00:29 +08:00
parent 27d57b21d4
commit 5109400a57
19 changed files with 497 additions and 352 deletions

View File

@ -1,3 +1,15 @@
# -*- coding: utf-8 -*-
"""
Created on Sat Jul ** 14:07:25 2024
现场测试精度、召回率分析程序,是 feat_select.py 的简化版,
但支持循环计算并输出总的pr曲线
@author: ym
"""
import os.path
import shutil
@ -10,41 +22,6 @@ sys.path.append(r"D:\DetectTracking")
from tracking.utils.read_data import extract_data, read_deletedBarcode_file, read_tracking_output
from tracking.utils.plotting import draw_tracking_boxes
VideoFormat = ['.mp4', '.avi']
def video2imgs(videopath, savepath):
k = 0
have = False
for filename in os.listdir(videopath):
file, ext = os.path.splitext(filename)
if ext not in VideoFormat:
continue
basename = os.path.basename(videopath)
imgbase = basename + '_' + file
imgdir = os.path.join(savepath, imgbase)
if not os.path.exists(imgdir):
os.mkdir(imgdir)
video = os.path.join(videopath, filename)
cap = cv2.VideoCapture(video)
i = 0
while True:
ret, frame = cap.read()
if not ret:
break
imgp = os.path.join(imgdir, file+f"_{i}.png")
i += 1
cv2.imwrite(imgp, frame)
cap.release()
print(filename + f" haved resolved")
k+=1
if k==1000:
break
def showHist(err, correct):
@ -309,6 +286,24 @@ def save_tracking_imgpairs(pair, basepath, savepath):
cv2.imwrite(imgpath, img)
# def performance_evaluate(all_list, isshow=False):
# corrpairs, correct_barcode_list, correct_similarity, errpairs, err_barcode_list, err_similarity = [], [], [], [], [], []
# for s_list in all_list:
# seqdir = s_list['SeqDir'].strip()
# delete = s_list['Deleted'].strip()
# barcodes = [s.strip() for s in s_list['barcode']]
# similarity = [float(s.strip()) for s in s_list['similarity']]
# if delete in barcodes[:1]:
# corrpairs.append((seqdir, delete))
# correct_barcode_list.append(delete)
# correct_similarity.append(similarity[0])
# else:
# errpairs.append((seqdir, delete, barcodes[0]))
# err_barcode_list.append(delete)
# err_similarity.append(similarity[0])
def performance_evaluate(all_list, isshow=False):
corrpairs, correct_barcode_list, correct_similarity, errpairs, err_barcode_list, err_similarity = [], [], [], [], [], []
@ -316,17 +311,32 @@ def performance_evaluate(all_list, isshow=False):
seqdir = s_list['SeqDir'].strip()
delete = s_list['Deleted'].strip()
barcodes = [s.strip() for s in s_list['barcode']]
similarity = [float(s.strip()) for s in s_list['similarity']]
if delete in barcodes[:1]:
similarity_comp, similarity_front = [], []
for simil in s_list['similarity']:
ss = [float(s.strip()) for s in simil.split(',')]
similarity_comp.append(ss[0])
if len(ss)==3:
similarity_front.append(ss[2])
if len(similarity_front):
similarity = [s for s in similarity_front]
else:
similarity = [s for s in similarity_comp]
index = similarity.index(max(similarity))
matched_barcode = barcodes[index]
if matched_barcode == delete:
corrpairs.append((seqdir, delete))
correct_barcode_list.append(delete)
correct_similarity.append(similarity[0])
correct_similarity.append(max(similarity))
else:
errpairs.append((seqdir, delete, barcodes[0]))
errpairs.append((seqdir, delete, matched_barcode))
err_barcode_list.append(delete)
err_similarity.append(similarity[0])
err_similarity.append(max(similarity))
'''3. 计算比对性能 '''
if isshow:
@ -338,6 +348,14 @@ def performance_evaluate(all_list, isshow=False):
return errpairs, corrpairs, err_similarity, correct_similarity
def contrast_analysis(del_barcode_file, basepath, savepath, saveimgs=False):
'''
del_barcode_file: 测试数据文件,利用该文件进行算法性能分析
@ -371,11 +389,6 @@ def contrast_loop(fpath):
if os.path.isfile(fpath):
fpath, filename = os.path.split(fpath)
BarLists, blists = {}, []
for filename in os.listdir(fpath):
file = os.path.splitext(filename)[0][15:]
@ -386,8 +399,6 @@ def contrast_loop(fpath):
BarLists.update({file: blist})
blists.extend(blist)
BarLists.update({file: blist})
BarLists.update({"Total": blists})
for file, blist in BarLists.items():
@ -406,8 +417,6 @@ def contrast_loop(fpath):
# plt2.savefig(os.path.join(savepath, file+'_hist.png'))
# plt.close()
def main():
fpath = r'\\192.168.1.28\share\测试_202406\deletedBarcode\other'
@ -423,17 +432,12 @@ def main1():
except Exception as e:
print(f'Error Type: {e}')
def resolve_vidoes():
videopath = r"\\192.168.1.28\share\测试_202406\0719\719_1\20240719-103533_"
savepath = r"D:\contrast\result"
video2imgs(videopath, savepath)
if __name__ == '__main__':
main()
# main1()
# resolve_vidoes()

View File

@ -93,14 +93,15 @@ class Track:
self.tid = int(boxes[0, 4])
self.cls = int(boxes[0, 6])
self.frnum = boxes.shape[0]
self.imgBorder = False
self.isCornpoint = False
self.imgshape = imgshape
self.state = MoveState.Unknown
self.isBorder = False
# self.state = MoveState.Unknown
'''轨迹开始帧、结束帧 ID'''
self.start_fid = int(np.min(boxes[:, 7]))
self.end_fid = int(np.max(boxes[:, 7]))
# self.start_fid = int(np.min(boxes[:, 7]))
# self.end_fid = int(np.max(boxes[:, 7]))
''''''
self.Hands = []
@ -326,6 +327,34 @@ class Track:
self.posState = self.Cent_isIncart+self.LB_isIncart+self.RB_isIncart
def is_freemove(self):
# if self.tid==4:
# print(f"track ID: {self.tid}")
# boxes = self.boxes
# features = self.features
# similars = 1 - np.maximum(0.0, cdist(self.features, self.features, metric = 'cosine'))
box1 = self.boxes[0, :4]
box2 = self.boxes[-1, :4]
''' 第1帧、最后一帧subimg的相似度 '''
feat1 = self.features[0, :][None, :]
feat2 = self.features[-1, :][None, :]
similar = 1 - np.maximum(0.0, cdist(feat1, feat2, metric = 'cosine'))
condta = similar > 0.8
''' 第1帧、最后一帧 boxes 四个角点间的距离 '''
ptd = box2 - box1
ptd1 = np.linalg.norm((ptd[0], ptd[1]))
ptd2 = np.linalg.norm((ptd[2], ptd[1]))
ptd3 = np.linalg.norm((ptd[0], ptd[3]))
ptd4 = np.linalg.norm((ptd[2], ptd[3]))
condtb = ptd1<50 and ptd2<50 and ptd3<50 and ptd4<50
condt = condta and condtb
return condt
def extract_hand_features(self):
assert self.cls == 0, "The class of traj must be HAND!"

View File

@ -50,6 +50,12 @@ class doBackTracks(doTracks):
tracks = self.sub_tracks(tracks, static_tracks)
tracks_free = [t for t in tracks if t.frnum>1 and t.is_freemove()]
self.FreeMove.extend(tracks_free)
tracks = self.sub_tracks(tracks, tracks_free)
# '''购物框边界外具有运动状态的干扰目标'''
# out_trcak = [t for t in tracks if t.is_OutTrack()]
# tracks = self.sub_tracks(tracks, out_trcak)

View File

@ -45,6 +45,9 @@ class doFrontTracks(doTracks):
'''剔除静止目标后的 tracks'''
tracks = self.sub_tracks(tracks, static_tracks)
tracks_free = [t for t in tracks if t.frnum>1 and t.is_freemove()]
self.FreeMove.extend(tracks_free)
# [self.associate_with_hand(htrack, gtrack) for htrack in hand_tracks for gtrack in tracks]
'''轨迹循环归并'''
merged_tracks = self.merge_tracks_loop(tracks)

View File

@ -217,6 +217,9 @@ class backTrack(Track):
return condt
def is_OutTrack(self):
if self.posState <= 1:
isout = True

View File

@ -2,6 +2,8 @@
"""
Created on Sat Jul 27 14:07:25 2024
现场测试数据,在不同特征组合情况下的精度、召回率分析程序
@author: ym
"""
import os.path
@ -13,7 +15,8 @@ sys.path.append(r"D:\DetectTracking")
from tracking.utils.read_data import extract_data, read_deletedBarcode_file, read_tracking_output
from tracking.dotrack.dotracks import Track
from tracking.contrast_analysis import performance_evaluate, compute_recall_precision, show_recall_prec
from tracking.contrast_analysis import compute_recall_precision, show_recall_prec
from tracking.contrast_analysis import performance_evaluate
def compute_similar(feat1, feat2):
@ -26,10 +29,6 @@ def compute_similar(feat1, feat2):
return smean
def update_event(datapath):
'''一次购物事件,包含 8 个keys'''
event = {}
@ -47,6 +46,38 @@ def update_event(datapath):
event['feats_compose'] = np.empty((0, 256), dtype=np.float64)
event['feats_select'] = np.empty((0, 256), dtype=np.float64)
# '''读取 track.data 文件中的数据'''
# fpath_0_track = os.path.join(datapath, '0_track.data')
# fpath_1_track = os.path.join(datapath, '1_track.data')
# if os.path.exists(fpath_0_track) and os.path.isfile(fpath_0_track):
# _, _, _, _, tracking_boxes, tracking_feat_dict = extract_data(fpath_0_track)
# event['back_tracking_boxes'] = tracking_boxes
# event['back_tracking_feats'] = tracking_feat_dict
# if os.path.exists(fpath_1_track) and os.path.isfile(fpath_1_track):
# _, _, _, _, tracking_boxes, tracking_feat_dict = extract_data(fpath_1_track)
# event['front_tracking_boxes'] = tracking_boxes
# event['front_tracking_feats'] = tracking_feat_dict
# =============================================================================
# '''================1. 直接指定读取,速度快======================================'''
# '''读取 tracking_output.data 文件中的数据'''
# fpath_0_tracking = os.path.join(datapath, '0_tracking_output.data')
# fpath_1_tracking = os.path.join(datapath, '1_tracking_output.data')
# if os.path.exists(fpath_0_tracking) and os.path.isfile(fpath_0_tracking):
# tracking_output_boxes, tracking_output_feats = read_tracking_output(fpath_0_tracking)
# event['back_sole_boxes'] = tracking_output_boxes
# event['back_sole_feats'] = tracking_output_feats
#
# if os.path.exists(fpath_1_tracking) and os.path.isfile(fpath_1_tracking):
# tracking_output_boxes, tracking_output_feats = read_tracking_output(fpath_1_tracking)
# event['front_sole_boxes'] = tracking_output_boxes
# event['front_sole_feats'] = tracking_output_feats
# =============================================================================
'''================2. 遍历方式读取(与以上方式二选一)======================================'''
'''读取当前事件的 data 文件'''
for filename in os.listdir(datapath):
# filename = '1_track.data'
@ -62,8 +93,6 @@ def update_event(datapath):
# event['front_tracking_boxes'] = tracking_boxes
# event['front_tracking_feats'] = tracking_feat_dict
if os.path.isfile(fpath) and filename.find("tracking_output.data")>0:
tracking_output_boxes, tracking_output_feats = read_tracking_output(fpath)
if CamerType == '0':
@ -75,7 +104,6 @@ def update_event(datapath):
'''事件的特征表征方式选择'''
fs_feats = event['front_sole_feats']
bs_feats = event['back_sole_feats']
@ -100,50 +128,56 @@ def update_event(datapath):
'''4. 从前摄输出轨迹中选取特定轨迹对应的特征'''
ftrboxes = event['front_tracking_boxes']
ftrfeats = event['front_tracking_feats']
condt2 = len(ftrboxes) + len(ftrfeats) == 0
condt3 = len(ftrfeats) != len(ftrboxes)
if condt2 or condt3:
return event
bprops = []
for boxes in ftrboxes:
track = Track(boxes)
bprops.append(max(track.trajdist))
index = bprops.index(max(bprops))
box_select = ftrboxes[index]
tid = int(box_select[0, 4])
feat_select = ftrfeats[f"track_{tid}"]
feats_select = np.empty((0, 256), dtype=np.float64)
for fid_bid, feat in feat_select['feats'].items():
feats_select = np.concatenate((feats_select, feat[None, :]), axis=0)
event['feats_select'] = feats_select
# =============================================================================
# ftrboxes = event['front_tracking_boxes']
# ftrfeats = event['front_tracking_feats']
#
# condt2 = len(ftrboxes) + len(ftrfeats) == 0
# condt3 = len(ftrfeats) != len(ftrboxes)
# if condt2 or condt3:
# return event
#
# bprops = []
# for boxes in ftrboxes:
# track = Track(boxes)
# bprops.append(max(track.trajdist))
#
# index = bprops.index(max(bprops))
# box_select = ftrboxes[index]
# tid = int(box_select[0, 4])
#
# feat_select = ftrfeats[f"track_{tid}"]
# feats_select = np.empty((0, 256), dtype=np.float64)
# for fid_bid, feat in feat_select['feats'].items():
# feats_select = np.concatenate((feats_select, feat[None, :]), axis=0)
# event['feats_select'] = feats_select
# =============================================================================
return event
def creatd_deletedBarcode_front(filepath):
# filepath = r'\\192.168.1.28\share\测试_202406\0723\0723_1\deletedBarcode.txt'
basepath, _ = os.path.split(filepath)
MatchList = []
bcdlist = read_deletedBarcode_file(filepath)
MatchList = []
k = 0
for s_list in bcdlist:
getout_fold = s_list['SeqDir'].strip()
getout_path = os.path.join(basepath, getout_fold)
'''取出事件文件夹不存在,跳出循环'''
if not os.path.exists(getout_path) and not os.path.isdir(getout_path):
continue
day, hms = getout_fold.strip('_').split('-')
''' 生成取出事件字典 '''
getout_event = {}
getout_event['barcode'] = s_list['Deleted'].strip()
getout_event['path'] = os.path.join(basepath, getout_fold)
getout_event['path'] = getout_path
getout_event['feats_compose'] = np.empty((0, 256), dtype=np.float64)
getout_event['feats_select'] = np.empty((0, 256), dtype=np.float64)
@ -164,19 +198,20 @@ def creatd_deletedBarcode_front(filepath):
infold = pathname.split('_')
if len(infold)!=2: continue
if len(infold[0])<=14 or len(infold[1])<=10: continue
day1, hms1 = infold[0].split('-')
if day1==day and infold[1]==barcode and int(hms1)<int(hms):
input_folds.append(pathname)
times.append(int(hms1))
if len(input_folds)==0: continue
''' 根据时间排序,选择离取出操作最近时间的文件夹,作为取出操作应的放入操作所对应的文件夹 '''
input_path = ''
if len(input_folds):
indice = np.argsort(np.array(times))
input_fold = input_folds[indice[-1]]
input_path = os.path.join(basepath, input_fold)
input_fold = input_folds[times.index(max(times))]
input_path = os.path.join(basepath, input_fold)
if not os.path.exists(getout_path) and not os.path.isdir(getout_path):
continue
input_event['barcode'] = barcode
input_event['path'] = input_path
@ -192,22 +227,23 @@ def creatd_deletedBarcode_front(filepath):
# k += 1
# if k==2:
# break
print('Step 1 Done!')
print('Step 1: Event init Done!')
for getout_event, InputList in MatchList:
getout_path = getout_event['path']
if os.path.exists(getout_path) and os.path.isdir(getout_path):
event = update_event(getout_path)
getout_event.update(event)
for input_event in InputList:
input_path = input_event['path']
if os.path.exists(input_path) and os.path.isdir(input_path):
event = update_event(input_path)
input_event.update(event)
print('Step 2 Done!')
'''====== 放入事件是在取出事件存在的情况下分析 ======'''
for input_event in InputList:
input_path = input_event['path']
if os.path.exists(input_path) and os.path.isdir(input_path):
event = update_event(input_path)
input_event.update(event)
print('Step 2: Event update Done!')
results = []
for getout_event, InputList in MatchList:
getout_barcode = getout_event['barcode']
@ -242,10 +278,10 @@ def creatd_deletedBarcode_front(filepath):
# result[f'{input_barcode}'] = (input_event['similarity'], similar_comp, similar_selt)
results.append(result)
print('Step 3 Done!')
print('Step 3: Similarity conputation Done!')
wpath = os.path.split(filepath)[0]
wfile = os.path.join(wpath, 'deletedBarcodeTest.txt')
wfile = os.path.join(wpath, 'deletedBarcodeTest_x.txt')
with open(wfile, 'w', encoding='utf-8') as file:
for result in results:
@ -260,52 +296,13 @@ def creatd_deletedBarcode_front(filepath):
file.write(f'{key}: ')
file.write(f'{value[0]}, {value[1]:.3f}, {value[2]:.3f}\n')
print('Step 4 Done!')
print('Step 4: File writting Done!')
def front_performance_evaluate(all_list):
corrpairs, correct_barcode_list, correct_similarity, errpairs, err_barcode_list, err_similarity = [], [], [], [], [], []
for s_list in all_list:
seqdir = s_list['SeqDir'].strip()
delete = s_list['Deleted'].strip()
barcodes = [s.strip() for s in s_list['barcode']]
similarity, front_similarity = [], []
for simil in s_list['similarity']:
ss = [float(s.strip()) for s in simil.split(',')]
similarity.append(ss[0])
if len(ss)==3:
front_similarity.append(ss[2])
# similarity = [float(s.strip()) for s in s_list['similarity']]
index = front_similarity.index(max(front_similarity))
matched_barcode = barcodes[index]
if matched_barcode == delete:
corrpairs.append((seqdir, delete))
correct_barcode_list.append(delete)
correct_similarity.append(max(front_similarity))
else:
errpairs.append((seqdir, delete, matched_barcode))
err_barcode_list.append(delete)
err_similarity.append(max(front_similarity))
return errpairs, corrpairs, err_similarity, correct_similarity
def compute_pres(filepath, savepath):
def compute_precision(filepath, savepath):
fpath = os.path.split(filepath)[0]
@ -330,7 +327,7 @@ def compute_pres(filepath, savepath):
'''2. 优先选取前摄特征的相似度比对性能'''
fpath2 = os.path.join(fpath, 'deletedBarcodeTest.txt')
blist2 = read_deletedBarcode_file(fpath2)
front_errpairs, front_corrpairs, front_err_similarity, front_correct_similarity = front_performance_evaluate(blist2)
front_errpairs, front_corrpairs, front_err_similarity, front_correct_similarity = performance_evaluate(blist2)
front_recall, front_prec, front_ths = compute_recall_precision(front_err_similarity, front_correct_similarity)
plt2 = show_recall_prec(front_recall, front_prec, front_ths)
@ -341,56 +338,61 @@ def compute_pres(filepath, savepath):
plt2.close()
def main():
fplist = [r'\\192.168.1.28\share\测试_202406\0723\0723_1\deletedBarcode.txt',
r'\\192.168.1.28\share\测试_202406\0723\0723_2\deletedBarcode.txt',
r'\\192.168.1.28\share\测试_202406\0723\0723_3\deletedBarcode.txt',
r'\\192.168.1.28\share\测试_202406\0722\0722_01\deletedBarcode.txt',
r'\\192.168.1.28\share\测试_202406\0722\0722_02\deletedBarcode.txt',
r'\\192.168.1.28\share\测试_202406\0719\0719_1\deletedBarcode.txt',
r'\\192.168.1.28\share\测试_202406\0719\0719_2\deletedBarcode.txt',
r'\\192.168.1.28\share\测试_202406\0719\0719_3\deletedBarcode.txt',
r'\\192.168.1.28\share\测试_202406\0719\0719_4\deletedBarcode.txt',
r'\\192.168.1.28\share\测试_202406\0718\0718-1\deletedBarcode.txt',
r'\\192.168.1.28\share\测试_202406\0718\0718-2\deletedBarcode.txt',
r'\\192.168.1.28\share\测试_202406\0717\0717-1\deletedBarcode.txt',
r'\\192.168.1.28\share\测试_202406\0717\0717-2\deletedBarcode.txt',
r'\\192.168.1.28\share\测试_202406\0717\0717-3\deletedBarcode.txt',
r'\\192.168.1.28\share\测试_202406\0716\0716_1\deletedBarcode.txt',
r'\\192.168.1.28\share\测试_202406\0716\0716_2\deletedBarcode.txt',
r'\\192.168.1.28\share\测试_202406\0716\0716_3\deletedBarcode.txt',
r'\\192.168.1.28\share\测试_202406\0715\0715_1\deletedBarcode.txt',
r'\\192.168.1.28\share\测试_202406\0715\0715_2\deletedBarcode.txt',
r'\\192.168.1.28\share\测试_202406\0715\0715_3\deletedBarcode.txt',
r'\\192.168.1.28\share\测试_202406\0712\0712_2\deletedBarcode.txt',
r'\\192.168.1.28\share\测试_202406\0712\0712_3\deletedBarcode.txt',
r'\\192.168.1.28\share\测试_202406\711\images01\deletedBarcode.txt',
r'\\192.168.1.28\share\测试_202406\711\images02\deletedBarcode.txt',
r'\\192.168.1.28\share\测试_202406\710\images_1\deletedBarcode.txt',
r'\\192.168.1.28\share\测试_202406\710\images_2\deletedBarcode.txt',
r'\\192.168.1.28\share\测试_202406\709\deletedBarcode.txt',
r'\\192.168.1.28\share\测试_202406\705\deletedBarcode.txt',
r'\\192.168.1.28\share\测试_202406\703\deletedBarcode.txt',
r'\\192.168.1.28\share\测试_202406\702_pm_1\images\deletedBarcode.txt',
r'\\192.168.1.28\share\测试_202406\702_pm_2\images\deletedBarcode.txt',
r'\\192.168.1.28\share\测试_202406\702_pm_3\images\deletedBarcode.txt',
r'\\192.168.1.28\share\测试_202406\702_am\images\deletedBarcode.txt',
r'\\192.168.1.28\share\测试_202406\702_pm\images\deletedBarcode.txt',
r'\\192.168.1.28\share\测试_202406\701_am\images\deletedBarcode.txt',
r'\\192.168.1.28\share\测试_202406\628\1\deletedBarcode.txt',
r'\\192.168.1.28\share\测试_202406\628\2\deletedBarcode.txt',
r'\\192.168.1.28\share\测试_202406\627\deletedBarcode.txt',
r'\\192.168.1.28\share\测试_202406\625\deletedBarcode.txt',
fplist = [#r'\\192.168.1.28\share\测试_202406\0723\0723_1\deletedBarcode.txt',
# r'\\192.168.1.28\share\测试_202406\0723\0723_2\deletedBarcode.txt',
# r'\\192.168.1.28\share\测试_202406\0723\0723_3\deletedBarcode.txt',
# r'\\192.168.1.28\share\测试_202406\0722\0722_01\deletedBarcode.txt',
# r'\\192.168.1.28\share\测试_202406\0722\0722_02\deletedBarcode.txt',
# r'\\192.168.1.28\share\测试_202406\0719\719_1\deletedBarcode.txt',
# r'\\192.168.1.28\share\测试_202406\0719\719_2\deletedBarcode.txt',
# r'\\192.168.1.28\share\测试_202406\0719\719_3\deletedBarcode.txt',
# r'\\192.168.1.28\share\测试_202406\0719\719_4\deletedBarcode.txt',
# r'\\192.168.1.28\share\测试_202406\0718\0718-1\deletedBarcode.txt',
# r'\\192.168.1.28\share\测试_202406\0718\0718-2\deletedBarcode.txt',
# r'\\192.168.1.28\share\测试_202406\0717\0717-1\deletedBarcode.txt',
# r'\\192.168.1.28\share\测试_202406\0717\0717-2\deletedBarcode.txt',
# r'\\192.168.1.28\share\测试_202406\0717\0717-3\deletedBarcode.txt',
# r'\\192.168.1.28\share\测试_202406\0716\0716_1\deletedBarcode.txt',
# r'\\192.168.1.28\share\测试_202406\0716\0716_2\deletedBarcode.txt',
# r'\\192.168.1.28\share\测试_202406\0716\0716_3\deletedBarcode.txt',
# r'\\192.168.1.28\share\测试_202406\0715\0715_1\deletedBarcode.txt',
# r'\\192.168.1.28\share\测试_202406\0715\0715_2\deletedBarcode.txt',
# r'\\192.168.1.28\share\测试_202406\0715\0715_3\deletedBarcode.txt',
# r'\\192.168.1.28\share\测试_202406\0712\0712_1\deletedBarcode.txt',
# r'\\192.168.1.28\share\测试_202406\0712\0712_2\deletedBarcode.txt',
# r'\\192.168.1.28\share\测试_202406\711\images01\deletedBarcode.txt',
# r'\\192.168.1.28\share\测试_202406\711\images02\deletedBarcode.txt',
# r'\\192.168.1.28\share\测试_202406\710\images_1\deletedBarcode.txt',
# r'\\192.168.1.28\share\测试_202406\710\images_2\deletedBarcode.txt',
# r'\\192.168.1.28\share\测试_202406\709\deletedBarcode.txt',
# r'\\192.168.1.28\share\测试_202406\705\deletedBarcode.txt',
# r'\\192.168.1.28\share\测试_202406\703\deletedBarcode.txt',
# r'\\192.168.1.28\share\测试_202406\702_pm_1\702_pm_1\deletedBarcode.txt',
# r'\\192.168.1.28\share\测试_202406\702_pm_3\702_pm_3\deletedBarcode.txt',
# r'\\192.168.1.28\share\测试_202406\701_am\deletedBarcode.txt',
# r'\\192.168.1.28\share\测试_202406\701_pm\701_pm\deletedBarcode.txt',
# r'\\192.168.1.28\share\测试_202406\628\1\deletedBarcode.txt',
# r'\\192.168.1.28\share\测试_202406\628\2\deletedBarcode.txt',
# r'\\192.168.1.28\share\测试_202406\627\deletedBarcode.txt',
]
fplist = [#r'\\192.168.1.28\share\测试_202406\0723\0723_1\deletedBarcode.txt',
# r'\\192.168.1.28\share\测试_202406\0723\0723_3\deletedBarcode.txt',
r'\\192.168.1.28\share\测试_202406\0723\0723_3\deletedBarcodeTest.txt',
]
savepath = r'\\192.168.1.28\share\测试_202406\deletedBarcode\illustration'
for filepath in fplist:
print(filepath)
# creatd_deletedBarcode_front(filepath)
compute_precision(filepath, savepath)
try:
creatd_deletedBarcode_front(filepath)
compute_pres(filepath, savepath)
except Exception as e:
print(f'Error: {e}')
# try:
# creatd_deletedBarcode_front(filepath)
# compute_pres(filepath, savepath)
# except Exception as e:
# print(f'{filepath}, Error: {e}')
if __name__ == '__main__':
main()

View File

@ -10,6 +10,7 @@ import os
import cv2
import numpy as np
from pathlib import Path
import warnings
import sys
sys.path.append(r"D:\DetectTracking")
@ -203,7 +204,7 @@ def do_tracker_tracking(fpath, save_dir):
def do_tracking(fpath, savedir):
def do_tracking(fpath, savedir, event_name='images'):
'''
fpath: 算法各模块输出的data文件地址匹配
savedir: 对 fpath 各模块输出的复现;
@ -212,53 +213,59 @@ def do_tracking(fpath, savedir):
# fpath = r'D:\contrast\dataset\1_to_n\709\20240709-102758_6971558612189\1_track.data'
# savedir = r'D:\contrast\dataset\result\20240709-102843_6958770005357_6971558612189\error_6971558612189'
'''1.1 构造 0/1_tracking_output.data 文件地址,读取文件数据'''
imgpath, dfname = os.path.split(fpath)
CamerType = dfname.split('_')[0]
'''1.1 构造 0/1_tracking_output.data 文件地址,读取文件数据'''
tracking_output_path = os.path.join(imgpath, CamerType + '_tracking_output.data')
basename = os.path.basename(imgpath)
if not os.path.isfile(fpath):
print(f"Can't find {dfname} file!")
return
print(f"{basename}: Can't find {dfname} file!")
return None, None
if not os.path.isfile(tracking_output_path):
print(f"Can't find {CamerType}_tracking_output.data file!")
return
print(f"{basename}: Can't find {CamerType}_tracking_output.data file!")
return None, None
bboxes, ffeats, trackerboxes, tracker_feat_dict, trackingboxes, tracking_feat_dict = extract_data(fpath)
tracking_output_boxes, _ = read_tracking_output(tracking_output_path)
'''1.2 分别构造 2 个文件夹,(1) 存储画框后的图像; (2) 运动轨迹对应的 boxes子图'''
save_dir, basename = os.path.split(savedir)
if not os.path.exists(savedir):
os.makedirs(savedir)
subimg_dir = os.path.join(save_dir, basename.split('_')[0] + '_subimgs')
save_dir = os.path.join(savedir, event_name)
subimg_dir = os.path.join(savedir, event_name + '_subimgs')
if not os.path.exists(save_dir):
os.makedirs(save_dir)
if not os.path.exists(subimg_dir):
os.makedirs(subimg_dir)
os.makedirs(subimg_dir)
'''1.3 读取 fpath 中 track.data 文件对应的图像 imgs '''
imgs = read_imgs(imgpath, CamerType)
'''2. 执行轨迹分析, 保存轨迹分析前后的对比图示'''
traj_graphic = basename + '_' + CamerType
traj_graphic = event_name + '_' + CamerType
if CamerType == '1':
vts = doFrontTracks(trackerboxes, tracker_feat_dict)
vts.classify()
plt = plot_frameID_y2(vts)
# ftpath = os.path.join(save_dir, f"{traj_graphic}_front_y2.png")
# ftpath = os.path.join(savedir, f"{traj_graphic}_front_y2.png")
# plt.savefig(ftpath)
plt.close()
edgeline = cv2.imread("./shopcart/cart_tempt/board_ftmp_line.png")
img_tracking = draw_all_trajectories(vts, edgeline, savedir, CamerType, draw5p=True)
elif CamerType == '0':
vts = doBackTracks(trackerboxes, tracker_feat_dict)
vts.classify()
edgeline = cv2.imread("./shopcart/cart_tempt/edgeline.png")
img = draw_all_trajectories(vts, edgeline, save_dir, traj_graphic)
img_tracking = draw_all_trajectories(vts, edgeline, savedir, CamerType, draw5p=True)
# imgpth = os.path.join(save_dir, f"{traj_graphic}_.png")
# imgpth = os.path.join(savedir, f"{traj_graphic}_.png")
# cv2.imwrite(str(imgpth), img)
else:
print("Please check data file!")
@ -291,56 +298,131 @@ def do_tracking(fpath, savedir):
abH, abW = abimg.shape[:2]
cv2.line(abimg, (int(abW/2), 0), (int(abW/2), abH), (128, 255, 128), 2)
# algpath = os.path.join(save_dir, f"{traj_graphic}_alg.png")
# algpath = os.path.join(savedir, f"{traj_graphic}_alg.png")
# cv2.imwrite(str(algpath), abimg)
'''4. 画框后的图像和子图保存若imgs数与tracker中fid数不匹配只保存原图不保存子图'''
'''4.0 读取 fpath 中对应的图像 imgs '''
imgs = read_imgs(imgpath, CamerType)
'''4.1 imgs数 < trackerboxes 的 max(fid),返回原图'''
if len(imgs) < np.max(trackerboxes[:,7]):
for i in range(len(imgs)):
img_savepath = os.path.join(savedir, CamerType + "_" + f"{i}.png")
img_savepath = os.path.join(save_dir, CamerType + "_" + f"{i}.png")
cv2.imwrite(img_savepath, imgs[i])
print(f"fpath: {fpath}, len(imgs) = {len(imgs)} < Tracker max(fid) = {int(np.max(trackerboxes[:,7]))}, 无法匹配画框")
return
print(f"{basename}: len(imgs) = {len(imgs)} < Tracker max(fid) = {int(np.max(trackerboxes[:,7]))}, 无法匹配画框")
return img_tracking, abimg
'''4.2 在 imgs 上画框并保存'''
imgs_dw = draw_tracking_boxes(imgs, trackerboxes)
for fid, img in imgs_dw:
img_savepath = os.path.join(savedir, CamerType + "_fid_" + f"{fid}.png")
img_savepath = os.path.join(save_dir, CamerType + "_fid_" + f"{fid}.png")
cv2.imwrite(img_savepath, img)
# =============================================================================
# '''4.3.1 保存轨迹分析对应的子图'''
# for track in vts.Residual:
# for *xyxy, tid, conf, cls, fid, bid in track.boxes:
# img = imgs[int(fid-1)]
# x1, y1, x2, y2 = int(xyxy[0]/2), int(xyxy[1]/2), int(xyxy[2]/2), int(xyxy[3]/2)
# subimg = img[y1:y2, x1:x2]
#
# subimg_path = os.path.join(subimg_dir, f'{CamerType}_tid{int(tid)}_{int(fid-1)}_{int(bid)}.png' )
# cv2.imwrite(subimg_path, subimg)
# =============================================================================
'''4.3.2 保存轨迹选择对应的子图'''
for track in tracking_output_boxes:
for *xyxy, tid, conf, cls, fid, bid in track:
# for track in tracking_output_boxes:
for track in vts.Residual:
for *xyxy, tid, conf, cls, fid, bid in track.boxes:
img = imgs[int(fid-1)]
x1, y1, x2, y2 = int(xyxy[0]/2), int(xyxy[1]/2), int(xyxy[2]/2), int(xyxy[3]/2)
subimg = img[y1:y2, x1:x2]
subimg_path = os.path.join(subimg_dir, f'{CamerType}_tid{int(tid)}_{int(fid-1)}_{int(bid)}.png' )
cv2.imwrite(subimg_path, subimg)
# for track in tracking_output_boxes:
# for *xyxy, tid, conf, cls, fid, bid in track:
# img = imgs[int(fid-1)]
# x1, y1, x2, y2 = int(xyxy[0]/2), int(xyxy[1]/2), int(xyxy[2]/2), int(xyxy[3]/2)
# subimg = img[y1:y2, x1:x2]
# subimg_path = os.path.join(subimg_dir, f'{CamerType}_tid{int(tid)}_{int(fid-1)}_{int(bid)}_x.png' )
# cv2.imwrite(subimg_path, subimg)
return abimg
return img_tracking, abimg
def tracking_simulate(eventpath, savepath):
'''args:
eventpath: 时间文件夹
savepath: 存储文件夹
'''
'''1. 获取事件名'''
event_names = os.path.basename(eventpath).strip().split('_')
if len(event_names)==2 and len(event_names[1])>=8:
enent_name = event_names[1]
elif len(event_names)==2 and len(event_names[1])==0:
enent_name = event_names[0]
else:
return
'''2. 依次读取 0/1_track.data 中数据,进行仿真'''
illu_tracking, illu_select = [], []
for filename in os.listdir(eventpath):
# filename = '1_track.data'
if filename.find("track.data") <= 0: continue
fpath = os.path.join(eventpath, filename)
if not os.path.isfile(fpath): continue
img_tracking, img_select = do_tracking(fpath, savepath, enent_name)
if img_select is not None:
illu_select.append(img_select)
if img_tracking is not None:
illu_tracking.append(img_tracking)
'''3. 前、后摄原始轨迹、本地tracking输出、现场算法轨迹选择前、后共幅8图'''
if len(illu_select)==2:
Img_s = np.concatenate((illu_select[0], illu_select[1]), axis = 0)
H, W = Img_s.shape[:2]
cv2.line(Img_s, (0, int(H/2)), (int(W), int(H/2)), (128, 255, 128), 2)
elif len(illu_select)==1:
Img_s = illu_select[0]
else:
Img_s = None
if len(illu_tracking)==2:
Img_t = np.concatenate((illu_tracking[0], illu_tracking[1]), axis = 0)
H, W = Img_t.shape[:2]
cv2.line(Img_t, (0, int(H/2)), (int(W), int(H/2)), (128, 255, 128), 2)
elif len(illu_tracking)==1:
Img_t = illu_tracking[0]
else:
Img_t = None
'''3.1 单独另存保存完好的 8 轨迹图'''
basepath, _ = os.path.split(savepath)
trajpath = os.path.join(basepath, 'trajs')
if not os.path.exists(trajpath):
os.makedirs(trajpath)
traj_path = os.path.join(trajpath, enent_name+'.png')
imgpath_tracking = os.path.join(savepath, enent_name + '_ing.png')
imgpath_select = os.path.join(savepath, enent_name + '_slt.png')
imgpath_ts = os.path.join(savepath, enent_name + '_ts.png')
if Img_t is not None and Img_s is not None and np.all(Img_s.shape==Img_t.shape):
Img_ts = np.concatenate((Img_t, Img_s), axis = 1)
H, W = Img_ts.shape[:2]
cv2.line(Img_ts, (int(W/2), 0), (int(W/2), int(H)), (0, 0, 255), 4)
cv2.imwrite(imgpath_ts, Img_ts)
cv2.imwrite(traj_path, Img_ts)
else:
if Img_s: cv2.imwrite(imgpath_select, Img_s)
if Img_t: cv2.imwrite(imgpath_tracking, Img_t)
# warnings.simplefilter("error", category=np.VisibleDeprecationWarning)
def main_loop():
del_barcode_file = r'\\192.168.1.28\share\测试_202406\0723\0723_2\deletedBarcode.txt'
basepath = r'\\192.168.1.28\share\测试_202406\0723\0723_2' # 测试数据文件夹地址
del_barcode_file = r'\\192.168.1.28\share\测试_202406\0723\0723_3\deletedBarcode.txt'
basepath = r'\\192.168.1.28\share\测试_202406\0723\0723_3' # 测试数据文件夹地址
SavePath = r'D:\contrast\dataset\resultx' # 结果保存地址
prefix = ["getout_", "input_", "error_"]
# prefix = ["getout_", "input_", "error_"]
'''获取性能测试数据相关路径'''
relative_paths = contrast_analysis(del_barcode_file, basepath, SavePath)
@ -349,7 +431,7 @@ def main_loop():
k = 0
for tuple_paths in relative_paths:
'''生成文件夹存储结果图像的文件夹'''
'''1. 生成存储结果图像的文件夹'''
namedirs = []
for data_path in tuple_paths:
base_name = os.path.basename(data_path).strip().split('_')
@ -358,76 +440,56 @@ def main_loop():
else:
name = base_name[0]
namedirs.append(name)
sdir = "_".join(namedirs)
savepath = os.path.join(SavePath, sdir)
# if os.path.exists(savepath):
# continue
if not os.path.exists(savepath):
os.makedirs(savepath)
for path in tuple_paths:
'''============= 分别指定指定存储、读取对应的文件夹 ============='''
# if sdir.find('094631_6904724022444_6976075000082') < 0: continue
# if path.find('094631_') < 0: continue
imgs = []
for filename in os.listdir(path):
# filename = '1_track.data'
fpath = os.path.join(path, filename)
if os.path.isfile(fpath) and filename.find("track.data")>0:
enent_name = ''
'''构建结果保存文件名前缀'''
for i, name in enumerate(namedirs):
if fpath.find(name)>0:
enent_name = prefix[i] + name
break
spath = os.path.join(savepath, enent_name)
# abimg = do_tracking(fpath, spath)
# imgs.append(abimg)
try:
abimg = do_tracking(fpath, spath)
imgs.append(abimg)
if len(imgs) == 2:
Img = np.concatenate((imgs[0], imgs[1]), axis = 0)
H, W = Img.shape[:2]
cv2.line(Img, (0, int(H/2)), (int(W), int(H/2)), (128, 255, 128), 2)
else:
Img = imgs[0]
imgpath = os.path.join(savepath, enent_name + '_alg.png')
cv2.imwrite(imgpath, Img)
except Exception as e:
print(f'Error! {fpath}, {e}')
'''2. 循环执行操作事件:取出、放入、错误匹配'''
for eventpath in tuple_paths:
try:
tracking_simulate(eventpath, savepath)
except Exception as e:
print(f'Error! {eventpath}, {e}')
# k +=1
# if k==1:
# break
def main():
'''
fpath: data文件地址该 data 文件包括 Pipeline 各模块输出
save_dir包含二级目录,其中一级目录为轨迹图像
二级目录为与data文件对应的序列图像存储地址。
eventpath: data文件地址该 data 文件包括 Pipeline 各模块输出
savepath: 包含二级目录,一级目录为轨迹图像;二级目录为与data文件对应的序列图像存储地址。
'''
EventPaths = r'\\192.168.1.28\share\测试_202406\0723\0723_2'
SavePath = r'D:\contrast\dataset\result'
k=0
for pathname in os.listdir(EventPaths):
# pathname = "20240723-094731_6903148242797"
fpath = r'\\192.168.1.28\share\测试_202406\0723\0723_1\20240723-101506_6906839615771\1_track.data'
save_dir = r'D:\contrast\dataset\result\20240723-101506_\images'
eventpath = os.path.join(EventPaths, pathname)
savepath = os.path.join(SavePath, pathname)
if not os.path.exists(savepath):
os.makedirs(savepath)
do_tracking(fpath, save_dir)
# tracking_simulate(eventpath, savepath)
try:
tracking_simulate(eventpath, savepath)
except Exception as e:
print(f'Error! {eventpath}, {e}')
# k += 1
# if k==10:
# break
if __name__ == "__main__":
main_loop()
# main()
# main_loop()
main()
# try:
# main_loop()
# except Exception as e:

View File

@ -25,6 +25,8 @@ class TrackAnnotator(Annotator):
cls类别编号从 0 开始计数,用作 names 的 key 值
"""
if track.size==0: return
id, cls = track[0, 4], track[0, 6]
if id >=0 and cls==0:
color = colors(int(cls), True)
@ -51,6 +53,8 @@ class TrackAnnotator(Annotator):
"""
绘制选定 track 的轨迹
"""
if track.size==0: return
x, y = int((track[0]+track[2])/2), int((track[1]+track[3])/2)
cv2.circle(self.im, (x, y), 6, color, 2)

View File

@ -94,19 +94,19 @@ def draw_all_trajectories(vts, edgeline, save_dir, file, draw5p=False):
img1 = drawTrack(vts.tracks, img1)
img2 = drawTrack(vts.Residual, img2)
img = np.concatenate((img1, img2), axis = 1)
H, W = img.shape[:2]
cv2.line(img, (int(W/2), 0), (int(W/2), H), (128, 255, 128), 2)
imgcat = np.concatenate((img1, img2), axis = 1)
H, W = imgcat.shape[:2]
cv2.line(imgcat, (int(W/2), 0), (int(W/2), H), (128, 255, 128), 2)
# imgpth = save_dir.joinpath(f"{file}_show.png")
# cv2.imwrite(str(imgpth), img)
if not draw5p:
return img
return imgcat
''' tracks 5点轨迹'''
trackpth = save_dir / Path("trajectory") / Path(f"{file}")
trackpth = save_dir / Path("trajectory")
if not trackpth.exists():
trackpth.mkdir(parents=True, exist_ok=True)
for track in vts.tracks:
@ -114,17 +114,18 @@ def draw_all_trajectories(vts, edgeline, save_dir, file, draw5p=False):
img = edgeline.copy()
img = draw5points(track, img)
pth = trackpth.joinpath(f"{track.tid}.png")
pth = trackpth.joinpath(f"{file}_{track.tid}.png")
cv2.imwrite(str(pth), img)
for track in vts.merged_tracks:
# if track.cls != 0:
img = edgeline.copy()
img = draw5points(track, img)
# for track in vts.Residual:
# # if track.cls != 0:
# img = edgeline.copy()
# img = draw5points(track, img)
pth = trackpth.joinpath(f"{track.tid}_.png")
cv2.imwrite(str(pth), img)
# pth = trackpth.joinpath(f"{file}_{track.tid}_.png")
# cv2.imwrite(str(pth), img)
return imgcat
# =============================================================================
@ -306,7 +307,7 @@ def draw5points(track, img):
'''=============== 最小轨迹长度索引 ===================='''
if track.imgBorder:
if track.isBorder:
idx = 0
else:
idx = trajlens.index(min(trajlens))

View File

@ -30,6 +30,8 @@ def find_samebox_in_array(arr, target):
return i
return -1
import warnings
def extract_data(datapath):
bboxes, ffeats = [], []
@ -47,6 +49,17 @@ def extract_data(datapath):
if line.find("CameraId")>=0:
if len(boxes): bboxes.append(np.array(boxes))
if len(feats): ffeats.append(np.array(feats))
# with warnings.catch_warnings(record=True) as w:
# if len(boxes): bboxes.append(np.array(boxes))
# if len(feats): ffeats.append(np.array(feats))
# if w:
# print(f"捕获到 {len(w)} 个警告:")
# for warning in w:
# print(f"警告类型: {warning.category}")
# print(f"警告消息: {warning.message}")
# print(f"警告发生的地方: {warning.filename}:{warning.lineno}")
if len(tboxes):
trackerboxes = np.concatenate((trackerboxes, np.array(tboxes)))
if len(tfeats):
@ -56,16 +69,20 @@ def extract_data(datapath):
if line.find("box:") >= 0 and line.find("output_box:") < 0:
box = line[line.find("box:") + 4:].strip()
# if len(box)==6:
boxes.append(str_to_float_arr(box))
if line.find("feat:") >= 0:
feat = line[line.find("feat:") + 5:].strip()
# if len(feat)==256:
feats.append(str_to_float_arr(feat))
if line.find("output_box:") >= 0:
box = str_to_float_arr(line[line.find("output_box:") + 11:].strip())
tboxes.append(box) # 去掉'output_box:'并去除可能的空白字符
index = find_samebox_in_array(boxes, box)
assert(len(boxes)==len(feats)), f"{datapath}, {datapath}, len(boxes)!=len(feats)"
if index >= 0:
# feat_f = str_to_float_arr(input_feats[index])
feat_f = feats[index]
@ -120,7 +137,7 @@ def extract_data(datapath):
tracking_feat_dict[f"track_{tid}"]= {"feats": {}}
tracking_feat_dict[f"track_{tid}"]["feats"].update({f"{fid}_{bid}": tracker_feat_dict[f"frame_{fid}"]["feats"][bid]})
except Exception as e:
print(f'Path: {datapath}, Error: {e}')
print(f'Path: {datapath}, tracking_feat_dict can not be structured correcttly, Error: {e}')
return bboxes, ffeats, trackerboxes, tracker_feat_dict, trackingboxes, tracking_feat_dict
@ -143,6 +160,8 @@ def read_tracking_output(filepath):
if data.size == 256:
feats.append(data)
assert(len(feats)==len(boxes)), f"{filepath}, len(feats)!=len(boxes)"
return np.array(boxes), np.array(feats)
@ -166,16 +185,9 @@ def read_deletedBarcode_file(filePth):
dict, barcode_list, similarity_list = {}, [], []
continue
# print(line)
try:
label = line.split(':')[0]
value = line.split(':')[1]
except Exception as e:
print(f'Error: {e}')
if line.find(':')<0: continue
label = line.split(':')[0]
value = line.split(':')[1]
if label == 'SeqDir':
dict['SeqDir'] = value

View File

@ -14,31 +14,39 @@ import cv2
# import sys
# from scipy.spatial.distance import cdist
def video2imgs(videopath):
# =============================================================================
# videopath视频文件地址在该地址的 "/file_imgs/" 文件加下存储视频帧图像
# =============================================================================
path, filename = os.path.split(videopath)
file, ext = os.path.splitext(filename)
savepath = os.path.join(path, "{}_imgs".format(file))
if not os.path.exists(savepath):
os.makedirs(savepath)
cap = cv2.VideoCapture(videopath)
VideoFormat = ['.mp4', '.avi']
def video2imgs(videopath, savepath):
k = 0
while True:
ret, frame = cap.read()
if not ret:
have = False
for filename in os.listdir(videopath):
file, ext = os.path.splitext(filename)
if ext not in VideoFormat:
continue
basename = os.path.basename(videopath)
imgbase = basename + '_' + file
imgdir = os.path.join(savepath, imgbase)
if not os.path.exists(imgdir):
os.mkdir(imgdir)
video = os.path.join(videopath, filename)
cap = cv2.VideoCapture(video)
i = 0
while True:
ret, frame = cap.read()
if not ret:
break
imgp = os.path.join(imgdir, file+f"_{i}.png")
i += 1
cv2.imwrite(imgp, frame)
cap.release()
print(filename + f" haved resolved")
k+=1
if k==1000:
break
k += 1
cv2.imwrite(os.path.join(savepath, "{}.png".format(k)), frame)
def videosave(bboxes, videopath="100_1688009697927.mp4"):
cap = cv2.VideoCapture(videopath)
@ -85,3 +93,14 @@ def videosave(bboxes, videopath="100_1688009697927.mp4"):
vid_writer.release()
cap.release()
def main():
videopath = r'C:\Users\ym\Desktop'
savepath = r'C:\Users\ym\Desktop'
video2imgs(videopath, savepath)
if __name__ == '__main__':
main()