Files
detecttracking/tracking/feat_select.py
2024-08-06 20:00:29 +08:00

420 lines
17 KiB
Python

# -*- coding: utf-8 -*-
"""
Created on Sat Jul 27 14:07:25 2024
现场测试数据,在不同特征组合情况下的精度、召回率分析程序
@author: ym
"""
import os.path
import numpy as np
from scipy.spatial.distance import cdist
import matplotlib.pyplot as plt
import sys
sys.path.append(r"D:\DetectTracking")
from tracking.utils.read_data import extract_data, read_deletedBarcode_file, read_tracking_output
from tracking.dotrack.dotracks import Track
from tracking.contrast_analysis import compute_recall_precision, show_recall_prec
from tracking.contrast_analysis import performance_evaluate
def compute_similar(feat1, feat2):
if len(feat1)==0 or len(feat2)==0:
return 0
similar = 1 - np.maximum(0.0, cdist(feat1, feat2, metric = 'cosine'))
smean = np.mean(similar)
return smean
def update_event(datapath):
'''一次购物事件,包含 8 个keys'''
event = {}
# event['front_tracking_boxes'] = []
# event['front_tracking_feats'] = {}
# event['back_tracking_boxes'] = []
# event['back_tracking_feats'] = {}
event['back_sole_boxes'] = np.empty((0, 9), dtype=np.float64)
event['front_sole_boxes'] = np.empty((0, 9), dtype=np.float64)
event['back_sole_feats'] = np.empty((0, 256), dtype=np.float64)
event['front_sole_feats'] = np.empty((0, 256), dtype=np.float64)
event['feats_compose'] = np.empty((0, 256), dtype=np.float64)
event['feats_select'] = np.empty((0, 256), dtype=np.float64)
# '''读取 track.data 文件中的数据'''
# fpath_0_track = os.path.join(datapath, '0_track.data')
# fpath_1_track = os.path.join(datapath, '1_track.data')
# if os.path.exists(fpath_0_track) and os.path.isfile(fpath_0_track):
# _, _, _, _, tracking_boxes, tracking_feat_dict = extract_data(fpath_0_track)
# event['back_tracking_boxes'] = tracking_boxes
# event['back_tracking_feats'] = tracking_feat_dict
# if os.path.exists(fpath_1_track) and os.path.isfile(fpath_1_track):
# _, _, _, _, tracking_boxes, tracking_feat_dict = extract_data(fpath_1_track)
# event['front_tracking_boxes'] = tracking_boxes
# event['front_tracking_feats'] = tracking_feat_dict
# =============================================================================
# '''================1. 直接指定读取,速度快======================================'''
# '''读取 tracking_output.data 文件中的数据'''
# fpath_0_tracking = os.path.join(datapath, '0_tracking_output.data')
# fpath_1_tracking = os.path.join(datapath, '1_tracking_output.data')
# if os.path.exists(fpath_0_tracking) and os.path.isfile(fpath_0_tracking):
# tracking_output_boxes, tracking_output_feats = read_tracking_output(fpath_0_tracking)
# event['back_sole_boxes'] = tracking_output_boxes
# event['back_sole_feats'] = tracking_output_feats
#
# if os.path.exists(fpath_1_tracking) and os.path.isfile(fpath_1_tracking):
# tracking_output_boxes, tracking_output_feats = read_tracking_output(fpath_1_tracking)
# event['front_sole_boxes'] = tracking_output_boxes
# event['front_sole_feats'] = tracking_output_feats
# =============================================================================
'''================2. 遍历方式读取(与以上方式二选一)======================================'''
'''读取当前事件的 data 文件'''
for filename in os.listdir(datapath):
# filename = '1_track.data'
fpath = os.path.join(datapath, filename)
CamerType = filename.split('_')[0]
# if os.path.isfile(fpath) and filename.find("track.data")>0:
# bboxes, ffeats, trackerboxes, tracker_feat_dict, tracking_boxes, tracking_feat_dict = extract_data(fpath)
# if CamerType == '0':
# event['back_tracking_boxes'] = tracking_boxes
# event['back_tracking_feats'] = tracking_feat_dict
# elif CamerType == '1':
# event['front_tracking_boxes'] = tracking_boxes
# event['front_tracking_feats'] = tracking_feat_dict
if os.path.isfile(fpath) and filename.find("tracking_output.data")>0:
tracking_output_boxes, tracking_output_feats = read_tracking_output(fpath)
if CamerType == '0':
event['back_sole_boxes'] = tracking_output_boxes
event['back_sole_feats'] = tracking_output_feats
elif CamerType == '1':
event['front_sole_boxes'] = tracking_output_boxes
event['front_sole_feats'] = tracking_output_feats
'''事件的特征表征方式选择'''
fs_feats = event['front_sole_feats']
bs_feats = event['back_sole_feats']
'''1. 如果前后摄均没有轨迹选择输出,返回'''
condt1 = len(fs_feats) + len(bs_feats) == 0
if condt1:
return event
'''2. 构造综合特征'''
feats_compose = np.empty((0, 256), dtype=np.float64)
if len(fs_feats):
feats_compose = np.concatenate((feats_compose, fs_feats), axis=0)
if len(bs_feats):
feats_compose = np.concatenate((feats_compose, bs_feats), axis=0)
event['feats_compose'] = feats_compose
'''3. 构造前摄特征'''
if len(fs_feats):
event['feats_select'] = fs_feats
return event
'''4. 从前摄输出轨迹中选取特定轨迹对应的特征'''
# =============================================================================
# ftrboxes = event['front_tracking_boxes']
# ftrfeats = event['front_tracking_feats']
#
# condt2 = len(ftrboxes) + len(ftrfeats) == 0
# condt3 = len(ftrfeats) != len(ftrboxes)
# if condt2 or condt3:
# return event
#
# bprops = []
# for boxes in ftrboxes:
# track = Track(boxes)
# bprops.append(max(track.trajdist))
#
# index = bprops.index(max(bprops))
# box_select = ftrboxes[index]
# tid = int(box_select[0, 4])
#
# feat_select = ftrfeats[f"track_{tid}"]
# feats_select = np.empty((0, 256), dtype=np.float64)
# for fid_bid, feat in feat_select['feats'].items():
# feats_select = np.concatenate((feats_select, feat[None, :]), axis=0)
# event['feats_select'] = feats_select
# =============================================================================
return event
def creatd_deletedBarcode_front(filepath):
# filepath = r'\\192.168.1.28\share\测试_202406\0723\0723_1\deletedBarcode.txt'
basepath, _ = os.path.split(filepath)
bcdlist = read_deletedBarcode_file(filepath)
MatchList = []
k = 0
for s_list in bcdlist:
getout_fold = s_list['SeqDir'].strip()
getout_path = os.path.join(basepath, getout_fold)
'''取出事件文件夹不存在,跳出循环'''
if not os.path.exists(getout_path) and not os.path.isdir(getout_path):
continue
day, hms = getout_fold.strip('_').split('-')
''' 生成取出事件字典 '''
getout_event = {}
getout_event['barcode'] = s_list['Deleted'].strip()
getout_event['path'] = getout_path
getout_event['feats_compose'] = np.empty((0, 256), dtype=np.float64)
getout_event['feats_select'] = np.empty((0, 256), dtype=np.float64)
InputList = []
barcodes = [s.strip() for s in s_list['barcode']]
similarity = [float(s.strip()) for s in s_list['similarity']]
for i, barcode in enumerate(barcodes):
''' 生成放入事件字典 '''
input_event = {}
input_folds, times = [], []
for pathname in os.listdir(basepath):
if pathname.endswith('_'): continue
if os.path.isfile(os.path.join(basepath, pathname)):continue
infold = pathname.split('_')
if len(infold)!=2: continue
if len(infold[0])<=14 or len(infold[1])<=10: continue
day1, hms1 = infold[0].split('-')
if day1==day and infold[1]==barcode and int(hms1)<int(hms):
input_folds.append(pathname)
times.append(int(hms1))
if len(input_folds)==0: continue
''' 根据时间排序,选择离取出操作最近时间的文件夹,作为取出操作应的放入操作所对应的文件夹 '''
input_fold = input_folds[times.index(max(times))]
input_path = os.path.join(basepath, input_fold)
if not os.path.exists(getout_path) and not os.path.isdir(getout_path):
continue
input_event['barcode'] = barcode
input_event['path'] = input_path
input_event['similarity'] = float(similarity[i])
input_event['feats_compose'] = np.empty((0, 256), dtype=np.float64)
input_event['feats_select'] = np.empty((0, 256), dtype=np.float64)
InputList.append(input_event)
MatchList.append((getout_event, InputList))
# k += 1
# if k==2:
# break
print('Step 1: Event init Done!')
for getout_event, InputList in MatchList:
getout_path = getout_event['path']
if os.path.exists(getout_path) and os.path.isdir(getout_path):
event = update_event(getout_path)
getout_event.update(event)
'''====== 放入事件是在取出事件存在的情况下分析 ======'''
for input_event in InputList:
input_path = input_event['path']
if os.path.exists(input_path) and os.path.isdir(input_path):
event = update_event(input_path)
input_event.update(event)
print('Step 2: Event update Done!')
results = []
for getout_event, InputList in MatchList:
getout_barcode = getout_event['barcode']
getout_feats_compose = getout_event['feats_compose']
getout_feats_select = getout_event['feats_select']
if len(getout_feats_select):
outfeats_select = getout_feats_select.copy()
else:
outfeats_select = getout_feats_compose.copy()
result = {}
result['SeqDir'] = os.path.split(getout_event['path'])[1]
result['Deleted'] = getout_barcode
result['List'] = {}
for input_event in InputList:
input_barcode = input_event['barcode']
input_feats_compose = input_event['feats_compose']
input_feats_select = input_event['feats_select']
if len(input_feats_select):
infeats_select = input_feats_select.copy()
else:
infeats_select = input_feats_compose.copy()
similar_comp = compute_similar(getout_feats_compose, input_feats_compose)
similar_selt = compute_similar(outfeats_select, infeats_select)
'''现场测试相似度,组合特征相似度,前摄选择特征相似度'''
result['List'][f'{input_barcode}'] = (input_event['similarity'], similar_comp, similar_selt)
# result[f'{input_barcode}'] = (input_event['similarity'], similar_comp, similar_selt)
results.append(result)
print('Step 3: Similarity conputation Done!')
wpath = os.path.split(filepath)[0]
wfile = os.path.join(wpath, 'deletedBarcodeTest_x.txt')
with open(wfile, 'w', encoding='utf-8') as file:
for result in results:
SeqDir = result['SeqDir']
Deleted = result['Deleted']
file.write('\n')
file.write(f'SeqDir: {SeqDir}\n')
file.write(f'Deleted: {Deleted}\n')
file.write('List:\n')
for key, value in result['List'].items():
file.write(f'{key}: ')
file.write(f'{value[0]}, {value[1]:.3f}, {value[2]:.3f}\n')
print('Step 4: File writting Done!')
def compute_precision(filepath, savepath):
fpath = os.path.split(filepath)[0]
_, basefile = os.path.split(fpath)
'''1. 综合前后摄特征的相似度比对性能'''
fpath1 = os.path.join(fpath, 'deletedBarcode.txt')
blist1 = read_deletedBarcode_file(fpath1)
errpairs, corrpairs, err_similarity, correct_similarity = performance_evaluate(blist1)
recall, prec, ths = compute_recall_precision(err_similarity, correct_similarity)
os.path.split(fpath1)
plt1 = show_recall_prec(recall, prec, ths)
# plt1.show()
plt1.xlabel(f'threshold, Num: {len(blist1)}')
plt1.title(basefile + ', compose')
plt1.savefig(os.path.join(savepath, basefile+'_pr.png'))
plt1.close()
'''2. 优先选取前摄特征的相似度比对性能'''
fpath2 = os.path.join(fpath, 'deletedBarcodeTest.txt')
blist2 = read_deletedBarcode_file(fpath2)
front_errpairs, front_corrpairs, front_err_similarity, front_correct_similarity = performance_evaluate(blist2)
front_recall, front_prec, front_ths = compute_recall_precision(front_err_similarity, front_correct_similarity)
plt2 = show_recall_prec(front_recall, front_prec, front_ths)
# plt2.show()
plt2.xlabel(f'threshold, Num: {len(blist2)}')
plt1.title(basefile + ', front')
plt2.savefig(os.path.join(savepath, basefile+'_pr_front.png'))
plt2.close()
def main():
fplist = [#r'\\192.168.1.28\share\测试_202406\0723\0723_1\deletedBarcode.txt',
# r'\\192.168.1.28\share\测试_202406\0723\0723_2\deletedBarcode.txt',
# r'\\192.168.1.28\share\测试_202406\0723\0723_3\deletedBarcode.txt',
# r'\\192.168.1.28\share\测试_202406\0722\0722_01\deletedBarcode.txt',
# r'\\192.168.1.28\share\测试_202406\0722\0722_02\deletedBarcode.txt',
# r'\\192.168.1.28\share\测试_202406\0719\719_1\deletedBarcode.txt',
# r'\\192.168.1.28\share\测试_202406\0719\719_2\deletedBarcode.txt',
# r'\\192.168.1.28\share\测试_202406\0719\719_3\deletedBarcode.txt',
# r'\\192.168.1.28\share\测试_202406\0719\719_4\deletedBarcode.txt',
# r'\\192.168.1.28\share\测试_202406\0718\0718-1\deletedBarcode.txt',
# r'\\192.168.1.28\share\测试_202406\0718\0718-2\deletedBarcode.txt',
# r'\\192.168.1.28\share\测试_202406\0717\0717-1\deletedBarcode.txt',
# r'\\192.168.1.28\share\测试_202406\0717\0717-2\deletedBarcode.txt',
# r'\\192.168.1.28\share\测试_202406\0717\0717-3\deletedBarcode.txt',
# r'\\192.168.1.28\share\测试_202406\0716\0716_1\deletedBarcode.txt',
# r'\\192.168.1.28\share\测试_202406\0716\0716_2\deletedBarcode.txt',
# r'\\192.168.1.28\share\测试_202406\0716\0716_3\deletedBarcode.txt',
# r'\\192.168.1.28\share\测试_202406\0715\0715_1\deletedBarcode.txt',
# r'\\192.168.1.28\share\测试_202406\0715\0715_2\deletedBarcode.txt',
# r'\\192.168.1.28\share\测试_202406\0715\0715_3\deletedBarcode.txt',
# r'\\192.168.1.28\share\测试_202406\0712\0712_1\deletedBarcode.txt',
# r'\\192.168.1.28\share\测试_202406\0712\0712_2\deletedBarcode.txt',
# r'\\192.168.1.28\share\测试_202406\711\images01\deletedBarcode.txt',
# r'\\192.168.1.28\share\测试_202406\711\images02\deletedBarcode.txt',
# r'\\192.168.1.28\share\测试_202406\710\images_1\deletedBarcode.txt',
# r'\\192.168.1.28\share\测试_202406\710\images_2\deletedBarcode.txt',
# r'\\192.168.1.28\share\测试_202406\709\deletedBarcode.txt',
# r'\\192.168.1.28\share\测试_202406\705\deletedBarcode.txt',
# r'\\192.168.1.28\share\测试_202406\703\deletedBarcode.txt',
# r'\\192.168.1.28\share\测试_202406\702_pm_1\702_pm_1\deletedBarcode.txt',
# r'\\192.168.1.28\share\测试_202406\702_pm_3\702_pm_3\deletedBarcode.txt',
# r'\\192.168.1.28\share\测试_202406\701_am\deletedBarcode.txt',
# r'\\192.168.1.28\share\测试_202406\701_pm\701_pm\deletedBarcode.txt',
# r'\\192.168.1.28\share\测试_202406\628\1\deletedBarcode.txt',
# r'\\192.168.1.28\share\测试_202406\628\2\deletedBarcode.txt',
# r'\\192.168.1.28\share\测试_202406\627\deletedBarcode.txt',
]
fplist = [#r'\\192.168.1.28\share\测试_202406\0723\0723_1\deletedBarcode.txt',
# r'\\192.168.1.28\share\测试_202406\0723\0723_3\deletedBarcode.txt',
r'\\192.168.1.28\share\测试_202406\0723\0723_3\deletedBarcodeTest.txt',
]
savepath = r'\\192.168.1.28\share\测试_202406\deletedBarcode\illustration'
for filepath in fplist:
print(filepath)
# creatd_deletedBarcode_front(filepath)
compute_precision(filepath, savepath)
# try:
# creatd_deletedBarcode_front(filepath)
# compute_pres(filepath, savepath)
# except Exception as e:
# print(f'{filepath}, Error: {e}')
if __name__ == '__main__':
main()