29 lines
1.1 KiB
Python
29 lines
1.1 KiB
Python
import torch
|
||
import gradio as gr
|
||
|
||
model = torch.hub.load("./", "custom", path="best_ffc_11663.pt", source="local")
|
||
title = "鸟类视频检测Yolov5模型测试"
|
||
desc = "这是一个基于Gradio的Yolov5演示项目,非常方便!"
|
||
base_conf, base_iou = 0.5, 0.7
|
||
|
||
|
||
def det_image(img, conf_thres, iou_thres):
|
||
model.conf = conf_thres
|
||
model.iou = iou_thres
|
||
return model(img).render()[0]
|
||
|
||
|
||
# examples中的参数要和inputs中对应
|
||
# 获取摄像头拍照检测,修改inputs中的:inputs=[gr.Webcam(),...]就可以了,动态的更新添加属性:live=True
|
||
# 如果将launch()更改为launch(share=True)则会将这个代码放在公网进行访问。
|
||
gr.Interface(
|
||
# inputs=["image", gr.Slider(minimum=0, maximum=1, value=base_conf), gr.Slider(minimum=0, maximum=1, value=base_iou)],
|
||
inputs=[gr.Webcam(),...],
|
||
outputs=["image"],
|
||
fn=det_image,
|
||
title=title,
|
||
description=desc,
|
||
live=True,
|
||
examples=[["./mydata/test/image/Black_Footed_Albatross_0001_796111.jpg", base_conf, base_iou],
|
||
["./mydata/test/image/Gadwall_0001_31235.jpg", 0.3, base_iou]]
|
||
).launch(share=True) |