# Ultralytics YOLO 🚀, AGPL-3.0 license import torch import numpy as np import os from PIL import Image from ultralytics.yolo.engine.predictor import BasePredictor from ultralytics.yolo.engine.results import Results from ultralytics.yolo.utils import DEFAULT_CFG, ROOT, ops class DetectionPredictor(BasePredictor): def postprocess(self, preds, img, orig_imgs): """Postprocesses predictions and returns a list of Results objects.""" preds = ops.non_max_suppression(preds, self.args.conf, self.args.iou, agnostic=self.args.agnostic_nms, max_det=self.args.max_det, classes=self.args.classes) results = [] for i, pred in enumerate(preds): orig_img = orig_imgs[i] if isinstance(orig_imgs, list) else orig_imgs if not isinstance(orig_imgs, torch.Tensor): pred[:, :4] = ops.scale_boxes(img.shape[2:], pred[:, :4], orig_img.shape) path = self.batch[0] img_path = path[i] if isinstance(path, list) else path results.append(Results(orig_img=orig_img, path=img_path, names=self.model.names, boxes=pred)) # print('results2222222', results) return results def boxesMov_output(self, path, img_MovBoxes): if len(img_MovBoxes) != 0: ##保存判断为运动框中最后十帧所有运动框 MovBox_save = self.save_dir / 'real_MovBox/' if not os.path.exists(MovBox_save): MovBox_save.mkdir(parents=True, exist_ok=True) # print('img_MovBoxes', img_MovBoxes) img_MovBoxes.sort(key=lambda x: x[0], reverse=True) ##按照ID降序 index = np.unique(np.array(img_MovBoxes, dtype=object)[:, 0]) ##保留所有运动框的ID,升序排序 # print('index', index) if len(index) > 10: real_MovBox = [box for box in img_MovBoxes if box[0] > index[-11]] else: real_MovBox = [box for box in img_MovBoxes] num = 0 for mv_box in real_MovBox: num += 1 # img_crop = str(MovBox_save) + '\\' + str(video_num) + '_'+ str(i) + '.jpg' # img_crop = str(MovBox_save) + '\\' + str(path).split('.mp4')[0].split('\\')[-1] + \ # str(mv_box[0]) + '_' + str(num) + '.jpg' img_crop = str(MovBox_save) + '/' + str(path).split('.mp4')[0].split('\\')[-1] + '_' + str( mv_box[0]) + '_' + str(num) + '.jpg' Image.fromarray(mv_box[1]).save(img_crop, quality=95, subsampling=0) # print("99999999999999", real_MovBox) return real_MovBox else: return None def predict(cfg=DEFAULT_CFG, use_python=False): """Runs YOLO model inference on input image(s).""" model = cfg.model or 'yolov8n.pt' source = cfg.source if cfg.source is not None else ROOT / 'assets' if (ROOT / 'assets').exists() \ else 'https://ultralytics.com/images/bus.jpg' args = dict(model=model, source=source) if use_python: from ultralytics import YOLO YOLO(model)(**args) else: predictor = DetectionPredictor(overrides=args) predictor.predict_cli() if __name__ == '__main__': predict()