import torch import gradio as gr model = torch.hub.load("./", "custom", path="best_ffc_11663.pt", source="local") title = "鸟类视频检测Yolov5模型测试" desc = "这是一个基于Gradio的Yolov5演示项目,非常方便!" base_conf, base_iou = 0.5, 0.7 def det_image(img, conf_thres, iou_thres): model.conf = conf_thres model.iou = iou_thres return model(img).render()[0] # examples中的参数要和inputs中对应 # 获取摄像头拍照检测,修改inputs中的:inputs=[gr.Webcam(),...]就可以了,动态的更新添加属性:live=True # 如果将launch()更改为launch(share=True)则会将这个代码放在公网进行访问。 gr.Interface( # inputs=["image", gr.Slider(minimum=0, maximum=1, value=base_conf), gr.Slider(minimum=0, maximum=1, value=base_iou)], inputs=[gr.Webcam(),...], outputs=["image"], fn=det_image, title=title, description=desc, live=True, examples=[["./mydata/test/image/Black_Footed_Albatross_0001_796111.jpg", base_conf, base_iou], ["./mydata/test/image/Gadwall_0001_31235.jpg", 0.3, base_iou]] ).launch(share=True)