退购1.1定位算法
This commit is contained in:
7
ultralytics/yolo/v8/segment/__init__.py
Normal file
7
ultralytics/yolo/v8/segment/__init__.py
Normal file
@ -0,0 +1,7 @@
|
||||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||
|
||||
from .predict import SegmentationPredictor, predict
|
||||
from .train import SegmentationTrainer, train
|
||||
from .val import SegmentationValidator, val
|
||||
|
||||
__all__ = 'SegmentationPredictor', 'predict', 'SegmentationTrainer', 'train', 'SegmentationValidator', 'val'
|
63
ultralytics/yolo/v8/segment/predict.py
Normal file
63
ultralytics/yolo/v8/segment/predict.py
Normal file
@ -0,0 +1,63 @@
|
||||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||
|
||||
import torch
|
||||
|
||||
from ultralytics.yolo.engine.results import Results
|
||||
from ultralytics.yolo.utils import DEFAULT_CFG, ROOT, ops
|
||||
from ultralytics.yolo.v8.detect.predict import DetectionPredictor
|
||||
|
||||
|
||||
class SegmentationPredictor(DetectionPredictor):
|
||||
|
||||
def __init__(self, cfg=DEFAULT_CFG, overrides=None, _callbacks=None):
|
||||
super().__init__(cfg, overrides, _callbacks)
|
||||
self.args.task = 'segment'
|
||||
|
||||
def postprocess(self, preds, img, orig_imgs):
|
||||
"""TODO: filter by classes."""
|
||||
p = ops.non_max_suppression(preds[0],
|
||||
self.args.conf,
|
||||
self.args.iou,
|
||||
agnostic=self.args.agnostic_nms,
|
||||
max_det=self.args.max_det,
|
||||
nc=len(self.model.names),
|
||||
classes=self.args.classes)
|
||||
results = []
|
||||
proto = preds[1][-1] if len(preds[1]) == 3 else preds[1] # second output is len 3 if pt, but only 1 if exported
|
||||
for i, pred in enumerate(p):
|
||||
orig_img = orig_imgs[i] if isinstance(orig_imgs, list) else orig_imgs
|
||||
path = self.batch[0]
|
||||
img_path = path[i] if isinstance(path, list) else path
|
||||
if not len(pred): # save empty boxes
|
||||
results.append(Results(orig_img=orig_img, path=img_path, names=self.model.names, boxes=pred[:, :6]))
|
||||
continue
|
||||
if self.args.retina_masks:
|
||||
if not isinstance(orig_imgs, torch.Tensor):
|
||||
pred[:, :4] = ops.scale_boxes(img.shape[2:], pred[:, :4], orig_img.shape)
|
||||
masks = ops.process_mask_native(proto[i], pred[:, 6:], pred[:, :4], orig_img.shape[:2]) # HWC
|
||||
else:
|
||||
masks = ops.process_mask(proto[i], pred[:, 6:], pred[:, :4], img.shape[2:], upsample=True) # HWC
|
||||
if not isinstance(orig_imgs, torch.Tensor):
|
||||
pred[:, :4] = ops.scale_boxes(img.shape[2:], pred[:, :4], orig_img.shape)
|
||||
results.append(
|
||||
Results(orig_img=orig_img, path=img_path, names=self.model.names, boxes=pred[:, :6], masks=masks))
|
||||
return results
|
||||
|
||||
|
||||
def predict(cfg=DEFAULT_CFG, use_python=False):
|
||||
"""Runs YOLO object detection on an image or video source."""
|
||||
model = cfg.model or 'yolov8n-seg.pt'
|
||||
source = cfg.source if cfg.source is not None else ROOT / 'assets' if (ROOT / 'assets').exists() \
|
||||
else 'https://ultralytics.com/images/bus.jpg'
|
||||
|
||||
args = dict(model=model, source=source)
|
||||
if use_python:
|
||||
from ultralytics import YOLO
|
||||
YOLO(model)(**args)
|
||||
else:
|
||||
predictor = SegmentationPredictor(overrides=args)
|
||||
predictor.predict_cli()
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
predict()
|
172
ultralytics/yolo/v8/segment/train.py
Normal file
172
ultralytics/yolo/v8/segment/train.py
Normal file
@ -0,0 +1,172 @@
|
||||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||
from copy import copy
|
||||
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
|
||||
from ultralytics.nn.tasks import SegmentationModel
|
||||
from ultralytics.yolo import v8
|
||||
from ultralytics.yolo.utils import DEFAULT_CFG, RANK
|
||||
from ultralytics.yolo.utils.ops import crop_mask, xyxy2xywh
|
||||
from ultralytics.yolo.utils.plotting import plot_images, plot_results
|
||||
from ultralytics.yolo.utils.tal import make_anchors
|
||||
from ultralytics.yolo.utils.torch_utils import de_parallel
|
||||
from ultralytics.yolo.v8.detect.train import Loss
|
||||
|
||||
|
||||
# BaseTrainer python usage
|
||||
class SegmentationTrainer(v8.detect.DetectionTrainer):
|
||||
|
||||
def __init__(self, cfg=DEFAULT_CFG, overrides=None, _callbacks=None):
|
||||
"""Initialize a SegmentationTrainer object with given arguments."""
|
||||
if overrides is None:
|
||||
overrides = {}
|
||||
overrides['task'] = 'segment'
|
||||
super().__init__(cfg, overrides, _callbacks)
|
||||
|
||||
def get_model(self, cfg=None, weights=None, verbose=True):
|
||||
"""Return SegmentationModel initialized with specified config and weights."""
|
||||
model = SegmentationModel(cfg, ch=3, nc=self.data['nc'], verbose=verbose and RANK == -1)
|
||||
if weights:
|
||||
model.load(weights)
|
||||
|
||||
return model
|
||||
|
||||
def get_validator(self):
|
||||
"""Return an instance of SegmentationValidator for validation of YOLO model."""
|
||||
self.loss_names = 'box_loss', 'seg_loss', 'cls_loss', 'dfl_loss'
|
||||
return v8.segment.SegmentationValidator(self.test_loader, save_dir=self.save_dir, args=copy(self.args))
|
||||
|
||||
def criterion(self, preds, batch):
|
||||
"""Returns the computed loss using the SegLoss class on the given predictions and batch."""
|
||||
if not hasattr(self, 'compute_loss'):
|
||||
self.compute_loss = SegLoss(de_parallel(self.model), overlap=self.args.overlap_mask)
|
||||
return self.compute_loss(preds, batch)
|
||||
|
||||
def plot_training_samples(self, batch, ni):
|
||||
"""Creates a plot of training sample images with labels and box coordinates."""
|
||||
images = batch['img']
|
||||
masks = batch['masks']
|
||||
cls = batch['cls'].squeeze(-1)
|
||||
bboxes = batch['bboxes']
|
||||
paths = batch['im_file']
|
||||
batch_idx = batch['batch_idx']
|
||||
plot_images(images, batch_idx, cls, bboxes, masks, paths=paths, fname=self.save_dir / f'train_batch{ni}.jpg')
|
||||
|
||||
def plot_metrics(self):
|
||||
"""Plots training/val metrics."""
|
||||
plot_results(file=self.csv, segment=True) # save results.png
|
||||
|
||||
|
||||
# Criterion class for computing training losses
|
||||
class SegLoss(Loss):
|
||||
|
||||
def __init__(self, model, overlap=True): # model must be de-paralleled
|
||||
super().__init__(model)
|
||||
self.nm = model.model[-1].nm # number of masks
|
||||
self.overlap = overlap
|
||||
|
||||
def __call__(self, preds, batch):
|
||||
"""Calculate and return the loss for the YOLO model."""
|
||||
loss = torch.zeros(4, device=self.device) # box, cls, dfl
|
||||
feats, pred_masks, proto = preds if len(preds) == 3 else preds[1]
|
||||
batch_size, _, mask_h, mask_w = proto.shape # batch size, number of masks, mask height, mask width
|
||||
pred_distri, pred_scores = torch.cat([xi.view(feats[0].shape[0], self.no, -1) for xi in feats], 2).split(
|
||||
(self.reg_max * 4, self.nc), 1)
|
||||
|
||||
# b, grids, ..
|
||||
pred_scores = pred_scores.permute(0, 2, 1).contiguous()
|
||||
pred_distri = pred_distri.permute(0, 2, 1).contiguous()
|
||||
pred_masks = pred_masks.permute(0, 2, 1).contiguous()
|
||||
|
||||
dtype = pred_scores.dtype
|
||||
imgsz = torch.tensor(feats[0].shape[2:], device=self.device, dtype=dtype) * self.stride[0] # image size (h,w)
|
||||
anchor_points, stride_tensor = make_anchors(feats, self.stride, 0.5)
|
||||
|
||||
# targets
|
||||
try:
|
||||
batch_idx = batch['batch_idx'].view(-1, 1)
|
||||
targets = torch.cat((batch_idx, batch['cls'].view(-1, 1), batch['bboxes']), 1)
|
||||
targets = self.preprocess(targets.to(self.device), batch_size, scale_tensor=imgsz[[1, 0, 1, 0]])
|
||||
gt_labels, gt_bboxes = targets.split((1, 4), 2) # cls, xyxy
|
||||
mask_gt = gt_bboxes.sum(2, keepdim=True).gt_(0)
|
||||
except RuntimeError as e:
|
||||
raise TypeError('ERROR ❌ segment dataset incorrectly formatted or not a segment dataset.\n'
|
||||
"This error can occur when incorrectly training a 'segment' model on a 'detect' dataset, "
|
||||
"i.e. 'yolo train model=yolov8n-seg.pt data=coco128.yaml'.\nVerify your dataset is a "
|
||||
"correctly formatted 'segment' dataset using 'data=coco128-seg.yaml' "
|
||||
'as an example.\nSee https://docs.ultralytics.com/tasks/segment/ for help.') from e
|
||||
|
||||
# pboxes
|
||||
pred_bboxes = self.bbox_decode(anchor_points, pred_distri) # xyxy, (b, h*w, 4)
|
||||
|
||||
_, target_bboxes, target_scores, fg_mask, target_gt_idx = self.assigner(
|
||||
pred_scores.detach().sigmoid(), (pred_bboxes.detach() * stride_tensor).type(gt_bboxes.dtype),
|
||||
anchor_points * stride_tensor, gt_labels, gt_bboxes, mask_gt)
|
||||
|
||||
target_scores_sum = max(target_scores.sum(), 1)
|
||||
|
||||
# cls loss
|
||||
# loss[1] = self.varifocal_loss(pred_scores, target_scores, target_labels) / target_scores_sum # VFL way
|
||||
loss[2] = self.bce(pred_scores, target_scores.to(dtype)).sum() / target_scores_sum # BCE
|
||||
|
||||
if fg_mask.sum():
|
||||
# bbox loss
|
||||
loss[0], loss[3] = self.bbox_loss(pred_distri, pred_bboxes, anchor_points, target_bboxes / stride_tensor,
|
||||
target_scores, target_scores_sum, fg_mask)
|
||||
# masks loss
|
||||
masks = batch['masks'].to(self.device).float()
|
||||
if tuple(masks.shape[-2:]) != (mask_h, mask_w): # downsample
|
||||
masks = F.interpolate(masks[None], (mask_h, mask_w), mode='nearest')[0]
|
||||
|
||||
for i in range(batch_size):
|
||||
if fg_mask[i].sum():
|
||||
mask_idx = target_gt_idx[i][fg_mask[i]]
|
||||
if self.overlap:
|
||||
gt_mask = torch.where(masks[[i]] == (mask_idx + 1).view(-1, 1, 1), 1.0, 0.0)
|
||||
else:
|
||||
gt_mask = masks[batch_idx.view(-1) == i][mask_idx]
|
||||
xyxyn = target_bboxes[i][fg_mask[i]] / imgsz[[1, 0, 1, 0]]
|
||||
marea = xyxy2xywh(xyxyn)[:, 2:].prod(1)
|
||||
mxyxy = xyxyn * torch.tensor([mask_w, mask_h, mask_w, mask_h], device=self.device)
|
||||
loss[1] += self.single_mask_loss(gt_mask, pred_masks[i][fg_mask[i]], proto[i], mxyxy, marea) # seg
|
||||
|
||||
# WARNING: lines below prevents Multi-GPU DDP 'unused gradient' PyTorch errors, do not remove
|
||||
else:
|
||||
loss[1] += (proto * 0).sum() + (pred_masks * 0).sum() # inf sums may lead to nan loss
|
||||
|
||||
# WARNING: lines below prevent Multi-GPU DDP 'unused gradient' PyTorch errors, do not remove
|
||||
else:
|
||||
loss[1] += (proto * 0).sum() + (pred_masks * 0).sum() # inf sums may lead to nan loss
|
||||
|
||||
loss[0] *= self.hyp.box # box gain
|
||||
loss[1] *= self.hyp.box / batch_size # seg gain
|
||||
loss[2] *= self.hyp.cls # cls gain
|
||||
loss[3] *= self.hyp.dfl # dfl gain
|
||||
|
||||
return loss.sum() * batch_size, loss.detach() # loss(box, cls, dfl)
|
||||
|
||||
def single_mask_loss(self, gt_mask, pred, proto, xyxy, area):
|
||||
"""Mask loss for one image."""
|
||||
pred_mask = (pred @ proto.view(self.nm, -1)).view(-1, *proto.shape[1:]) # (n, 32) @ (32,80,80) -> (n,80,80)
|
||||
loss = F.binary_cross_entropy_with_logits(pred_mask, gt_mask, reduction='none')
|
||||
return (crop_mask(loss, xyxy).mean(dim=(1, 2)) / area).mean()
|
||||
|
||||
|
||||
def train(cfg=DEFAULT_CFG, use_python=False):
|
||||
"""Train a YOLO segmentation model based on passed arguments."""
|
||||
model = cfg.model or 'yolov8n-seg.pt'
|
||||
data = cfg.data or 'coco128-seg.yaml' # or yolo.ClassificationDataset("mnist")
|
||||
device = cfg.device if cfg.device is not None else ''
|
||||
|
||||
args = dict(model=model, data=data, device=device)
|
||||
if use_python:
|
||||
from ultralytics import YOLO
|
||||
YOLO(model).train(**args)
|
||||
else:
|
||||
trainer = SegmentationTrainer(overrides=args)
|
||||
trainer.train()
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
train()
|
259
ultralytics/yolo/v8/segment/val.py
Normal file
259
ultralytics/yolo/v8/segment/val.py
Normal file
@ -0,0 +1,259 @@
|
||||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||
|
||||
from multiprocessing.pool import ThreadPool
|
||||
from pathlib import Path
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
|
||||
from ultralytics.yolo.utils import DEFAULT_CFG, LOGGER, NUM_THREADS, ops
|
||||
from ultralytics.yolo.utils.checks import check_requirements
|
||||
from ultralytics.yolo.utils.metrics import SegmentMetrics, box_iou, mask_iou
|
||||
from ultralytics.yolo.utils.plotting import output_to_target, plot_images
|
||||
from ultralytics.yolo.v8.detect import DetectionValidator
|
||||
|
||||
|
||||
class SegmentationValidator(DetectionValidator):
|
||||
|
||||
def __init__(self, dataloader=None, save_dir=None, pbar=None, args=None, _callbacks=None):
|
||||
"""Initialize SegmentationValidator and set task to 'segment', metrics to SegmentMetrics."""
|
||||
super().__init__(dataloader, save_dir, pbar, args, _callbacks)
|
||||
self.args.task = 'segment'
|
||||
self.metrics = SegmentMetrics(save_dir=self.save_dir)
|
||||
|
||||
def preprocess(self, batch):
|
||||
"""Preprocesses batch by converting masks to float and sending to device."""
|
||||
batch = super().preprocess(batch)
|
||||
batch['masks'] = batch['masks'].to(self.device).float()
|
||||
return batch
|
||||
|
||||
def init_metrics(self, model):
|
||||
"""Initialize metrics and select mask processing function based on save_json flag."""
|
||||
super().init_metrics(model)
|
||||
self.plot_masks = []
|
||||
if self.args.save_json:
|
||||
check_requirements('pycocotools>=2.0.6')
|
||||
self.process = ops.process_mask_upsample # more accurate
|
||||
else:
|
||||
self.process = ops.process_mask # faster
|
||||
|
||||
def get_desc(self):
|
||||
"""Return a formatted description of evaluation metrics."""
|
||||
return ('%22s' + '%11s' * 10) % ('Class', 'Images', 'Instances', 'Box(P', 'R', 'mAP50', 'mAP50-95)', 'Mask(P',
|
||||
'R', 'mAP50', 'mAP50-95)')
|
||||
|
||||
def postprocess(self, preds):
|
||||
"""Postprocesses YOLO predictions and returns output detections with proto."""
|
||||
p = ops.non_max_suppression(preds[0],
|
||||
self.args.conf,
|
||||
self.args.iou,
|
||||
labels=self.lb,
|
||||
multi_label=True,
|
||||
agnostic=self.args.single_cls,
|
||||
max_det=self.args.max_det,
|
||||
nc=self.nc)
|
||||
proto = preds[1][-1] if len(preds[1]) == 3 else preds[1] # second output is len 3 if pt, but only 1 if exported
|
||||
return p, proto
|
||||
|
||||
def update_metrics(self, preds, batch):
|
||||
"""Metrics."""
|
||||
for si, (pred, proto) in enumerate(zip(preds[0], preds[1])):
|
||||
idx = batch['batch_idx'] == si
|
||||
cls = batch['cls'][idx]
|
||||
bbox = batch['bboxes'][idx]
|
||||
nl, npr = cls.shape[0], pred.shape[0] # number of labels, predictions
|
||||
shape = batch['ori_shape'][si]
|
||||
correct_masks = torch.zeros(npr, self.niou, dtype=torch.bool, device=self.device) # init
|
||||
correct_bboxes = torch.zeros(npr, self.niou, dtype=torch.bool, device=self.device) # init
|
||||
self.seen += 1
|
||||
|
||||
if npr == 0:
|
||||
if nl:
|
||||
self.stats.append((correct_bboxes, correct_masks, *torch.zeros(
|
||||
(2, 0), device=self.device), cls.squeeze(-1)))
|
||||
if self.args.plots:
|
||||
self.confusion_matrix.process_batch(detections=None, labels=cls.squeeze(-1))
|
||||
continue
|
||||
|
||||
# Masks
|
||||
midx = [si] if self.args.overlap_mask else idx
|
||||
gt_masks = batch['masks'][midx]
|
||||
pred_masks = self.process(proto, pred[:, 6:], pred[:, :4], shape=batch['img'][si].shape[1:])
|
||||
|
||||
# Predictions
|
||||
if self.args.single_cls:
|
||||
pred[:, 5] = 0
|
||||
predn = pred.clone()
|
||||
ops.scale_boxes(batch['img'][si].shape[1:], predn[:, :4], shape,
|
||||
ratio_pad=batch['ratio_pad'][si]) # native-space pred
|
||||
|
||||
# Evaluate
|
||||
if nl:
|
||||
height, width = batch['img'].shape[2:]
|
||||
tbox = ops.xywh2xyxy(bbox) * torch.tensor(
|
||||
(width, height, width, height), device=self.device) # target boxes
|
||||
ops.scale_boxes(batch['img'][si].shape[1:], tbox, shape,
|
||||
ratio_pad=batch['ratio_pad'][si]) # native-space labels
|
||||
labelsn = torch.cat((cls, tbox), 1) # native-space labels
|
||||
correct_bboxes = self._process_batch(predn, labelsn)
|
||||
# TODO: maybe remove these `self.` arguments as they already are member variable
|
||||
correct_masks = self._process_batch(predn,
|
||||
labelsn,
|
||||
pred_masks,
|
||||
gt_masks,
|
||||
overlap=self.args.overlap_mask,
|
||||
masks=True)
|
||||
if self.args.plots:
|
||||
self.confusion_matrix.process_batch(predn, labelsn)
|
||||
|
||||
# Append correct_masks, correct_boxes, pconf, pcls, tcls
|
||||
self.stats.append((correct_bboxes, correct_masks, pred[:, 4], pred[:, 5], cls.squeeze(-1)))
|
||||
|
||||
pred_masks = torch.as_tensor(pred_masks, dtype=torch.uint8)
|
||||
if self.args.plots and self.batch_i < 3:
|
||||
self.plot_masks.append(pred_masks[:15].cpu()) # filter top 15 to plot
|
||||
|
||||
# Save
|
||||
if self.args.save_json:
|
||||
pred_masks = ops.scale_image(pred_masks.permute(1, 2, 0).contiguous().cpu().numpy(),
|
||||
shape,
|
||||
ratio_pad=batch['ratio_pad'][si])
|
||||
self.pred_to_json(predn, batch['im_file'][si], pred_masks)
|
||||
# if self.args.save_txt:
|
||||
# save_one_txt(predn, save_conf, shape, file=save_dir / 'labels' / f'{path.stem}.txt')
|
||||
|
||||
def finalize_metrics(self, *args, **kwargs):
|
||||
"""Sets speed and confusion matrix for evaluation metrics."""
|
||||
self.metrics.speed = self.speed
|
||||
self.metrics.confusion_matrix = self.confusion_matrix
|
||||
|
||||
def _process_batch(self, detections, labels, pred_masks=None, gt_masks=None, overlap=False, masks=False):
|
||||
"""
|
||||
Return correct prediction matrix
|
||||
Arguments:
|
||||
detections (array[N, 6]), x1, y1, x2, y2, conf, class
|
||||
labels (array[M, 5]), class, x1, y1, x2, y2
|
||||
Returns:
|
||||
correct (array[N, 10]), for 10 IoU levels
|
||||
"""
|
||||
if masks:
|
||||
if overlap:
|
||||
nl = len(labels)
|
||||
index = torch.arange(nl, device=gt_masks.device).view(nl, 1, 1) + 1
|
||||
gt_masks = gt_masks.repeat(nl, 1, 1) # shape(1,640,640) -> (n,640,640)
|
||||
gt_masks = torch.where(gt_masks == index, 1.0, 0.0)
|
||||
if gt_masks.shape[1:] != pred_masks.shape[1:]:
|
||||
gt_masks = F.interpolate(gt_masks[None], pred_masks.shape[1:], mode='bilinear', align_corners=False)[0]
|
||||
gt_masks = gt_masks.gt_(0.5)
|
||||
iou = mask_iou(gt_masks.view(gt_masks.shape[0], -1), pred_masks.view(pred_masks.shape[0], -1))
|
||||
else: # boxes
|
||||
iou = box_iou(labels[:, 1:], detections[:, :4])
|
||||
|
||||
correct = np.zeros((detections.shape[0], self.iouv.shape[0])).astype(bool)
|
||||
correct_class = labels[:, 0:1] == detections[:, 5]
|
||||
for i in range(len(self.iouv)):
|
||||
x = torch.where((iou >= self.iouv[i]) & correct_class) # IoU > threshold and classes match
|
||||
if x[0].shape[0]:
|
||||
matches = torch.cat((torch.stack(x, 1), iou[x[0], x[1]][:, None]),
|
||||
1).cpu().numpy() # [label, detect, iou]
|
||||
if x[0].shape[0] > 1:
|
||||
matches = matches[matches[:, 2].argsort()[::-1]]
|
||||
matches = matches[np.unique(matches[:, 1], return_index=True)[1]]
|
||||
# matches = matches[matches[:, 2].argsort()[::-1]]
|
||||
matches = matches[np.unique(matches[:, 0], return_index=True)[1]]
|
||||
correct[matches[:, 1].astype(int), i] = True
|
||||
return torch.tensor(correct, dtype=torch.bool, device=detections.device)
|
||||
|
||||
def plot_val_samples(self, batch, ni):
|
||||
"""Plots validation samples with bounding box labels."""
|
||||
plot_images(batch['img'],
|
||||
batch['batch_idx'],
|
||||
batch['cls'].squeeze(-1),
|
||||
batch['bboxes'],
|
||||
batch['masks'],
|
||||
paths=batch['im_file'],
|
||||
fname=self.save_dir / f'val_batch{ni}_labels.jpg',
|
||||
names=self.names)
|
||||
|
||||
def plot_predictions(self, batch, preds, ni):
|
||||
"""Plots batch predictions with masks and bounding boxes."""
|
||||
plot_images(batch['img'],
|
||||
*output_to_target(preds[0], max_det=15),
|
||||
torch.cat(self.plot_masks, dim=0) if len(self.plot_masks) else self.plot_masks,
|
||||
paths=batch['im_file'],
|
||||
fname=self.save_dir / f'val_batch{ni}_pred.jpg',
|
||||
names=self.names) # pred
|
||||
self.plot_masks.clear()
|
||||
|
||||
def pred_to_json(self, predn, filename, pred_masks):
|
||||
"""Save one JSON result."""
|
||||
# Example result = {"image_id": 42, "category_id": 18, "bbox": [258.15, 41.29, 348.26, 243.78], "score": 0.236}
|
||||
from pycocotools.mask import encode # noqa
|
||||
|
||||
def single_encode(x):
|
||||
"""Encode predicted masks as RLE and append results to jdict."""
|
||||
rle = encode(np.asarray(x[:, :, None], order='F', dtype='uint8'))[0]
|
||||
rle['counts'] = rle['counts'].decode('utf-8')
|
||||
return rle
|
||||
|
||||
stem = Path(filename).stem
|
||||
image_id = int(stem) if stem.isnumeric() else stem
|
||||
box = ops.xyxy2xywh(predn[:, :4]) # xywh
|
||||
box[:, :2] -= box[:, 2:] / 2 # xy center to top-left corner
|
||||
pred_masks = np.transpose(pred_masks, (2, 0, 1))
|
||||
with ThreadPool(NUM_THREADS) as pool:
|
||||
rles = pool.map(single_encode, pred_masks)
|
||||
for i, (p, b) in enumerate(zip(predn.tolist(), box.tolist())):
|
||||
self.jdict.append({
|
||||
'image_id': image_id,
|
||||
'category_id': self.class_map[int(p[5])],
|
||||
'bbox': [round(x, 3) for x in b],
|
||||
'score': round(p[4], 5),
|
||||
'segmentation': rles[i]})
|
||||
|
||||
def eval_json(self, stats):
|
||||
"""Return COCO-style object detection evaluation metrics."""
|
||||
if self.args.save_json and self.is_coco and len(self.jdict):
|
||||
anno_json = self.data['path'] / 'annotations/instances_val2017.json' # annotations
|
||||
pred_json = self.save_dir / 'predictions.json' # predictions
|
||||
LOGGER.info(f'\nEvaluating pycocotools mAP using {pred_json} and {anno_json}...')
|
||||
try: # https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocoEvalDemo.ipynb
|
||||
check_requirements('pycocotools>=2.0.6')
|
||||
from pycocotools.coco import COCO # noqa
|
||||
from pycocotools.cocoeval import COCOeval # noqa
|
||||
|
||||
for x in anno_json, pred_json:
|
||||
assert x.is_file(), f'{x} file not found'
|
||||
anno = COCO(str(anno_json)) # init annotations api
|
||||
pred = anno.loadRes(str(pred_json)) # init predictions api (must pass string, not Path)
|
||||
for i, eval in enumerate([COCOeval(anno, pred, 'bbox'), COCOeval(anno, pred, 'segm')]):
|
||||
if self.is_coco:
|
||||
eval.params.imgIds = [int(Path(x).stem) for x in self.dataloader.dataset.im_files] # im to eval
|
||||
eval.evaluate()
|
||||
eval.accumulate()
|
||||
eval.summarize()
|
||||
idx = i * 4 + 2
|
||||
stats[self.metrics.keys[idx + 1]], stats[
|
||||
self.metrics.keys[idx]] = eval.stats[:2] # update mAP50-95 and mAP50
|
||||
except Exception as e:
|
||||
LOGGER.warning(f'pycocotools unable to run: {e}')
|
||||
return stats
|
||||
|
||||
|
||||
def val(cfg=DEFAULT_CFG, use_python=False):
|
||||
"""Validate trained YOLO model on validation data."""
|
||||
model = cfg.model or 'yolov8n-seg.pt'
|
||||
data = cfg.data or 'coco128-seg.yaml'
|
||||
|
||||
args = dict(model=model, data=data)
|
||||
if use_python:
|
||||
from ultralytics import YOLO
|
||||
YOLO(model).val(**args)
|
||||
else:
|
||||
validator = SegmentationValidator(args=args)
|
||||
validator(model=args['model'])
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
val()
|
Reference in New Issue
Block a user