退购1.1定位算法
This commit is contained in:
79
ultralytics/yolo/v8/detect/predict.py
Normal file
79
ultralytics/yolo/v8/detect/predict.py
Normal file
@ -0,0 +1,79 @@
|
||||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||
|
||||
import torch
|
||||
import numpy as np
|
||||
import os
|
||||
|
||||
from PIL import Image
|
||||
|
||||
from ultralytics.yolo.engine.predictor import BasePredictor
|
||||
from ultralytics.yolo.engine.results import Results
|
||||
from ultralytics.yolo.utils import DEFAULT_CFG, ROOT, ops
|
||||
|
||||
|
||||
class DetectionPredictor(BasePredictor):
|
||||
|
||||
def postprocess(self, preds, img, orig_imgs):
|
||||
"""Postprocesses predictions and returns a list of Results objects."""
|
||||
preds = ops.non_max_suppression(preds,
|
||||
self.args.conf,
|
||||
self.args.iou,
|
||||
agnostic=self.args.agnostic_nms,
|
||||
max_det=self.args.max_det,
|
||||
classes=self.args.classes)
|
||||
results = []
|
||||
for i, pred in enumerate(preds):
|
||||
orig_img = orig_imgs[i] if isinstance(orig_imgs, list) else orig_imgs
|
||||
if not isinstance(orig_imgs, torch.Tensor):
|
||||
pred[:, :4] = ops.scale_boxes(img.shape[2:], pred[:, :4], orig_img.shape)
|
||||
path = self.batch[0]
|
||||
img_path = path[i] if isinstance(path, list) else path
|
||||
results.append(Results(orig_img=orig_img, path=img_path, names=self.model.names, boxes=pred))
|
||||
# print('results2222222', results)
|
||||
return results
|
||||
|
||||
def boxesMov_output(self, path, img_MovBoxes):
|
||||
if len(img_MovBoxes) != 0:
|
||||
##保存判断为运动框中最后十帧所有运动框
|
||||
MovBox_save = self.save_dir / 'real_MovBox/'
|
||||
if not os.path.exists(MovBox_save):
|
||||
MovBox_save.mkdir(parents=True, exist_ok=True)
|
||||
# print('img_MovBoxes', img_MovBoxes)
|
||||
img_MovBoxes.sort(key=lambda x: x[0], reverse=True) ##按照ID降序
|
||||
index = np.unique(np.array(img_MovBoxes, dtype=object)[:, 0]) ##保留所有运动框的ID,升序排序
|
||||
# print('index', index)
|
||||
if len(index) > 10:
|
||||
real_MovBox = [box for box in img_MovBoxes if box[0] > index[-11]]
|
||||
else:
|
||||
real_MovBox = [box for box in img_MovBoxes]
|
||||
num = 0
|
||||
for mv_box in real_MovBox:
|
||||
num += 1
|
||||
# img_crop = str(MovBox_save) + '\\' + str(video_num) + '_'+ str(i) + '.jpg'
|
||||
# img_crop = str(MovBox_save) + '\\' + str(path).split('.mp4')[0].split('\\')[-1] + \
|
||||
# str(mv_box[0]) + '_' + str(num) + '.jpg'
|
||||
img_crop = str(MovBox_save) + '/' + str(path).split('.mp4')[0].split('\\')[-1] + '_' + str(
|
||||
mv_box[0]) + '_' + str(num) + '.jpg'
|
||||
Image.fromarray(mv_box[1]).save(img_crop, quality=95, subsampling=0)
|
||||
# print("99999999999999", real_MovBox)
|
||||
return real_MovBox
|
||||
else:
|
||||
return None
|
||||
|
||||
def predict(cfg=DEFAULT_CFG, use_python=False):
|
||||
"""Runs YOLO model inference on input image(s)."""
|
||||
model = cfg.model or 'yolov8n.pt'
|
||||
source = cfg.source if cfg.source is not None else ROOT / 'assets' if (ROOT / 'assets').exists() \
|
||||
else 'https://ultralytics.com/images/bus.jpg'
|
||||
|
||||
args = dict(model=model, source=source)
|
||||
if use_python:
|
||||
from ultralytics import YOLO
|
||||
YOLO(model)(**args)
|
||||
else:
|
||||
predictor = DetectionPredictor(overrides=args)
|
||||
predictor.predict_cli()
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
predict()
|
Reference in New Issue
Block a user