退购1.1定位算法

This commit is contained in:
jiajie555
2023-08-10 12:25:23 +08:00
commit 11e12f1899
371 changed files with 46027 additions and 0 deletions

View File

@ -0,0 +1,79 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
import torch
import numpy as np
import os
from PIL import Image
from ultralytics.yolo.engine.predictor import BasePredictor
from ultralytics.yolo.engine.results import Results
from ultralytics.yolo.utils import DEFAULT_CFG, ROOT, ops
class DetectionPredictor(BasePredictor):
def postprocess(self, preds, img, orig_imgs):
"""Postprocesses predictions and returns a list of Results objects."""
preds = ops.non_max_suppression(preds,
self.args.conf,
self.args.iou,
agnostic=self.args.agnostic_nms,
max_det=self.args.max_det,
classes=self.args.classes)
results = []
for i, pred in enumerate(preds):
orig_img = orig_imgs[i] if isinstance(orig_imgs, list) else orig_imgs
if not isinstance(orig_imgs, torch.Tensor):
pred[:, :4] = ops.scale_boxes(img.shape[2:], pred[:, :4], orig_img.shape)
path = self.batch[0]
img_path = path[i] if isinstance(path, list) else path
results.append(Results(orig_img=orig_img, path=img_path, names=self.model.names, boxes=pred))
# print('results2222222', results)
return results
def boxesMov_output(self, path, img_MovBoxes):
if len(img_MovBoxes) != 0:
##保存判断为运动框中最后十帧所有运动框
MovBox_save = self.save_dir / 'real_MovBox/'
if not os.path.exists(MovBox_save):
MovBox_save.mkdir(parents=True, exist_ok=True)
# print('img_MovBoxes', img_MovBoxes)
img_MovBoxes.sort(key=lambda x: x[0], reverse=True) ##按照ID降序
index = np.unique(np.array(img_MovBoxes, dtype=object)[:, 0]) ##保留所有运动框的ID,升序排序
# print('index', index)
if len(index) > 10:
real_MovBox = [box for box in img_MovBoxes if box[0] > index[-11]]
else:
real_MovBox = [box for box in img_MovBoxes]
num = 0
for mv_box in real_MovBox:
num += 1
# img_crop = str(MovBox_save) + '\\' + str(video_num) + '_'+ str(i) + '.jpg'
# img_crop = str(MovBox_save) + '\\' + str(path).split('.mp4')[0].split('\\')[-1] + \
# str(mv_box[0]) + '_' + str(num) + '.jpg'
img_crop = str(MovBox_save) + '/' + str(path).split('.mp4')[0].split('\\')[-1] + '_' + str(
mv_box[0]) + '_' + str(num) + '.jpg'
Image.fromarray(mv_box[1]).save(img_crop, quality=95, subsampling=0)
# print("99999999999999", real_MovBox)
return real_MovBox
else:
return None
def predict(cfg=DEFAULT_CFG, use_python=False):
"""Runs YOLO model inference on input image(s)."""
model = cfg.model or 'yolov8n.pt'
source = cfg.source if cfg.source is not None else ROOT / 'assets' if (ROOT / 'assets').exists() \
else 'https://ultralytics.com/images/bus.jpg'
args = dict(model=model, source=source)
if use_python:
from ultralytics import YOLO
YOLO(model)(**args)
else:
predictor = DetectionPredictor(overrides=args)
predictor.predict_cli()
if __name__ == '__main__':
predict()