退购1.1定位算法
This commit is contained in:
125
tests/test_engine.py
Normal file
125
tests/test_engine.py
Normal file
@ -0,0 +1,125 @@
|
||||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||
|
||||
from pathlib import Path
|
||||
|
||||
from ultralytics import YOLO
|
||||
from ultralytics.yolo.cfg import get_cfg
|
||||
from ultralytics.yolo.engine.exporter import Exporter
|
||||
from ultralytics.yolo.utils import DEFAULT_CFG, ROOT, SETTINGS
|
||||
from ultralytics.yolo.v8 import classify, detect, segment
|
||||
|
||||
CFG_DET = 'yolov8n.yaml'
|
||||
CFG_SEG = 'yolov8n-seg.yaml'
|
||||
CFG_CLS = 'squeezenet1_0'
|
||||
CFG = get_cfg(DEFAULT_CFG)
|
||||
MODEL = Path(SETTINGS['weights_dir']) / 'yolov8n'
|
||||
SOURCE = ROOT / 'assets'
|
||||
|
||||
|
||||
def test_func(model=None):
|
||||
print('callback test passed')
|
||||
|
||||
|
||||
def test_export():
|
||||
exporter = Exporter()
|
||||
exporter.add_callback('on_export_start', test_func)
|
||||
assert test_func in exporter.callbacks['on_export_start'], 'callback test failed'
|
||||
f = exporter(model=YOLO(CFG_DET).model)
|
||||
YOLO(f)(SOURCE) # exported model inference
|
||||
|
||||
|
||||
def test_detect():
|
||||
overrides = {'data': 'coco8.yaml', 'model': CFG_DET, 'imgsz': 32, 'epochs': 1, 'save': False}
|
||||
CFG.data = 'coco8.yaml'
|
||||
|
||||
# Trainer
|
||||
trainer = detect.DetectionTrainer(overrides=overrides)
|
||||
trainer.add_callback('on_train_start', test_func)
|
||||
assert test_func in trainer.callbacks['on_train_start'], 'callback test failed'
|
||||
trainer.train()
|
||||
|
||||
# Validator
|
||||
val = detect.DetectionValidator(args=CFG)
|
||||
val.add_callback('on_val_start', test_func)
|
||||
assert test_func in val.callbacks['on_val_start'], 'callback test failed'
|
||||
val(model=trainer.best) # validate best.pt
|
||||
|
||||
# Predictor
|
||||
pred = detect.DetectionPredictor(overrides={'imgsz': [64, 64]})
|
||||
pred.add_callback('on_predict_start', test_func)
|
||||
assert test_func in pred.callbacks['on_predict_start'], 'callback test failed'
|
||||
result = pred(source=SOURCE, model=f'{MODEL}.pt')
|
||||
assert len(result), 'predictor test failed'
|
||||
|
||||
overrides['resume'] = trainer.last
|
||||
trainer = detect.DetectionTrainer(overrides=overrides)
|
||||
try:
|
||||
trainer.train()
|
||||
except Exception as e:
|
||||
print(f'Expected exception caught: {e}')
|
||||
return
|
||||
|
||||
Exception('Resume test failed!')
|
||||
|
||||
|
||||
def test_segment():
|
||||
overrides = {'data': 'coco8-seg.yaml', 'model': CFG_SEG, 'imgsz': 32, 'epochs': 1, 'save': False}
|
||||
CFG.data = 'coco8-seg.yaml'
|
||||
CFG.v5loader = False
|
||||
# YOLO(CFG_SEG).train(**overrides) # works
|
||||
|
||||
# trainer
|
||||
trainer = segment.SegmentationTrainer(overrides=overrides)
|
||||
trainer.add_callback('on_train_start', test_func)
|
||||
assert test_func in trainer.callbacks['on_train_start'], 'callback test failed'
|
||||
trainer.train()
|
||||
|
||||
# Validator
|
||||
val = segment.SegmentationValidator(args=CFG)
|
||||
val.add_callback('on_val_start', test_func)
|
||||
assert test_func in val.callbacks['on_val_start'], 'callback test failed'
|
||||
val(model=trainer.best) # validate best.pt
|
||||
|
||||
# Predictor
|
||||
pred = segment.SegmentationPredictor(overrides={'imgsz': [64, 64]})
|
||||
pred.add_callback('on_predict_start', test_func)
|
||||
assert test_func in pred.callbacks['on_predict_start'], 'callback test failed'
|
||||
result = pred(source=SOURCE, model=f'{MODEL}-seg.pt')
|
||||
assert len(result), 'predictor test failed'
|
||||
|
||||
# Test resume
|
||||
overrides['resume'] = trainer.last
|
||||
trainer = segment.SegmentationTrainer(overrides=overrides)
|
||||
try:
|
||||
trainer.train()
|
||||
except Exception as e:
|
||||
print(f'Expected exception caught: {e}')
|
||||
return
|
||||
|
||||
Exception('Resume test failed!')
|
||||
|
||||
|
||||
def test_classify():
|
||||
overrides = {'data': 'imagenet10', 'model': 'yolov8n-cls.yaml', 'imgsz': 32, 'epochs': 1, 'save': False}
|
||||
CFG.data = 'imagenet10'
|
||||
CFG.imgsz = 32
|
||||
# YOLO(CFG_SEG).train(**overrides) # works
|
||||
|
||||
# Trainer
|
||||
trainer = classify.ClassificationTrainer(overrides=overrides)
|
||||
trainer.add_callback('on_train_start', test_func)
|
||||
assert test_func in trainer.callbacks['on_train_start'], 'callback test failed'
|
||||
trainer.train()
|
||||
|
||||
# Validator
|
||||
val = classify.ClassificationValidator(args=CFG)
|
||||
val.add_callback('on_val_start', test_func)
|
||||
assert test_func in val.callbacks['on_val_start'], 'callback test failed'
|
||||
val(model=trainer.best)
|
||||
|
||||
# Predictor
|
||||
pred = classify.ClassificationPredictor(overrides={'imgsz': [64, 64]})
|
||||
pred.add_callback('on_predict_start', test_func)
|
||||
assert test_func in pred.callbacks['on_predict_start'], 'callback test failed'
|
||||
result = pred(source=SOURCE, model=trainer.best)
|
||||
assert len(result), 'predictor test failed'
|
Reference in New Issue
Block a user