退购1.1定位算法
This commit is contained in:
19
examples/YOLOv8-OpenCV-ONNX-Python/README.md
Normal file
19
examples/YOLOv8-OpenCV-ONNX-Python/README.md
Normal file
@ -0,0 +1,19 @@
|
||||
# YOLOv8 - OpenCV
|
||||
|
||||
Implementation YOLOv8 on OpenCV using ONNX Format.
|
||||
|
||||
Just simply clone and run
|
||||
|
||||
```bash
|
||||
pip install -r requirements.txt
|
||||
python main.py --model yolov8n.onnx --img image.jpg
|
||||
```
|
||||
|
||||
If you start from scratch:
|
||||
|
||||
```bash
|
||||
pip install ultralytics
|
||||
yolo export model=yolov8n.pt imgsz=640 format=onnx opset=12
|
||||
```
|
||||
|
||||
_\*Make sure to include "opset=12"_
|
80
examples/YOLOv8-OpenCV-ONNX-Python/main.py
Normal file
80
examples/YOLOv8-OpenCV-ONNX-Python/main.py
Normal file
@ -0,0 +1,80 @@
|
||||
import argparse
|
||||
|
||||
import cv2.dnn
|
||||
import numpy as np
|
||||
|
||||
from ultralytics.yolo.utils import ROOT, yaml_load
|
||||
from ultralytics.yolo.utils.checks import check_yaml
|
||||
|
||||
CLASSES = yaml_load(check_yaml('coco128.yaml'))['names']
|
||||
|
||||
colors = np.random.uniform(0, 255, size=(len(CLASSES), 3))
|
||||
|
||||
|
||||
def draw_bounding_box(img, class_id, confidence, x, y, x_plus_w, y_plus_h):
|
||||
label = f'{CLASSES[class_id]} ({confidence:.2f})'
|
||||
color = colors[class_id]
|
||||
cv2.rectangle(img, (x, y), (x_plus_w, y_plus_h), color, 2)
|
||||
cv2.putText(img, label, (x - 10, y - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 2)
|
||||
|
||||
|
||||
def main(onnx_model, input_image):
|
||||
model: cv2.dnn.Net = cv2.dnn.readNetFromONNX(onnx_model)
|
||||
original_image: np.ndarray = cv2.imread(input_image)
|
||||
[height, width, _] = original_image.shape
|
||||
length = max((height, width))
|
||||
image = np.zeros((length, length, 3), np.uint8)
|
||||
image[0:height, 0:width] = original_image
|
||||
scale = length / 640
|
||||
|
||||
blob = cv2.dnn.blobFromImage(image, scalefactor=1 / 255, size=(640, 640), swapRB=True)
|
||||
model.setInput(blob)
|
||||
outputs = model.forward()
|
||||
|
||||
outputs = np.array([cv2.transpose(outputs[0])])
|
||||
rows = outputs.shape[1]
|
||||
|
||||
boxes = []
|
||||
scores = []
|
||||
class_ids = []
|
||||
|
||||
for i in range(rows):
|
||||
classes_scores = outputs[0][i][4:]
|
||||
(minScore, maxScore, minClassLoc, (x, maxClassIndex)) = cv2.minMaxLoc(classes_scores)
|
||||
if maxScore >= 0.25:
|
||||
box = [
|
||||
outputs[0][i][0] - (0.5 * outputs[0][i][2]), outputs[0][i][1] - (0.5 * outputs[0][i][3]),
|
||||
outputs[0][i][2], outputs[0][i][3]]
|
||||
boxes.append(box)
|
||||
scores.append(maxScore)
|
||||
class_ids.append(maxClassIndex)
|
||||
|
||||
result_boxes = cv2.dnn.NMSBoxes(boxes, scores, 0.25, 0.45, 0.5)
|
||||
|
||||
detections = []
|
||||
for i in range(len(result_boxes)):
|
||||
index = result_boxes[i]
|
||||
box = boxes[index]
|
||||
detection = {
|
||||
'class_id': class_ids[index],
|
||||
'class_name': CLASSES[class_ids[index]],
|
||||
'confidence': scores[index],
|
||||
'box': box,
|
||||
'scale': scale}
|
||||
detections.append(detection)
|
||||
draw_bounding_box(original_image, class_ids[index], scores[index], round(box[0] * scale), round(box[1] * scale),
|
||||
round((box[0] + box[2]) * scale), round((box[1] + box[3]) * scale))
|
||||
|
||||
cv2.imshow('image', original_image)
|
||||
cv2.waitKey(0)
|
||||
cv2.destroyAllWindows()
|
||||
|
||||
return detections
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument('--model', default='yolov8n.onnx', help='Input your onnx model.')
|
||||
parser.add_argument('--img', default=str(ROOT / 'assets/bus.jpg'), help='Path to input image.')
|
||||
args = parser.parse_args()
|
||||
main(args.model, args.img)
|
Reference in New Issue
Block a user