退购1.1定位算法
This commit is contained in:
193
docs/tasks/classify.md
Normal file
193
docs/tasks/classify.md
Normal file
@ -0,0 +1,193 @@
|
||||
---
|
||||
comments: true
|
||||
description: Check YOLO class label with only one class for the whole image, using image classification. Get strategies for training and validation models.
|
||||
---
|
||||
|
||||
Image classification is the simplest of the three tasks and involves classifying an entire image into one of a set of
|
||||
predefined classes.
|
||||
|
||||
<img width="1024" src="https://user-images.githubusercontent.com/26833433/212094133-6bb8c21c-3d47-41df-a512-81c5931054ae.png">
|
||||
|
||||
The output of an image classifier is a single class label and a confidence score. Image
|
||||
classification is useful when you need to know only what class an image belongs to and don't need to know where objects
|
||||
of that class are located or what their exact shape is.
|
||||
|
||||
!!! tip "Tip"
|
||||
|
||||
YOLOv8 Classify models use the `-cls` suffix, i.e. `yolov8n-cls.pt` and are pretrained on [ImageNet](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/datasets/ImageNet.yaml).
|
||||
|
||||
## [Models](https://github.com/ultralytics/ultralytics/tree/main/ultralytics/models/v8)
|
||||
|
||||
YOLOv8 pretrained Classify models are shown here. Detect, Segment and Pose models are pretrained on
|
||||
the [COCO](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/datasets/coco.yaml) dataset, while Classify
|
||||
models are pretrained on
|
||||
the [ImageNet](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/datasets/ImageNet.yaml) dataset.
|
||||
|
||||
[Models](https://github.com/ultralytics/ultralytics/tree/main/ultralytics/models) download automatically from the latest
|
||||
Ultralytics [release](https://github.com/ultralytics/assets/releases) on first use.
|
||||
|
||||
| Model | size<br><sup>(pixels) | acc<br><sup>top1 | acc<br><sup>top5 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>A100 TensorRT<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) at 640 |
|
||||
|----------------------------------------------------------------------------------------------|-----------------------|------------------|------------------|--------------------------------|-------------------------------------|--------------------|--------------------------|
|
||||
| [YOLOv8n-cls](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8n-cls.pt) | 224 | 66.6 | 87.0 | 12.9 | 0.31 | 2.7 | 4.3 |
|
||||
| [YOLOv8s-cls](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8s-cls.pt) | 224 | 72.3 | 91.1 | 23.4 | 0.35 | 6.4 | 13.5 |
|
||||
| [YOLOv8m-cls](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8m-cls.pt) | 224 | 76.4 | 93.2 | 85.4 | 0.62 | 17.0 | 42.7 |
|
||||
| [YOLOv8l-cls](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8l-cls.pt) | 224 | 78.0 | 94.1 | 163.0 | 0.87 | 37.5 | 99.7 |
|
||||
| [YOLOv8x-cls](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8x-cls.pt) | 224 | 78.4 | 94.3 | 232.0 | 1.01 | 57.4 | 154.8 |
|
||||
|
||||
- **acc** values are model accuracies on the [ImageNet](https://www.image-net.org/) dataset validation set.
|
||||
<br>Reproduce by `yolo val classify data=path/to/ImageNet device=0`
|
||||
- **Speed** averaged over ImageNet val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/)
|
||||
instance.
|
||||
<br>Reproduce by `yolo val classify data=path/to/ImageNet batch=1 device=0|cpu`
|
||||
|
||||
## Train
|
||||
|
||||
Train YOLOv8n-cls on the MNIST160 dataset for 100 epochs at image size 64. For a full list of available arguments
|
||||
see the [Configuration](../usage/cfg.md) page.
|
||||
|
||||
!!! example ""
|
||||
|
||||
=== "Python"
|
||||
|
||||
```python
|
||||
from ultralytics import YOLO
|
||||
|
||||
# Load a model
|
||||
model = YOLO('yolov8n-cls.yaml') # build a new model from YAML
|
||||
model = YOLO('yolov8n-cls.pt') # load a pretrained model (recommended for training)
|
||||
model = YOLO('yolov8n-cls.yaml').load('yolov8n-cls.pt') # build from YAML and transfer weights
|
||||
|
||||
# Train the model
|
||||
model.train(data='mnist160', epochs=100, imgsz=64)
|
||||
```
|
||||
|
||||
=== "CLI"
|
||||
|
||||
```bash
|
||||
# Build a new model from YAML and start training from scratch
|
||||
yolo classify train data=mnist160 model=yolov8n-cls.yaml epochs=100 imgsz=64
|
||||
|
||||
# Start training from a pretrained *.pt model
|
||||
yolo classify train data=mnist160 model=yolov8n-cls.pt epochs=100 imgsz=64
|
||||
|
||||
# Build a new model from YAML, transfer pretrained weights to it and start training
|
||||
yolo classify train data=mnist160 model=yolov8n-cls.yaml pretrained=yolov8n-cls.pt epochs=100 imgsz=64
|
||||
```
|
||||
|
||||
### Dataset format
|
||||
|
||||
The YOLO classification dataset format is same as the torchvision format. Each class of images has its own folder and you have to simply pass the path of the dataset folder, i.e, `yolo classify train data="path/to/dataset"`
|
||||
|
||||
```
|
||||
dataset/
|
||||
├── train/
|
||||
├──── class1/
|
||||
├──── class2/
|
||||
├──── class3/
|
||||
├──── ...
|
||||
├── val/
|
||||
├──── class1/
|
||||
├──── class2/
|
||||
├──── class3/
|
||||
├──── ...
|
||||
```
|
||||
|
||||
## Val
|
||||
|
||||
Validate trained YOLOv8n-cls model accuracy on the MNIST160 dataset. No argument need to passed as the `model` retains
|
||||
it's training `data` and arguments as model attributes.
|
||||
|
||||
!!! example ""
|
||||
|
||||
=== "Python"
|
||||
|
||||
```python
|
||||
from ultralytics import YOLO
|
||||
|
||||
# Load a model
|
||||
model = YOLO('yolov8n-cls.pt') # load an official model
|
||||
model = YOLO('path/to/best.pt') # load a custom model
|
||||
|
||||
# Validate the model
|
||||
metrics = model.val() # no arguments needed, dataset and settings remembered
|
||||
metrics.top1 # top1 accuracy
|
||||
metrics.top5 # top5 accuracy
|
||||
```
|
||||
=== "CLI"
|
||||
|
||||
```bash
|
||||
yolo classify val model=yolov8n-cls.pt # val official model
|
||||
yolo classify val model=path/to/best.pt # val custom model
|
||||
```
|
||||
|
||||
## Predict
|
||||
|
||||
Use a trained YOLOv8n-cls model to run predictions on images.
|
||||
|
||||
!!! example ""
|
||||
|
||||
=== "Python"
|
||||
|
||||
```python
|
||||
from ultralytics import YOLO
|
||||
|
||||
# Load a model
|
||||
model = YOLO('yolov8n-cls.pt') # load an official model
|
||||
model = YOLO('path/to/best.pt') # load a custom model
|
||||
|
||||
# Predict with the model
|
||||
results = model('https://ultralytics.com/images/bus.jpg') # predict on an image
|
||||
```
|
||||
=== "CLI"
|
||||
|
||||
```bash
|
||||
yolo classify predict model=yolov8n-cls.pt source='https://ultralytics.com/images/bus.jpg' # predict with official model
|
||||
yolo classify predict model=path/to/best.pt source='https://ultralytics.com/images/bus.jpg' # predict with custom model
|
||||
```
|
||||
|
||||
See full `predict` mode details in the [Predict](https://docs.ultralytics.com/modes/predict/) page.
|
||||
|
||||
## Export
|
||||
|
||||
Export a YOLOv8n-cls model to a different format like ONNX, CoreML, etc.
|
||||
|
||||
!!! example ""
|
||||
|
||||
=== "Python"
|
||||
|
||||
```python
|
||||
from ultralytics import YOLO
|
||||
|
||||
# Load a model
|
||||
model = YOLO('yolov8n-cls.pt') # load an official model
|
||||
model = YOLO('path/to/best.pt') # load a custom trained
|
||||
|
||||
# Export the model
|
||||
model.export(format='onnx')
|
||||
```
|
||||
=== "CLI"
|
||||
|
||||
```bash
|
||||
yolo export model=yolov8n-cls.pt format=onnx # export official model
|
||||
yolo export model=path/to/best.pt format=onnx # export custom trained model
|
||||
```
|
||||
|
||||
Available YOLOv8-cls export formats are in the table below. You can predict or validate directly on exported models,
|
||||
i.e. `yolo predict model=yolov8n-cls.onnx`. Usage examples are shown for your model after export completes.
|
||||
|
||||
| Format | `format` Argument | Model | Metadata | Arguments |
|
||||
|--------------------------------------------------------------------|-------------------|-------------------------------|----------|-----------------------------------------------------|
|
||||
| [PyTorch](https://pytorch.org/) | - | `yolov8n-cls.pt` | ✅ | - |
|
||||
| [TorchScript](https://pytorch.org/docs/stable/jit.html) | `torchscript` | `yolov8n-cls.torchscript` | ✅ | `imgsz`, `optimize` |
|
||||
| [ONNX](https://onnx.ai/) | `onnx` | `yolov8n-cls.onnx` | ✅ | `imgsz`, `half`, `dynamic`, `simplify`, `opset` |
|
||||
| [OpenVINO](https://docs.openvino.ai/latest/index.html) | `openvino` | `yolov8n-cls_openvino_model/` | ✅ | `imgsz`, `half` |
|
||||
| [TensorRT](https://developer.nvidia.com/tensorrt) | `engine` | `yolov8n-cls.engine` | ✅ | `imgsz`, `half`, `dynamic`, `simplify`, `workspace` |
|
||||
| [CoreML](https://github.com/apple/coremltools) | `coreml` | `yolov8n-cls.mlmodel` | ✅ | `imgsz`, `half`, `int8`, `nms` |
|
||||
| [TF SavedModel](https://www.tensorflow.org/guide/saved_model) | `saved_model` | `yolov8n-cls_saved_model/` | ✅ | `imgsz`, `keras` |
|
||||
| [TF GraphDef](https://www.tensorflow.org/api_docs/python/tf/Graph) | `pb` | `yolov8n-cls.pb` | ❌ | `imgsz` |
|
||||
| [TF Lite](https://www.tensorflow.org/lite) | `tflite` | `yolov8n-cls.tflite` | ✅ | `imgsz`, `half`, `int8` |
|
||||
| [TF Edge TPU](https://coral.ai/docs/edgetpu/models-intro/) | `edgetpu` | `yolov8n-cls_edgetpu.tflite` | ✅ | `imgsz` |
|
||||
| [TF.js](https://www.tensorflow.org/js) | `tfjs` | `yolov8n-cls_web_model/` | ✅ | `imgsz` |
|
||||
| [PaddlePaddle](https://github.com/PaddlePaddle) | `paddle` | `yolov8n-cls_paddle_model/` | ✅ | `imgsz` |
|
||||
|
||||
See full `export` details in the [Export](https://docs.ultralytics.com/modes/export/) page.
|
170
docs/tasks/detect.md
Normal file
170
docs/tasks/detect.md
Normal file
@ -0,0 +1,170 @@
|
||||
---
|
||||
comments: true
|
||||
description: Learn how to use YOLOv8, an object detection model pre-trained with COCO and about the different YOLOv8 models and how to train and export them.
|
||||
---
|
||||
|
||||
Object detection is a task that involves identifying the location and class of objects in an image or video stream.
|
||||
|
||||
<img width="1024" src="https://user-images.githubusercontent.com/26833433/212094133-6bb8c21c-3d47-41df-a512-81c5931054ae.png">
|
||||
|
||||
The output of an object detector is a set of bounding boxes that enclose the objects in the image, along with class labels and confidence scores for each box. Object detection is a good choice when you need to identify objects of interest in a scene, but don't need to know exactly where the object is or its exact shape.
|
||||
|
||||
!!! tip "Tip"
|
||||
|
||||
YOLOv8 Detect models are the default YOLOv8 models, i.e. `yolov8n.pt` and are pretrained on [COCO](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/datasets/coco.yaml).
|
||||
|
||||
## [Models](https://github.com/ultralytics/ultralytics/tree/main/ultralytics/models/v8)
|
||||
|
||||
YOLOv8 pretrained Detect models are shown here. Detect, Segment and Pose models are pretrained on the [COCO](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/datasets/coco.yaml) dataset, while Classify models are pretrained on the [ImageNet](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/datasets/ImageNet.yaml) dataset.
|
||||
|
||||
[Models](https://github.com/ultralytics/ultralytics/tree/main/ultralytics/models) download automatically from the latest Ultralytics [release](https://github.com/ultralytics/assets/releases) on first use.
|
||||
|
||||
| Model | size<br><sup>(pixels) | mAP<sup>val<br>50-95 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>A100 TensorRT<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
|
||||
|--------------------------------------------------------------------------------------|-----------------------|----------------------|--------------------------------|-------------------------------------|--------------------|-------------------|
|
||||
| [YOLOv8n](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8n.pt) | 640 | 37.3 | 80.4 | 0.99 | 3.2 | 8.7 |
|
||||
| [YOLOv8s](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8s.pt) | 640 | 44.9 | 128.4 | 1.20 | 11.2 | 28.6 |
|
||||
| [YOLOv8m](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8m.pt) | 640 | 50.2 | 234.7 | 1.83 | 25.9 | 78.9 |
|
||||
| [YOLOv8l](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8l.pt) | 640 | 52.9 | 375.2 | 2.39 | 43.7 | 165.2 |
|
||||
| [YOLOv8x](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8x.pt) | 640 | 53.9 | 479.1 | 3.53 | 68.2 | 257.8 |
|
||||
|
||||
- **mAP<sup>val</sup>** values are for single-model single-scale on [COCO val2017](http://cocodataset.org) dataset.
|
||||
<br>Reproduce by `yolo val detect data=coco.yaml device=0`
|
||||
- **Speed** averaged over COCO val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/)
|
||||
instance.
|
||||
<br>Reproduce by `yolo val detect data=coco128.yaml batch=1 device=0|cpu`
|
||||
|
||||
## Train
|
||||
|
||||
Train YOLOv8n on the COCO128 dataset for 100 epochs at image size 640. For a full list of available arguments see the [Configuration](../usage/cfg.md) page.
|
||||
|
||||
!!! example ""
|
||||
|
||||
=== "Python"
|
||||
|
||||
```python
|
||||
from ultralytics import YOLO
|
||||
|
||||
# Load a model
|
||||
model = YOLO('yolov8n.yaml') # build a new model from YAML
|
||||
model = YOLO('yolov8n.pt') # load a pretrained model (recommended for training)
|
||||
model = YOLO('yolov8n.yaml').load('yolov8n.pt') # build from YAML and transfer weights
|
||||
|
||||
# Train the model
|
||||
model.train(data='coco128.yaml', epochs=100, imgsz=640)
|
||||
```
|
||||
=== "CLI"
|
||||
|
||||
```bash
|
||||
# Build a new model from YAML and start training from scratch
|
||||
yolo detect train data=coco128.yaml model=yolov8n.yaml epochs=100 imgsz=640
|
||||
|
||||
# Start training from a pretrained *.pt model
|
||||
yolo detect train data=coco128.yaml model=yolov8n.pt epochs=100 imgsz=640
|
||||
|
||||
# Build a new model from YAML, transfer pretrained weights to it and start training
|
||||
yolo detect train data=coco128.yaml model=yolov8n.yaml pretrained=yolov8n.pt epochs=100 imgsz=640
|
||||
```
|
||||
|
||||
### Dataset format
|
||||
|
||||
YOLO detection dataset format can be found in detail in the [Dataset Guide](../yolov5/tutorials/train_custom_data.md). To convert your existing dataset from other formats( like COCO, VOC etc.) to YOLO format, please use [json2yolo tool](https://github.com/ultralytics/JSON2YOLO) by Ultralytics.
|
||||
|
||||
## Val
|
||||
|
||||
Validate trained YOLOv8n model accuracy on the COCO128 dataset. No argument need to passed as the `model` retains it's training `data` and arguments as model attributes.
|
||||
|
||||
!!! example ""
|
||||
|
||||
=== "Python"
|
||||
|
||||
```python
|
||||
from ultralytics import YOLO
|
||||
|
||||
# Load a model
|
||||
model = YOLO('yolov8n.pt') # load an official model
|
||||
model = YOLO('path/to/best.pt') # load a custom model
|
||||
|
||||
# Validate the model
|
||||
metrics = model.val() # no arguments needed, dataset and settings remembered
|
||||
metrics.box.map # map50-95
|
||||
metrics.box.map50 # map50
|
||||
metrics.box.map75 # map75
|
||||
metrics.box.maps # a list contains map50-95 of each category
|
||||
```
|
||||
=== "CLI"
|
||||
|
||||
```bash
|
||||
yolo detect val model=yolov8n.pt # val official model
|
||||
yolo detect val model=path/to/best.pt # val custom model
|
||||
```
|
||||
|
||||
## Predict
|
||||
|
||||
Use a trained YOLOv8n model to run predictions on images.
|
||||
|
||||
!!! example ""
|
||||
|
||||
=== "Python"
|
||||
|
||||
```python
|
||||
from ultralytics import YOLO
|
||||
|
||||
# Load a model
|
||||
model = YOLO('yolov8n.pt') # load an official model
|
||||
model = YOLO('path/to/best.pt') # load a custom model
|
||||
|
||||
# Predict with the model
|
||||
results = model('https://ultralytics.com/images/bus.jpg') # predict on an image
|
||||
```
|
||||
=== "CLI"
|
||||
|
||||
```bash
|
||||
yolo detect predict model=yolov8n.pt source='https://ultralytics.com/images/bus.jpg' # predict with official model
|
||||
yolo detect predict model=path/to/best.pt source='https://ultralytics.com/images/bus.jpg' # predict with custom model
|
||||
```
|
||||
|
||||
See full `predict` mode details in the [Predict](https://docs.ultralytics.com/modes/predict/) page.
|
||||
|
||||
## Export
|
||||
|
||||
Export a YOLOv8n model to a different format like ONNX, CoreML, etc.
|
||||
|
||||
!!! example ""
|
||||
|
||||
=== "Python"
|
||||
|
||||
```python
|
||||
from ultralytics import YOLO
|
||||
|
||||
# Load a model
|
||||
model = YOLO('yolov8n.pt') # load an official model
|
||||
model = YOLO('path/to/best.pt') # load a custom trained
|
||||
|
||||
# Export the model
|
||||
model.export(format='onnx')
|
||||
```
|
||||
=== "CLI"
|
||||
|
||||
```bash
|
||||
yolo export model=yolov8n.pt format=onnx # export official model
|
||||
yolo export model=path/to/best.pt format=onnx # export custom trained model
|
||||
```
|
||||
|
||||
Available YOLOv8 export formats are in the table below. You can predict or validate directly on exported models, i.e. `yolo predict model=yolov8n.onnx`. Usage examples are shown for your model after export completes.
|
||||
|
||||
| Format | `format` Argument | Model | Metadata | Arguments |
|
||||
|--------------------------------------------------------------------|-------------------|---------------------------|----------|-----------------------------------------------------|
|
||||
| [PyTorch](https://pytorch.org/) | - | `yolov8n.pt` | ✅ | - |
|
||||
| [TorchScript](https://pytorch.org/docs/stable/jit.html) | `torchscript` | `yolov8n.torchscript` | ✅ | `imgsz`, `optimize` |
|
||||
| [ONNX](https://onnx.ai/) | `onnx` | `yolov8n.onnx` | ✅ | `imgsz`, `half`, `dynamic`, `simplify`, `opset` |
|
||||
| [OpenVINO](https://docs.openvino.ai/latest/index.html) | `openvino` | `yolov8n_openvino_model/` | ✅ | `imgsz`, `half` |
|
||||
| [TensorRT](https://developer.nvidia.com/tensorrt) | `engine` | `yolov8n.engine` | ✅ | `imgsz`, `half`, `dynamic`, `simplify`, `workspace` |
|
||||
| [CoreML](https://github.com/apple/coremltools) | `coreml` | `yolov8n.mlmodel` | ✅ | `imgsz`, `half`, `int8`, `nms` |
|
||||
| [TF SavedModel](https://www.tensorflow.org/guide/saved_model) | `saved_model` | `yolov8n_saved_model/` | ✅ | `imgsz`, `keras` |
|
||||
| [TF GraphDef](https://www.tensorflow.org/api_docs/python/tf/Graph) | `pb` | `yolov8n.pb` | ❌ | `imgsz` |
|
||||
| [TF Lite](https://www.tensorflow.org/lite) | `tflite` | `yolov8n.tflite` | ✅ | `imgsz`, `half`, `int8` |
|
||||
| [TF Edge TPU](https://coral.ai/docs/edgetpu/models-intro/) | `edgetpu` | `yolov8n_edgetpu.tflite` | ✅ | `imgsz` |
|
||||
| [TF.js](https://www.tensorflow.org/js) | `tfjs` | `yolov8n_web_model/` | ✅ | `imgsz` |
|
||||
| [PaddlePaddle](https://github.com/PaddlePaddle) | `paddle` | `yolov8n_paddle_model/` | ✅ | `imgsz` |
|
||||
|
||||
See full `export` details in the [Export](https://docs.ultralytics.com/modes/export/) page.
|
49
docs/tasks/index.md
Normal file
49
docs/tasks/index.md
Normal file
@ -0,0 +1,49 @@
|
||||
---
|
||||
comments: true
|
||||
description: Learn how Ultralytics YOLOv8 AI framework supports detection, segmentation, classification, and pose/keypoint estimation tasks.
|
||||
---
|
||||
|
||||
# Ultralytics YOLOv8 Tasks
|
||||
|
||||
YOLOv8 is an AI framework that supports multiple computer vision **tasks**. The framework can be used to
|
||||
perform [detection](detect.md), [segmentation](segment.md), [classification](classify.md),
|
||||
and [pose](pose.md) estimation. Each of these tasks has a different objective and use case.
|
||||
|
||||
<img width="1024" src="https://user-images.githubusercontent.com/26833433/212094133-6bb8c21c-3d47-41df-a512-81c5931054ae.png">
|
||||
|
||||
## [Detection](detect.md)
|
||||
|
||||
Detection is the primary task supported by YOLOv8. It involves detecting objects in an image or video frame and drawing
|
||||
bounding boxes around them. The detected objects are classified into different categories based on their features.
|
||||
YOLOv8 can detect multiple objects in a single image or video frame with high accuracy and speed.
|
||||
|
||||
[Detection Examples](detect.md){ .md-button .md-button--primary}
|
||||
|
||||
## [Segmentation](segment.md)
|
||||
|
||||
Segmentation is a task that involves segmenting an image into different regions based on the content of the image. Each
|
||||
region is assigned a label based on its content. This task is useful in applications such as image segmentation and
|
||||
medical imaging. YOLOv8 uses a variant of the U-Net architecture to perform segmentation.
|
||||
|
||||
[Segmentation Examples](segment.md){ .md-button .md-button--primary}
|
||||
|
||||
## [Classification](classify.md)
|
||||
|
||||
Classification is a task that involves classifying an image into different categories. YOLOv8 can be used to classify
|
||||
images based on their content. It uses a variant of the EfficientNet architecture to perform classification.
|
||||
|
||||
[Classification Examples](classify.md){ .md-button .md-button--primary}
|
||||
|
||||
## [Pose](pose.md)
|
||||
|
||||
Pose/keypoint detection is a task that involves detecting specific points in an image or video frame. These points are
|
||||
referred to as keypoints and are used to track movement or pose estimation. YOLOv8 can detect keypoints in an image or
|
||||
video frame with high accuracy and speed.
|
||||
|
||||
[Pose Examples](pose.md){ .md-button .md-button--primary}
|
||||
|
||||
## Conclusion
|
||||
|
||||
YOLOv8 supports multiple tasks, including detection, segmentation, classification, and keypoints detection. Each of
|
||||
these tasks has different objectives and use cases. By understanding the differences between these tasks, you can choose
|
||||
the appropriate task for your computer vision application.
|
180
docs/tasks/pose.md
Normal file
180
docs/tasks/pose.md
Normal file
@ -0,0 +1,180 @@
|
||||
---
|
||||
comments: true
|
||||
description: Learn how to use YOLOv8 pose estimation models to identify the position of keypoints on objects in an image, and how to train, validate, predict, and export these models for use with various formats such as ONNX or CoreML.
|
||||
---
|
||||
|
||||
Pose estimation is a task that involves identifying the location of specific points in an image, usually referred
|
||||
to as keypoints. The keypoints can represent various parts of the object such as joints, landmarks, or other distinctive
|
||||
features. The locations of the keypoints are usually represented as a set of 2D `[x, y]` or 3D `[x, y, visible]`
|
||||
coordinates.
|
||||
|
||||
<img width="1024" src="https://user-images.githubusercontent.com/26833433/212094133-6bb8c21c-3d47-41df-a512-81c5931054ae.png">
|
||||
|
||||
The output of a pose estimation model is a set of points that represent the keypoints on an object in the image, usually
|
||||
along with the confidence scores for each point. Pose estimation is a good choice when you need to identify specific
|
||||
parts of an object in a scene, and their location in relation to each other.
|
||||
|
||||
!!! tip "Tip"
|
||||
|
||||
YOLOv8 _pose_ models use the `-pose` suffix, i.e. `yolov8n-pose.pt`. These models are trained on the [COCO keypoints](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/datasets/coco-pose.yaml) dataset and are suitable for a variety of pose estimation tasks.
|
||||
|
||||
## [Models](https://github.com/ultralytics/ultralytics/tree/main/ultralytics/models/v8)
|
||||
|
||||
YOLOv8 pretrained Pose models are shown here. Detect, Segment and Pose models are pretrained on
|
||||
the [COCO](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/datasets/coco.yaml) dataset, while Classify
|
||||
models are pretrained on
|
||||
the [ImageNet](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/datasets/ImageNet.yaml) dataset.
|
||||
|
||||
[Models](https://github.com/ultralytics/ultralytics/tree/main/ultralytics/models) download automatically from the latest
|
||||
Ultralytics [release](https://github.com/ultralytics/assets/releases) on first use.
|
||||
|
||||
| Model | size<br><sup>(pixels) | mAP<sup>pose<br>50-95 | mAP<sup>pose<br>50 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>A100 TensorRT<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
|
||||
|------------------------------------------------------------------------------------------------------|-----------------------|-----------------------|--------------------|--------------------------------|-------------------------------------|--------------------|-------------------|
|
||||
| [YOLOv8n-pose](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8n-pose.pt) | 640 | 50.4 | 80.1 | 131.8 | 1.18 | 3.3 | 9.2 |
|
||||
| [YOLOv8s-pose](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8s-pose.pt) | 640 | 60.0 | 86.2 | 233.2 | 1.42 | 11.6 | 30.2 |
|
||||
| [YOLOv8m-pose](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8m-pose.pt) | 640 | 65.0 | 88.8 | 456.3 | 2.00 | 26.4 | 81.0 |
|
||||
| [YOLOv8l-pose](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8l-pose.pt) | 640 | 67.6 | 90.0 | 784.5 | 2.59 | 44.4 | 168.6 |
|
||||
| [YOLOv8x-pose](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8x-pose.pt) | 640 | 69.2 | 90.2 | 1607.1 | 3.73 | 69.4 | 263.2 |
|
||||
| [YOLOv8x-pose-p6](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8x-pose-p6.pt) | 1280 | 71.6 | 91.2 | 4088.7 | 10.04 | 99.1 | 1066.4 |
|
||||
|
||||
- **mAP<sup>val</sup>** values are for single-model single-scale on [COCO Keypoints val2017](http://cocodataset.org)
|
||||
dataset.
|
||||
<br>Reproduce by `yolo val pose data=coco-pose.yaml device=0`
|
||||
- **Speed** averaged over COCO val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/)
|
||||
instance.
|
||||
<br>Reproduce by `yolo val pose data=coco8-pose.yaml batch=1 device=0|cpu`
|
||||
|
||||
## Train
|
||||
|
||||
Train a YOLOv8-pose model on the COCO128-pose dataset.
|
||||
|
||||
!!! example ""
|
||||
|
||||
=== "Python"
|
||||
|
||||
```python
|
||||
from ultralytics import YOLO
|
||||
|
||||
# Load a model
|
||||
model = YOLO('yolov8n-pose.yaml') # build a new model from YAML
|
||||
model = YOLO('yolov8n-pose.pt') # load a pretrained model (recommended for training)
|
||||
model = YOLO('yolov8n-pose.yaml').load('yolov8n-pose.pt') # build from YAML and transfer weights
|
||||
|
||||
# Train the model
|
||||
model.train(data='coco8-pose.yaml', epochs=100, imgsz=640)
|
||||
```
|
||||
=== "CLI"
|
||||
|
||||
```bash
|
||||
# Build a new model from YAML and start training from scratch
|
||||
yolo pose train data=coco8-pose.yaml model=yolov8n-pose.yaml epochs=100 imgsz=640
|
||||
|
||||
# Start training from a pretrained *.pt model
|
||||
yolo pose train data=coco8-pose.yaml model=yolov8n-pose.pt epochs=100 imgsz=640
|
||||
|
||||
# Build a new model from YAML, transfer pretrained weights to it and start training
|
||||
yolo pose train data=coco8-pose.yaml model=yolov8n-pose.yaml pretrained=yolov8n-pose.pt epochs=100 imgsz=640
|
||||
```
|
||||
|
||||
## Val
|
||||
|
||||
Validate trained YOLOv8n-pose model accuracy on the COCO128-pose dataset. No argument need to passed as the `model`
|
||||
retains it's
|
||||
training `data` and arguments as model attributes.
|
||||
|
||||
!!! example ""
|
||||
|
||||
=== "Python"
|
||||
|
||||
```python
|
||||
from ultralytics import YOLO
|
||||
|
||||
# Load a model
|
||||
model = YOLO('yolov8n-pose.pt') # load an official model
|
||||
model = YOLO('path/to/best.pt') # load a custom model
|
||||
|
||||
# Validate the model
|
||||
metrics = model.val() # no arguments needed, dataset and settings remembered
|
||||
metrics.box.map # map50-95
|
||||
metrics.box.map50 # map50
|
||||
metrics.box.map75 # map75
|
||||
metrics.box.maps # a list contains map50-95 of each category
|
||||
```
|
||||
=== "CLI"
|
||||
|
||||
```bash
|
||||
yolo pose val model=yolov8n-pose.pt # val official model
|
||||
yolo pose val model=path/to/best.pt # val custom model
|
||||
```
|
||||
|
||||
## Predict
|
||||
|
||||
Use a trained YOLOv8n-pose model to run predictions on images.
|
||||
|
||||
!!! example ""
|
||||
|
||||
=== "Python"
|
||||
|
||||
```python
|
||||
from ultralytics import YOLO
|
||||
|
||||
# Load a model
|
||||
model = YOLO('yolov8n-pose.pt') # load an official model
|
||||
model = YOLO('path/to/best.pt') # load a custom model
|
||||
|
||||
# Predict with the model
|
||||
results = model('https://ultralytics.com/images/bus.jpg') # predict on an image
|
||||
```
|
||||
=== "CLI"
|
||||
|
||||
```bash
|
||||
yolo pose predict model=yolov8n-pose.pt source='https://ultralytics.com/images/bus.jpg' # predict with official model
|
||||
yolo pose predict model=path/to/best.pt source='https://ultralytics.com/images/bus.jpg' # predict with custom model
|
||||
```
|
||||
|
||||
See full `predict` mode details in the [Predict](https://docs.ultralytics.com/modes/predict/) page.
|
||||
|
||||
## Export
|
||||
|
||||
Export a YOLOv8n Pose model to a different format like ONNX, CoreML, etc.
|
||||
|
||||
!!! example ""
|
||||
|
||||
=== "Python"
|
||||
|
||||
```python
|
||||
from ultralytics import YOLO
|
||||
|
||||
# Load a model
|
||||
model = YOLO('yolov8n-pose.pt') # load an official model
|
||||
model = YOLO('path/to/best.pt') # load a custom trained
|
||||
|
||||
# Export the model
|
||||
model.export(format='onnx')
|
||||
```
|
||||
=== "CLI"
|
||||
|
||||
```bash
|
||||
yolo export model=yolov8n-pose.pt format=onnx # export official model
|
||||
yolo export model=path/to/best.pt format=onnx # export custom trained model
|
||||
```
|
||||
|
||||
Available YOLOv8-pose export formats are in the table below. You can predict or validate directly on exported models,
|
||||
i.e. `yolo predict model=yolov8n-pose.onnx`. Usage examples are shown for your model after export completes.
|
||||
|
||||
| Format | `format` Argument | Model | Metadata | Arguments |
|
||||
|--------------------------------------------------------------------|-------------------|--------------------------------|----------|-----------------------------------------------------|
|
||||
| [PyTorch](https://pytorch.org/) | - | `yolov8n-pose.pt` | ✅ | - |
|
||||
| [TorchScript](https://pytorch.org/docs/stable/jit.html) | `torchscript` | `yolov8n-pose.torchscript` | ✅ | `imgsz`, `optimize` |
|
||||
| [ONNX](https://onnx.ai/) | `onnx` | `yolov8n-pose.onnx` | ✅ | `imgsz`, `half`, `dynamic`, `simplify`, `opset` |
|
||||
| [OpenVINO](https://docs.openvino.ai/latest/index.html) | `openvino` | `yolov8n-pose_openvino_model/` | ✅ | `imgsz`, `half` |
|
||||
| [TensorRT](https://developer.nvidia.com/tensorrt) | `engine` | `yolov8n-pose.engine` | ✅ | `imgsz`, `half`, `dynamic`, `simplify`, `workspace` |
|
||||
| [CoreML](https://github.com/apple/coremltools) | `coreml` | `yolov8n-pose.mlmodel` | ✅ | `imgsz`, `half`, `int8`, `nms` |
|
||||
| [TF SavedModel](https://www.tensorflow.org/guide/saved_model) | `saved_model` | `yolov8n-pose_saved_model/` | ✅ | `imgsz`, `keras` |
|
||||
| [TF GraphDef](https://www.tensorflow.org/api_docs/python/tf/Graph) | `pb` | `yolov8n-pose.pb` | ❌ | `imgsz` |
|
||||
| [TF Lite](https://www.tensorflow.org/lite) | `tflite` | `yolov8n-pose.tflite` | ✅ | `imgsz`, `half`, `int8` |
|
||||
| [TF Edge TPU](https://coral.ai/docs/edgetpu/models-intro/) | `edgetpu` | `yolov8n-pose_edgetpu.tflite` | ✅ | `imgsz` |
|
||||
| [TF.js](https://www.tensorflow.org/js) | `tfjs` | `yolov8n-pose_web_model/` | ✅ | `imgsz` |
|
||||
| [PaddlePaddle](https://github.com/PaddlePaddle) | `paddle` | `yolov8n-pose_paddle_model/` | ✅ | `imgsz` |
|
||||
|
||||
See full `export` details in the [Export](https://docs.ultralytics.com/modes/export/) page.
|
188
docs/tasks/segment.md
Normal file
188
docs/tasks/segment.md
Normal file
@ -0,0 +1,188 @@
|
||||
---
|
||||
comments: true
|
||||
description: Learn what Instance segmentation is. Get pretrained YOLOv8 segment models, and how to train and export them to segments masks. Check the preformance metrics!
|
||||
---
|
||||
|
||||
Instance segmentation goes a step further than object detection and involves identifying individual objects in an image
|
||||
and segmenting them from the rest of the image.
|
||||
|
||||
<img width="1024" src="https://user-images.githubusercontent.com/26833433/212094133-6bb8c21c-3d47-41df-a512-81c5931054ae.png">
|
||||
|
||||
The output of an instance segmentation model is a set of masks or
|
||||
contours that outline each object in the image, along with class labels and confidence scores for each object. Instance
|
||||
segmentation is useful when you need to know not only where objects are in an image, but also what their exact shape is.
|
||||
|
||||
!!! tip "Tip"
|
||||
|
||||
YOLOv8 Segment models use the `-seg` suffix, i.e. `yolov8n-seg.pt` and are pretrained on [COCO](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/datasets/coco.yaml).
|
||||
|
||||
## [Models](https://github.com/ultralytics/ultralytics/tree/main/ultralytics/models/v8)
|
||||
|
||||
YOLOv8 pretrained Segment models are shown here. Detect, Segment and Pose models are pretrained on
|
||||
the [COCO](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/datasets/coco.yaml) dataset, while Classify
|
||||
models are pretrained on
|
||||
the [ImageNet](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/datasets/ImageNet.yaml) dataset.
|
||||
|
||||
[Models](https://github.com/ultralytics/ultralytics/tree/main/ultralytics/models) download automatically from the latest
|
||||
Ultralytics [release](https://github.com/ultralytics/assets/releases) on first use.
|
||||
|
||||
| Model | size<br><sup>(pixels) | mAP<sup>box<br>50-95 | mAP<sup>mask<br>50-95 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>A100 TensorRT<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
|
||||
|----------------------------------------------------------------------------------------------|-----------------------|----------------------|-----------------------|--------------------------------|-------------------------------------|--------------------|-------------------|
|
||||
| [YOLOv8n-seg](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8n-seg.pt) | 640 | 36.7 | 30.5 | 96.1 | 1.21 | 3.4 | 12.6 |
|
||||
| [YOLOv8s-seg](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8s-seg.pt) | 640 | 44.6 | 36.8 | 155.7 | 1.47 | 11.8 | 42.6 |
|
||||
| [YOLOv8m-seg](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8m-seg.pt) | 640 | 49.9 | 40.8 | 317.0 | 2.18 | 27.3 | 110.2 |
|
||||
| [YOLOv8l-seg](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8l-seg.pt) | 640 | 52.3 | 42.6 | 572.4 | 2.79 | 46.0 | 220.5 |
|
||||
| [YOLOv8x-seg](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8x-seg.pt) | 640 | 53.4 | 43.4 | 712.1 | 4.02 | 71.8 | 344.1 |
|
||||
|
||||
- **mAP<sup>val</sup>** values are for single-model single-scale on [COCO val2017](http://cocodataset.org) dataset.
|
||||
<br>Reproduce by `yolo val segment data=coco.yaml device=0`
|
||||
- **Speed** averaged over COCO val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/)
|
||||
instance.
|
||||
<br>Reproduce by `yolo val segment data=coco128-seg.yaml batch=1 device=0|cpu`
|
||||
|
||||
## Train
|
||||
|
||||
Train YOLOv8n-seg on the COCO128-seg dataset for 100 epochs at image size 640. For a full list of available
|
||||
arguments see the [Configuration](../usage/cfg.md) page.
|
||||
|
||||
!!! example ""
|
||||
|
||||
=== "Python"
|
||||
|
||||
```python
|
||||
from ultralytics import YOLO
|
||||
|
||||
# Load a model
|
||||
model = YOLO('yolov8n-seg.yaml') # build a new model from YAML
|
||||
model = YOLO('yolov8n-seg.pt') # load a pretrained model (recommended for training)
|
||||
model = YOLO('yolov8n-seg.yaml').load('yolov8n.pt') # build from YAML and transfer weights
|
||||
|
||||
# Train the model
|
||||
model.train(data='coco128-seg.yaml', epochs=100, imgsz=640)
|
||||
```
|
||||
=== "CLI"
|
||||
|
||||
```bash
|
||||
# Build a new model from YAML and start training from scratch
|
||||
yolo segment train data=coco128-seg.yaml model=yolov8n-seg.yaml epochs=100 imgsz=640
|
||||
|
||||
# Start training from a pretrained *.pt model
|
||||
yolo segment train data=coco128-seg.yaml model=yolov8n-seg.pt epochs=100 imgsz=640
|
||||
|
||||
# Build a new model from YAML, transfer pretrained weights to it and start training
|
||||
yolo segment train data=coco128-seg.yaml model=yolov8n-seg.yaml pretrained=yolov8n-seg.pt epochs=100 imgsz=640
|
||||
```
|
||||
|
||||
### Dataset format
|
||||
|
||||
YOLO segmentation dataset label format extends detection format with segment points.
|
||||
|
||||
`cls x1 y1 x2 y2 p1 p2 ... pn`
|
||||
|
||||
To convert your existing dataset from other formats( like COCO, VOC etc.) to YOLO format, please use [json2yolo tool](https://github.com/ultralytics/JSON2YOLO) by Ultralytics.
|
||||
|
||||
## Val
|
||||
|
||||
Validate trained YOLOv8n-seg model accuracy on the COCO128-seg dataset. No argument need to passed as the `model`
|
||||
retains it's training `data` and arguments as model attributes.
|
||||
|
||||
!!! example ""
|
||||
|
||||
=== "Python"
|
||||
|
||||
```python
|
||||
from ultralytics import YOLO
|
||||
|
||||
# Load a model
|
||||
model = YOLO('yolov8n-seg.pt') # load an official model
|
||||
model = YOLO('path/to/best.pt') # load a custom model
|
||||
|
||||
# Validate the model
|
||||
metrics = model.val() # no arguments needed, dataset and settings remembered
|
||||
metrics.box.map # map50-95(B)
|
||||
metrics.box.map50 # map50(B)
|
||||
metrics.box.map75 # map75(B)
|
||||
metrics.box.maps # a list contains map50-95(B) of each category
|
||||
metrics.seg.map # map50-95(M)
|
||||
metrics.seg.map50 # map50(M)
|
||||
metrics.seg.map75 # map75(M)
|
||||
metrics.seg.maps # a list contains map50-95(M) of each category
|
||||
```
|
||||
=== "CLI"
|
||||
|
||||
```bash
|
||||
yolo segment val model=yolov8n-seg.pt # val official model
|
||||
yolo segment val model=path/to/best.pt # val custom model
|
||||
```
|
||||
|
||||
## Predict
|
||||
|
||||
Use a trained YOLOv8n-seg model to run predictions on images.
|
||||
|
||||
!!! example ""
|
||||
|
||||
=== "Python"
|
||||
|
||||
```python
|
||||
from ultralytics import YOLO
|
||||
|
||||
# Load a model
|
||||
model = YOLO('yolov8n-seg.pt') # load an official model
|
||||
model = YOLO('path/to/best.pt') # load a custom model
|
||||
|
||||
# Predict with the model
|
||||
results = model('https://ultralytics.com/images/bus.jpg') # predict on an image
|
||||
```
|
||||
=== "CLI"
|
||||
|
||||
```bash
|
||||
yolo segment predict model=yolov8n-seg.pt source='https://ultralytics.com/images/bus.jpg' # predict with official model
|
||||
yolo segment predict model=path/to/best.pt source='https://ultralytics.com/images/bus.jpg' # predict with custom model
|
||||
```
|
||||
|
||||
See full `predict` mode details in the [Predict](https://docs.ultralytics.com/modes/predict/) page.
|
||||
|
||||
## Export
|
||||
|
||||
Export a YOLOv8n-seg model to a different format like ONNX, CoreML, etc.
|
||||
|
||||
!!! example ""
|
||||
|
||||
=== "Python"
|
||||
|
||||
```python
|
||||
from ultralytics import YOLO
|
||||
|
||||
# Load a model
|
||||
model = YOLO('yolov8n-seg.pt') # load an official model
|
||||
model = YOLO('path/to/best.pt') # load a custom trained
|
||||
|
||||
# Export the model
|
||||
model.export(format='onnx')
|
||||
```
|
||||
=== "CLI"
|
||||
|
||||
```bash
|
||||
yolo export model=yolov8n-seg.pt format=onnx # export official model
|
||||
yolo export model=path/to/best.pt format=onnx # export custom trained model
|
||||
```
|
||||
|
||||
Available YOLOv8-seg export formats are in the table below. You can predict or validate directly on exported models,
|
||||
i.e. `yolo predict model=yolov8n-seg.onnx`. Usage examples are shown for your model after export completes.
|
||||
|
||||
| Format | `format` Argument | Model | Metadata | Arguments |
|
||||
|--------------------------------------------------------------------|-------------------|-------------------------------|----------|-----------------------------------------------------|
|
||||
| [PyTorch](https://pytorch.org/) | - | `yolov8n-seg.pt` | ✅ | - |
|
||||
| [TorchScript](https://pytorch.org/docs/stable/jit.html) | `torchscript` | `yolov8n-seg.torchscript` | ✅ | `imgsz`, `optimize` |
|
||||
| [ONNX](https://onnx.ai/) | `onnx` | `yolov8n-seg.onnx` | ✅ | `imgsz`, `half`, `dynamic`, `simplify`, `opset` |
|
||||
| [OpenVINO](https://docs.openvino.ai/latest/index.html) | `openvino` | `yolov8n-seg_openvino_model/` | ✅ | `imgsz`, `half` |
|
||||
| [TensorRT](https://developer.nvidia.com/tensorrt) | `engine` | `yolov8n-seg.engine` | ✅ | `imgsz`, `half`, `dynamic`, `simplify`, `workspace` |
|
||||
| [CoreML](https://github.com/apple/coremltools) | `coreml` | `yolov8n-seg.mlmodel` | ✅ | `imgsz`, `half`, `int8`, `nms` |
|
||||
| [TF SavedModel](https://www.tensorflow.org/guide/saved_model) | `saved_model` | `yolov8n-seg_saved_model/` | ✅ | `imgsz`, `keras` |
|
||||
| [TF GraphDef](https://www.tensorflow.org/api_docs/python/tf/Graph) | `pb` | `yolov8n-seg.pb` | ❌ | `imgsz` |
|
||||
| [TF Lite](https://www.tensorflow.org/lite) | `tflite` | `yolov8n-seg.tflite` | ✅ | `imgsz`, `half`, `int8` |
|
||||
| [TF Edge TPU](https://coral.ai/docs/edgetpu/models-intro/) | `edgetpu` | `yolov8n-seg_edgetpu.tflite` | ✅ | `imgsz` |
|
||||
| [TF.js](https://www.tensorflow.org/js) | `tfjs` | `yolov8n-seg_web_model/` | ✅ | `imgsz` |
|
||||
| [PaddlePaddle](https://github.com/PaddlePaddle) | `paddle` | `yolov8n-seg_paddle_model/` | ✅ | `imgsz` |
|
||||
|
||||
See full `export` details in the [Export](https://docs.ultralytics.com/modes/export/) page.
|
Reference in New Issue
Block a user