退购1.1定位算法

This commit is contained in:
jiajie555
2023-08-10 12:25:23 +08:00
commit 11e12f1899
371 changed files with 46027 additions and 0 deletions

View File

@ -0,0 +1,8 @@
---
description: Learn how to use auto_annotate in Ultralytics YOLO to generate annotations automatically for your dataset. Simplify object detection workflows.
---
# auto_annotate
---
:::ultralytics.yolo.data.annotator.auto_annotate
<br><br>

View File

@ -0,0 +1,93 @@
---
description: Use Ultralytics YOLO Data Augmentation transforms with Base, MixUp, and Albumentations for object detection and classification.
---
# BaseTransform
---
:::ultralytics.yolo.data.augment.BaseTransform
<br><br>
# Compose
---
:::ultralytics.yolo.data.augment.Compose
<br><br>
# BaseMixTransform
---
:::ultralytics.yolo.data.augment.BaseMixTransform
<br><br>
# Mosaic
---
:::ultralytics.yolo.data.augment.Mosaic
<br><br>
# MixUp
---
:::ultralytics.yolo.data.augment.MixUp
<br><br>
# RandomPerspective
---
:::ultralytics.yolo.data.augment.RandomPerspective
<br><br>
# RandomHSV
---
:::ultralytics.yolo.data.augment.RandomHSV
<br><br>
# RandomFlip
---
:::ultralytics.yolo.data.augment.RandomFlip
<br><br>
# LetterBox
---
:::ultralytics.yolo.data.augment.LetterBox
<br><br>
# CopyPaste
---
:::ultralytics.yolo.data.augment.CopyPaste
<br><br>
# Albumentations
---
:::ultralytics.yolo.data.augment.Albumentations
<br><br>
# Format
---
:::ultralytics.yolo.data.augment.Format
<br><br>
# ClassifyLetterBox
---
:::ultralytics.yolo.data.augment.ClassifyLetterBox
<br><br>
# CenterCrop
---
:::ultralytics.yolo.data.augment.CenterCrop
<br><br>
# ToTensor
---
:::ultralytics.yolo.data.augment.ToTensor
<br><br>
# v8_transforms
---
:::ultralytics.yolo.data.augment.v8_transforms
<br><br>
# classify_transforms
---
:::ultralytics.yolo.data.augment.classify_transforms
<br><br>
# classify_albumentations
---
:::ultralytics.yolo.data.augment.classify_albumentations
<br><br>

View File

@ -0,0 +1,8 @@
---
description: Learn about BaseDataset in Ultralytics YOLO, a flexible dataset class for object detection. Maximize your YOLO performance with custom datasets.
---
# BaseDataset
---
:::ultralytics.yolo.data.base.BaseDataset
<br><br>

View File

@ -0,0 +1,38 @@
---
description: Maximize YOLO performance with Ultralytics' InfiniteDataLoader, seed_worker, build_dataloader, and load_inference_source functions.
---
# InfiniteDataLoader
---
:::ultralytics.yolo.data.build.InfiniteDataLoader
<br><br>
# _RepeatSampler
---
:::ultralytics.yolo.data.build._RepeatSampler
<br><br>
# seed_worker
---
:::ultralytics.yolo.data.build.seed_worker
<br><br>
# build_yolo_dataset
---
:::ultralytics.yolo.data.build.build_yolo_dataset
<br><br>
# build_dataloader
---
:::ultralytics.yolo.data.build.build_dataloader
<br><br>
# check_source
---
:::ultralytics.yolo.data.build.check_source
<br><br>
# load_inference_source
---
:::ultralytics.yolo.data.build.load_inference_source
<br><br>

View File

@ -0,0 +1,33 @@
---
description: Convert COCO-91 to COCO-80 class, RLE to polygon, and merge multi-segment images with Ultralytics YOLO data converter. Improve your object detection.
---
# coco91_to_coco80_class
---
:::ultralytics.yolo.data.converter.coco91_to_coco80_class
<br><br>
# convert_coco
---
:::ultralytics.yolo.data.converter.convert_coco
<br><br>
# rle2polygon
---
:::ultralytics.yolo.data.converter.rle2polygon
<br><br>
# min_index
---
:::ultralytics.yolo.data.converter.min_index
<br><br>
# merge_multi_segment
---
:::ultralytics.yolo.data.converter.merge_multi_segment
<br><br>
# delete_dsstore
---
:::ultralytics.yolo.data.converter.delete_dsstore
<br><br>

View File

@ -0,0 +1,38 @@
---
description: 'Ultralytics YOLO Docs: Learn about stream loaders for image and tensor data, as well as autocasting techniques. Check out SourceTypes and more.'
---
# SourceTypes
---
:::ultralytics.yolo.data.dataloaders.stream_loaders.SourceTypes
<br><br>
# LoadStreams
---
:::ultralytics.yolo.data.dataloaders.stream_loaders.LoadStreams
<br><br>
# LoadScreenshots
---
:::ultralytics.yolo.data.dataloaders.stream_loaders.LoadScreenshots
<br><br>
# LoadImages
---
:::ultralytics.yolo.data.dataloaders.stream_loaders.LoadImages
<br><br>
# LoadPilAndNumpy
---
:::ultralytics.yolo.data.dataloaders.stream_loaders.LoadPilAndNumpy
<br><br>
# LoadTensor
---
:::ultralytics.yolo.data.dataloaders.stream_loaders.LoadTensor
<br><br>
# autocast_list
---
:::ultralytics.yolo.data.dataloaders.stream_loaders.autocast_list
<br><br>

View File

@ -0,0 +1,88 @@
---
description: Enhance image data with Albumentations CenterCrop, normalize, augment_hsv, replicate, random_perspective, cutout, & box_candidates.
---
# Albumentations
---
:::ultralytics.yolo.data.dataloaders.v5augmentations.Albumentations
<br><br>
# LetterBox
---
:::ultralytics.yolo.data.dataloaders.v5augmentations.LetterBox
<br><br>
# CenterCrop
---
:::ultralytics.yolo.data.dataloaders.v5augmentations.CenterCrop
<br><br>
# ToTensor
---
:::ultralytics.yolo.data.dataloaders.v5augmentations.ToTensor
<br><br>
# normalize
---
:::ultralytics.yolo.data.dataloaders.v5augmentations.normalize
<br><br>
# denormalize
---
:::ultralytics.yolo.data.dataloaders.v5augmentations.denormalize
<br><br>
# augment_hsv
---
:::ultralytics.yolo.data.dataloaders.v5augmentations.augment_hsv
<br><br>
# hist_equalize
---
:::ultralytics.yolo.data.dataloaders.v5augmentations.hist_equalize
<br><br>
# replicate
---
:::ultralytics.yolo.data.dataloaders.v5augmentations.replicate
<br><br>
# letterbox
---
:::ultralytics.yolo.data.dataloaders.v5augmentations.letterbox
<br><br>
# random_perspective
---
:::ultralytics.yolo.data.dataloaders.v5augmentations.random_perspective
<br><br>
# copy_paste
---
:::ultralytics.yolo.data.dataloaders.v5augmentations.copy_paste
<br><br>
# cutout
---
:::ultralytics.yolo.data.dataloaders.v5augmentations.cutout
<br><br>
# mixup
---
:::ultralytics.yolo.data.dataloaders.v5augmentations.mixup
<br><br>
# box_candidates
---
:::ultralytics.yolo.data.dataloaders.v5augmentations.box_candidates
<br><br>
# classify_albumentations
---
:::ultralytics.yolo.data.dataloaders.v5augmentations.classify_albumentations
<br><br>
# classify_transforms
---
:::ultralytics.yolo.data.dataloaders.v5augmentations.classify_transforms
<br><br>

View File

@ -0,0 +1,93 @@
---
description: Efficiently load images and labels to models using Ultralytics YOLO's InfiniteDataLoader, LoadScreenshots, and LoadStreams.
---
# InfiniteDataLoader
---
:::ultralytics.yolo.data.dataloaders.v5loader.InfiniteDataLoader
<br><br>
# _RepeatSampler
---
:::ultralytics.yolo.data.dataloaders.v5loader._RepeatSampler
<br><br>
# LoadScreenshots
---
:::ultralytics.yolo.data.dataloaders.v5loader.LoadScreenshots
<br><br>
# LoadImages
---
:::ultralytics.yolo.data.dataloaders.v5loader.LoadImages
<br><br>
# LoadStreams
---
:::ultralytics.yolo.data.dataloaders.v5loader.LoadStreams
<br><br>
# LoadImagesAndLabels
---
:::ultralytics.yolo.data.dataloaders.v5loader.LoadImagesAndLabels
<br><br>
# ClassificationDataset
---
:::ultralytics.yolo.data.dataloaders.v5loader.ClassificationDataset
<br><br>
# get_hash
---
:::ultralytics.yolo.data.dataloaders.v5loader.get_hash
<br><br>
# exif_size
---
:::ultralytics.yolo.data.dataloaders.v5loader.exif_size
<br><br>
# exif_transpose
---
:::ultralytics.yolo.data.dataloaders.v5loader.exif_transpose
<br><br>
# seed_worker
---
:::ultralytics.yolo.data.dataloaders.v5loader.seed_worker
<br><br>
# create_dataloader
---
:::ultralytics.yolo.data.dataloaders.v5loader.create_dataloader
<br><br>
# img2label_paths
---
:::ultralytics.yolo.data.dataloaders.v5loader.img2label_paths
<br><br>
# flatten_recursive
---
:::ultralytics.yolo.data.dataloaders.v5loader.flatten_recursive
<br><br>
# extract_boxes
---
:::ultralytics.yolo.data.dataloaders.v5loader.extract_boxes
<br><br>
# autosplit
---
:::ultralytics.yolo.data.dataloaders.v5loader.autosplit
<br><br>
# verify_image_label
---
:::ultralytics.yolo.data.dataloaders.v5loader.verify_image_label
<br><br>
# create_classification_dataloader
---
:::ultralytics.yolo.data.dataloaders.v5loader.create_classification_dataloader
<br><br>

View File

@ -0,0 +1,18 @@
---
description: Create custom YOLOv5 datasets with Ultralytics YOLODataset and SemanticDataset. Streamline your object detection and segmentation projects.
---
# YOLODataset
---
:::ultralytics.yolo.data.dataset.YOLODataset
<br><br>
# ClassificationDataset
---
:::ultralytics.yolo.data.dataset.ClassificationDataset
<br><br>
# SemanticDataset
---
:::ultralytics.yolo.data.dataset.SemanticDataset
<br><br>

View File

@ -0,0 +1,8 @@
---
description: Create a custom dataset of mixed and oriented rectangular objects with Ultralytics YOLO's MixAndRectDataset.
---
# MixAndRectDataset
---
:::ultralytics.yolo.data.dataset_wrappers.MixAndRectDataset
<br><br>

View File

@ -0,0 +1,68 @@
---
description: Efficiently handle data in YOLO with Ultralytics. Utilize HUBDatasetStats and customize dataset with these data utility functions.
---
# HUBDatasetStats
---
:::ultralytics.yolo.data.utils.HUBDatasetStats
<br><br>
# img2label_paths
---
:::ultralytics.yolo.data.utils.img2label_paths
<br><br>
# get_hash
---
:::ultralytics.yolo.data.utils.get_hash
<br><br>
# exif_size
---
:::ultralytics.yolo.data.utils.exif_size
<br><br>
# verify_image_label
---
:::ultralytics.yolo.data.utils.verify_image_label
<br><br>
# polygon2mask
---
:::ultralytics.yolo.data.utils.polygon2mask
<br><br>
# polygons2masks
---
:::ultralytics.yolo.data.utils.polygons2masks
<br><br>
# polygons2masks_overlap
---
:::ultralytics.yolo.data.utils.polygons2masks_overlap
<br><br>
# check_det_dataset
---
:::ultralytics.yolo.data.utils.check_det_dataset
<br><br>
# check_cls_dataset
---
:::ultralytics.yolo.data.utils.check_cls_dataset
<br><br>
# compress_one_image
---
:::ultralytics.yolo.data.utils.compress_one_image
<br><br>
# delete_dsstore
---
:::ultralytics.yolo.data.utils.delete_dsstore
<br><br>
# zip_directory
---
:::ultralytics.yolo.data.utils.zip_directory
<br><br>

View File

@ -0,0 +1,33 @@
---
description: Learn how to export your YOLO model in various formats using Ultralytics' exporter package - iOS, GDC, and more.
---
# Exporter
---
:::ultralytics.yolo.engine.exporter.Exporter
<br><br>
# iOSDetectModel
---
:::ultralytics.yolo.engine.exporter.iOSDetectModel
<br><br>
# export_formats
---
:::ultralytics.yolo.engine.exporter.export_formats
<br><br>
# gd_outputs
---
:::ultralytics.yolo.engine.exporter.gd_outputs
<br><br>
# try_export
---
:::ultralytics.yolo.engine.exporter.try_export
<br><br>
# export
---
:::ultralytics.yolo.engine.exporter.export
<br><br>

View File

@ -0,0 +1,8 @@
---
description: Discover the YOLO model of Ultralytics engine to simplify your object detection tasks with state-of-the-art models.
---
# YOLO
---
:::ultralytics.yolo.engine.model.YOLO
<br><br>

View File

@ -0,0 +1,8 @@
---
description: '"The BasePredictor class in Ultralytics YOLO Engine predicts object detection in images and videos. Learn to implement YOLO with ease."'
---
# BasePredictor
---
:::ultralytics.yolo.engine.predictor.BasePredictor
<br><br>

View File

@ -0,0 +1,23 @@
---
description: Learn about BaseTensor & Boxes in Ultralytics YOLO Engine. Check out Ultralytics Docs for quality tutorials and resources on object detection.
---
# BaseTensor
---
:::ultralytics.yolo.engine.results.BaseTensor
<br><br>
# Results
---
:::ultralytics.yolo.engine.results.Results
<br><br>
# Boxes
---
:::ultralytics.yolo.engine.results.Boxes
<br><br>
# Masks
---
:::ultralytics.yolo.engine.results.Masks
<br><br>

View File

@ -0,0 +1,13 @@
---
description: Train faster with mixed precision. Learn how to use BaseTrainer with Advanced Mixed Precision to optimize YOLOv3 and YOLOv4 models.
---
# BaseTrainer
---
:::ultralytics.yolo.engine.trainer.BaseTrainer
<br><br>
# check_amp
---
:::ultralytics.yolo.engine.trainer.check_amp
<br><br>

View File

@ -0,0 +1,8 @@
---
description: Ensure YOLOv5 models meet constraints and standards with the BaseValidator class. Learn how to use it here.
---
# BaseValidator
---
:::ultralytics.yolo.engine.validator.BaseValidator
<br><br>

View File

@ -0,0 +1,13 @@
---
description: Dynamically adjusts input size to optimize GPU memory usage during training. Learn how to use check_train_batch_size with Ultralytics YOLO.
---
# check_train_batch_size
---
:::ultralytics.yolo.utils.autobatch.check_train_batch_size
<br><br>
# autobatch
---
:::ultralytics.yolo.utils.autobatch.autobatch
<br><br>

View File

@ -0,0 +1,8 @@
---
description: Improve your YOLO's performance and measure its speed. Benchmark utility for YOLOv5.
---
# benchmark
---
:::ultralytics.yolo.utils.benchmarks.benchmark
<br><br>

View File

@ -0,0 +1,138 @@
---
description: Learn about YOLO's callback functions from on_train_start to add_integration_callbacks. See how these callbacks modify and save models.
---
# on_pretrain_routine_start
---
:::ultralytics.yolo.utils.callbacks.base.on_pretrain_routine_start
<br><br>
# on_pretrain_routine_end
---
:::ultralytics.yolo.utils.callbacks.base.on_pretrain_routine_end
<br><br>
# on_train_start
---
:::ultralytics.yolo.utils.callbacks.base.on_train_start
<br><br>
# on_train_epoch_start
---
:::ultralytics.yolo.utils.callbacks.base.on_train_epoch_start
<br><br>
# on_train_batch_start
---
:::ultralytics.yolo.utils.callbacks.base.on_train_batch_start
<br><br>
# optimizer_step
---
:::ultralytics.yolo.utils.callbacks.base.optimizer_step
<br><br>
# on_before_zero_grad
---
:::ultralytics.yolo.utils.callbacks.base.on_before_zero_grad
<br><br>
# on_train_batch_end
---
:::ultralytics.yolo.utils.callbacks.base.on_train_batch_end
<br><br>
# on_train_epoch_end
---
:::ultralytics.yolo.utils.callbacks.base.on_train_epoch_end
<br><br>
# on_fit_epoch_end
---
:::ultralytics.yolo.utils.callbacks.base.on_fit_epoch_end
<br><br>
# on_model_save
---
:::ultralytics.yolo.utils.callbacks.base.on_model_save
<br><br>
# on_train_end
---
:::ultralytics.yolo.utils.callbacks.base.on_train_end
<br><br>
# on_params_update
---
:::ultralytics.yolo.utils.callbacks.base.on_params_update
<br><br>
# teardown
---
:::ultralytics.yolo.utils.callbacks.base.teardown
<br><br>
# on_val_start
---
:::ultralytics.yolo.utils.callbacks.base.on_val_start
<br><br>
# on_val_batch_start
---
:::ultralytics.yolo.utils.callbacks.base.on_val_batch_start
<br><br>
# on_val_batch_end
---
:::ultralytics.yolo.utils.callbacks.base.on_val_batch_end
<br><br>
# on_val_end
---
:::ultralytics.yolo.utils.callbacks.base.on_val_end
<br><br>
# on_predict_start
---
:::ultralytics.yolo.utils.callbacks.base.on_predict_start
<br><br>
# on_predict_batch_start
---
:::ultralytics.yolo.utils.callbacks.base.on_predict_batch_start
<br><br>
# on_predict_batch_end
---
:::ultralytics.yolo.utils.callbacks.base.on_predict_batch_end
<br><br>
# on_predict_postprocess_end
---
:::ultralytics.yolo.utils.callbacks.base.on_predict_postprocess_end
<br><br>
# on_predict_end
---
:::ultralytics.yolo.utils.callbacks.base.on_predict_end
<br><br>
# on_export_start
---
:::ultralytics.yolo.utils.callbacks.base.on_export_start
<br><br>
# on_export_end
---
:::ultralytics.yolo.utils.callbacks.base.on_export_end
<br><br>
# get_default_callbacks
---
:::ultralytics.yolo.utils.callbacks.base.get_default_callbacks
<br><br>
# add_integration_callbacks
---
:::ultralytics.yolo.utils.callbacks.base.add_integration_callbacks
<br><br>

View File

@ -0,0 +1,38 @@
---
description: Improve your YOLOv5 model training with callbacks from ClearML. Learn about log debug samples, pre-training routines, validation and more.
---
# _log_debug_samples
---
:::ultralytics.yolo.utils.callbacks.clearml._log_debug_samples
<br><br>
# _log_plot
---
:::ultralytics.yolo.utils.callbacks.clearml._log_plot
<br><br>
# on_pretrain_routine_start
---
:::ultralytics.yolo.utils.callbacks.clearml.on_pretrain_routine_start
<br><br>
# on_train_epoch_end
---
:::ultralytics.yolo.utils.callbacks.clearml.on_train_epoch_end
<br><br>
# on_fit_epoch_end
---
:::ultralytics.yolo.utils.callbacks.clearml.on_fit_epoch_end
<br><br>
# on_val_end
---
:::ultralytics.yolo.utils.callbacks.clearml.on_val_end
<br><br>
# on_train_end
---
:::ultralytics.yolo.utils.callbacks.clearml.on_train_end
<br><br>

View File

@ -0,0 +1,123 @@
---
description: Learn about YOLO callbacks using the Comet.ml platform, enhancing object detection training and testing with custom logging and visualizations.
---
# _get_comet_mode
---
:::ultralytics.yolo.utils.callbacks.comet._get_comet_mode
<br><br>
# _get_comet_model_name
---
:::ultralytics.yolo.utils.callbacks.comet._get_comet_model_name
<br><br>
# _get_eval_batch_logging_interval
---
:::ultralytics.yolo.utils.callbacks.comet._get_eval_batch_logging_interval
<br><br>
# _get_max_image_predictions_to_log
---
:::ultralytics.yolo.utils.callbacks.comet._get_max_image_predictions_to_log
<br><br>
# _scale_confidence_score
---
:::ultralytics.yolo.utils.callbacks.comet._scale_confidence_score
<br><br>
# _should_log_confusion_matrix
---
:::ultralytics.yolo.utils.callbacks.comet._should_log_confusion_matrix
<br><br>
# _should_log_image_predictions
---
:::ultralytics.yolo.utils.callbacks.comet._should_log_image_predictions
<br><br>
# _get_experiment_type
---
:::ultralytics.yolo.utils.callbacks.comet._get_experiment_type
<br><br>
# _create_experiment
---
:::ultralytics.yolo.utils.callbacks.comet._create_experiment
<br><br>
# _fetch_trainer_metadata
---
:::ultralytics.yolo.utils.callbacks.comet._fetch_trainer_metadata
<br><br>
# _scale_bounding_box_to_original_image_shape
---
:::ultralytics.yolo.utils.callbacks.comet._scale_bounding_box_to_original_image_shape
<br><br>
# _format_ground_truth_annotations_for_detection
---
:::ultralytics.yolo.utils.callbacks.comet._format_ground_truth_annotations_for_detection
<br><br>
# _format_prediction_annotations_for_detection
---
:::ultralytics.yolo.utils.callbacks.comet._format_prediction_annotations_for_detection
<br><br>
# _fetch_annotations
---
:::ultralytics.yolo.utils.callbacks.comet._fetch_annotations
<br><br>
# _create_prediction_metadata_map
---
:::ultralytics.yolo.utils.callbacks.comet._create_prediction_metadata_map
<br><br>
# _log_confusion_matrix
---
:::ultralytics.yolo.utils.callbacks.comet._log_confusion_matrix
<br><br>
# _log_images
---
:::ultralytics.yolo.utils.callbacks.comet._log_images
<br><br>
# _log_image_predictions
---
:::ultralytics.yolo.utils.callbacks.comet._log_image_predictions
<br><br>
# _log_plots
---
:::ultralytics.yolo.utils.callbacks.comet._log_plots
<br><br>
# _log_model
---
:::ultralytics.yolo.utils.callbacks.comet._log_model
<br><br>
# on_pretrain_routine_start
---
:::ultralytics.yolo.utils.callbacks.comet.on_pretrain_routine_start
<br><br>
# on_train_epoch_end
---
:::ultralytics.yolo.utils.callbacks.comet.on_train_epoch_end
<br><br>
# on_fit_epoch_end
---
:::ultralytics.yolo.utils.callbacks.comet.on_fit_epoch_end
<br><br>
# on_train_end
---
:::ultralytics.yolo.utils.callbacks.comet.on_train_end
<br><br>

View File

@ -0,0 +1,43 @@
---
description: Improve YOLOv5 model training with Ultralytics' on-train callbacks. Boost performance on-pretrain-routine-end, model-save, train/predict start.
---
# on_pretrain_routine_end
---
:::ultralytics.yolo.utils.callbacks.hub.on_pretrain_routine_end
<br><br>
# on_fit_epoch_end
---
:::ultralytics.yolo.utils.callbacks.hub.on_fit_epoch_end
<br><br>
# on_model_save
---
:::ultralytics.yolo.utils.callbacks.hub.on_model_save
<br><br>
# on_train_end
---
:::ultralytics.yolo.utils.callbacks.hub.on_train_end
<br><br>
# on_train_start
---
:::ultralytics.yolo.utils.callbacks.hub.on_train_start
<br><br>
# on_val_start
---
:::ultralytics.yolo.utils.callbacks.hub.on_val_start
<br><br>
# on_predict_start
---
:::ultralytics.yolo.utils.callbacks.hub.on_predict_start
<br><br>
# on_export_start
---
:::ultralytics.yolo.utils.callbacks.hub.on_export_start
<br><br>

View File

@ -0,0 +1,18 @@
---
description: Track model performance and metrics with MLflow in YOLOv5. Use callbacks like on_pretrain_routine_end or on_train_end to log information.
---
# on_pretrain_routine_end
---
:::ultralytics.yolo.utils.callbacks.mlflow.on_pretrain_routine_end
<br><br>
# on_fit_epoch_end
---
:::ultralytics.yolo.utils.callbacks.mlflow.on_fit_epoch_end
<br><br>
# on_train_end
---
:::ultralytics.yolo.utils.callbacks.mlflow.on_train_end
<br><br>

View File

@ -0,0 +1,43 @@
---
description: Improve YOLOv5 training with Neptune, a powerful logging tool. Track metrics like images, plots, and epochs for better model performance.
---
# _log_scalars
---
:::ultralytics.yolo.utils.callbacks.neptune._log_scalars
<br><br>
# _log_images
---
:::ultralytics.yolo.utils.callbacks.neptune._log_images
<br><br>
# _log_plot
---
:::ultralytics.yolo.utils.callbacks.neptune._log_plot
<br><br>
# on_pretrain_routine_start
---
:::ultralytics.yolo.utils.callbacks.neptune.on_pretrain_routine_start
<br><br>
# on_train_epoch_end
---
:::ultralytics.yolo.utils.callbacks.neptune.on_train_epoch_end
<br><br>
# on_fit_epoch_end
---
:::ultralytics.yolo.utils.callbacks.neptune.on_fit_epoch_end
<br><br>
# on_val_end
---
:::ultralytics.yolo.utils.callbacks.neptune.on_val_end
<br><br>
# on_train_end
---
:::ultralytics.yolo.utils.callbacks.neptune.on_train_end
<br><br>

View File

@ -0,0 +1,8 @@
---
description: '"Improve YOLO model performance with on_fit_epoch_end callback. Learn to integrate with Ray Tune for hyperparameter tuning. Ultralytics YOLO docs."'
---
# on_fit_epoch_end
---
:::ultralytics.yolo.utils.callbacks.raytune.on_fit_epoch_end
<br><br>

View File

@ -0,0 +1,23 @@
---
description: Learn how to monitor the training process with Tensorboard using Ultralytics YOLO's "_log_scalars" and "on_batch_end" methods.
---
# _log_scalars
---
:::ultralytics.yolo.utils.callbacks.tensorboard._log_scalars
<br><br>
# on_pretrain_routine_start
---
:::ultralytics.yolo.utils.callbacks.tensorboard.on_pretrain_routine_start
<br><br>
# on_batch_end
---
:::ultralytics.yolo.utils.callbacks.tensorboard.on_batch_end
<br><br>
# on_fit_epoch_end
---
:::ultralytics.yolo.utils.callbacks.tensorboard.on_fit_epoch_end
<br><br>

View File

@ -0,0 +1,23 @@
---
description: Learn how to use Ultralytics YOLO's built-in callbacks `on_pretrain_routine_start` and `on_train_epoch_end` for improved training performance.
---
# on_pretrain_routine_start
---
:::ultralytics.yolo.utils.callbacks.wb.on_pretrain_routine_start
<br><br>
# on_fit_epoch_end
---
:::ultralytics.yolo.utils.callbacks.wb.on_fit_epoch_end
<br><br>
# on_train_epoch_end
---
:::ultralytics.yolo.utils.callbacks.wb.on_train_epoch_end
<br><br>
# on_train_end
---
:::ultralytics.yolo.utils.callbacks.wb.on_train_end
<br><br>

View File

@ -0,0 +1,83 @@
---
description: 'Check functions for YOLO utils: image size, version, font, requirements, filename suffix, YAML file, YOLO, and Git version.'
---
# is_ascii
---
:::ultralytics.yolo.utils.checks.is_ascii
<br><br>
# check_imgsz
---
:::ultralytics.yolo.utils.checks.check_imgsz
<br><br>
# check_version
---
:::ultralytics.yolo.utils.checks.check_version
<br><br>
# check_latest_pypi_version
---
:::ultralytics.yolo.utils.checks.check_latest_pypi_version
<br><br>
# check_pip_update_available
---
:::ultralytics.yolo.utils.checks.check_pip_update_available
<br><br>
# check_font
---
:::ultralytics.yolo.utils.checks.check_font
<br><br>
# check_python
---
:::ultralytics.yolo.utils.checks.check_python
<br><br>
# check_requirements
---
:::ultralytics.yolo.utils.checks.check_requirements
<br><br>
# check_suffix
---
:::ultralytics.yolo.utils.checks.check_suffix
<br><br>
# check_yolov5u_filename
---
:::ultralytics.yolo.utils.checks.check_yolov5u_filename
<br><br>
# check_file
---
:::ultralytics.yolo.utils.checks.check_file
<br><br>
# check_yaml
---
:::ultralytics.yolo.utils.checks.check_yaml
<br><br>
# check_imshow
---
:::ultralytics.yolo.utils.checks.check_imshow
<br><br>
# check_yolo
---
:::ultralytics.yolo.utils.checks.check_yolo
<br><br>
# git_describe
---
:::ultralytics.yolo.utils.checks.git_describe
<br><br>
# print_args
---
:::ultralytics.yolo.utils.checks.print_args
<br><br>

View File

@ -0,0 +1,23 @@
---
description: Learn how to find free network port and generate DDP (Distributed Data Parallel) command in Ultralytics YOLO with easy examples.
---
# find_free_network_port
---
:::ultralytics.yolo.utils.dist.find_free_network_port
<br><br>
# generate_ddp_file
---
:::ultralytics.yolo.utils.dist.generate_ddp_file
<br><br>
# generate_ddp_command
---
:::ultralytics.yolo.utils.dist.generate_ddp_command
<br><br>
# ddp_cleanup
---
:::ultralytics.yolo.utils.dist.ddp_cleanup
<br><br>

View File

@ -0,0 +1,33 @@
---
description: Download and unzip YOLO pretrained models. Ultralytics YOLO docs utils.downloads.unzip_file, checks disk space, downloads and attempts assets.
---
# is_url
---
:::ultralytics.yolo.utils.downloads.is_url
<br><br>
# unzip_file
---
:::ultralytics.yolo.utils.downloads.unzip_file
<br><br>
# check_disk_space
---
:::ultralytics.yolo.utils.downloads.check_disk_space
<br><br>
# safe_download
---
:::ultralytics.yolo.utils.downloads.safe_download
<br><br>
# attempt_download_asset
---
:::ultralytics.yolo.utils.downloads.attempt_download_asset
<br><br>
# download
---
:::ultralytics.yolo.utils.downloads.download
<br><br>

View File

@ -0,0 +1,8 @@
---
description: Learn about HUBModelError in Ultralytics YOLO Docs. Resolve the error and get the most out of your YOLO model.
---
# HUBModelError
---
:::ultralytics.yolo.utils.errors.HUBModelError
<br><br>

View File

@ -0,0 +1,38 @@
---
description: 'Learn about Ultralytics YOLO files and directory utilities: WorkingDirectory, file_age, file_size, and make_dirs.'
---
# WorkingDirectory
---
:::ultralytics.yolo.utils.files.WorkingDirectory
<br><br>
# increment_path
---
:::ultralytics.yolo.utils.files.increment_path
<br><br>
# file_age
---
:::ultralytics.yolo.utils.files.file_age
<br><br>
# file_date
---
:::ultralytics.yolo.utils.files.file_date
<br><br>
# file_size
---
:::ultralytics.yolo.utils.files.file_size
<br><br>
# get_latest_run
---
:::ultralytics.yolo.utils.files.get_latest_run
<br><br>
# make_dirs
---
:::ultralytics.yolo.utils.files.make_dirs
<br><br>

View File

@ -0,0 +1,18 @@
---
description: Learn about Bounding Boxes (Bboxes) and _ntuple in Ultralytics YOLO for object detection. Improve accuracy and speed with these powerful tools.
---
# Bboxes
---
:::ultralytics.yolo.utils.instance.Bboxes
<br><br>
# Instances
---
:::ultralytics.yolo.utils.instance.Instances
<br><br>
# _ntuple
---
:::ultralytics.yolo.utils.instance._ntuple
<br><br>

View File

@ -0,0 +1,18 @@
---
description: Learn about Varifocal Loss and Keypoint Loss in Ultralytics YOLO for advanced bounding box and pose estimation. Visit our docs for more.
---
# VarifocalLoss
---
:::ultralytics.yolo.utils.loss.VarifocalLoss
<br><br>
# BboxLoss
---
:::ultralytics.yolo.utils.loss.BboxLoss
<br><br>
# KeypointLoss
---
:::ultralytics.yolo.utils.loss.KeypointLoss
<br><br>

View File

@ -0,0 +1,98 @@
---
description: Explore Ultralytics YOLO's FocalLoss, DetMetrics, PoseMetrics, ClassifyMetrics, and more with Ultralytics Metrics documentation.
---
# FocalLoss
---
:::ultralytics.yolo.utils.metrics.FocalLoss
<br><br>
# ConfusionMatrix
---
:::ultralytics.yolo.utils.metrics.ConfusionMatrix
<br><br>
# Metric
---
:::ultralytics.yolo.utils.metrics.Metric
<br><br>
# DetMetrics
---
:::ultralytics.yolo.utils.metrics.DetMetrics
<br><br>
# SegmentMetrics
---
:::ultralytics.yolo.utils.metrics.SegmentMetrics
<br><br>
# PoseMetrics
---
:::ultralytics.yolo.utils.metrics.PoseMetrics
<br><br>
# ClassifyMetrics
---
:::ultralytics.yolo.utils.metrics.ClassifyMetrics
<br><br>
# box_area
---
:::ultralytics.yolo.utils.metrics.box_area
<br><br>
# bbox_ioa
---
:::ultralytics.yolo.utils.metrics.bbox_ioa
<br><br>
# box_iou
---
:::ultralytics.yolo.utils.metrics.box_iou
<br><br>
# bbox_iou
---
:::ultralytics.yolo.utils.metrics.bbox_iou
<br><br>
# mask_iou
---
:::ultralytics.yolo.utils.metrics.mask_iou
<br><br>
# kpt_iou
---
:::ultralytics.yolo.utils.metrics.kpt_iou
<br><br>
# smooth_BCE
---
:::ultralytics.yolo.utils.metrics.smooth_BCE
<br><br>
# smooth
---
:::ultralytics.yolo.utils.metrics.smooth
<br><br>
# plot_pr_curve
---
:::ultralytics.yolo.utils.metrics.plot_pr_curve
<br><br>
# plot_mc_curve
---
:::ultralytics.yolo.utils.metrics.plot_mc_curve
<br><br>
# compute_ap
---
:::ultralytics.yolo.utils.metrics.compute_ap
<br><br>
# ap_per_class
---
:::ultralytics.yolo.utils.metrics.ap_per_class
<br><br>

View File

@ -0,0 +1,138 @@
---
description: Learn about various utility functions in Ultralytics YOLO, including x, y, width, height conversions, non-max suppression, and more.
---
# Profile
---
:::ultralytics.yolo.utils.ops.Profile
<br><br>
# coco80_to_coco91_class
---
:::ultralytics.yolo.utils.ops.coco80_to_coco91_class
<br><br>
# segment2box
---
:::ultralytics.yolo.utils.ops.segment2box
<br><br>
# scale_boxes
---
:::ultralytics.yolo.utils.ops.scale_boxes
<br><br>
# make_divisible
---
:::ultralytics.yolo.utils.ops.make_divisible
<br><br>
# non_max_suppression
---
:::ultralytics.yolo.utils.ops.non_max_suppression
<br><br>
# clip_boxes
---
:::ultralytics.yolo.utils.ops.clip_boxes
<br><br>
# clip_coords
---
:::ultralytics.yolo.utils.ops.clip_coords
<br><br>
# scale_image
---
:::ultralytics.yolo.utils.ops.scale_image
<br><br>
# xyxy2xywh
---
:::ultralytics.yolo.utils.ops.xyxy2xywh
<br><br>
# xywh2xyxy
---
:::ultralytics.yolo.utils.ops.xywh2xyxy
<br><br>
# xywhn2xyxy
---
:::ultralytics.yolo.utils.ops.xywhn2xyxy
<br><br>
# xyxy2xywhn
---
:::ultralytics.yolo.utils.ops.xyxy2xywhn
<br><br>
# xyn2xy
---
:::ultralytics.yolo.utils.ops.xyn2xy
<br><br>
# xywh2ltwh
---
:::ultralytics.yolo.utils.ops.xywh2ltwh
<br><br>
# xyxy2ltwh
---
:::ultralytics.yolo.utils.ops.xyxy2ltwh
<br><br>
# ltwh2xywh
---
:::ultralytics.yolo.utils.ops.ltwh2xywh
<br><br>
# ltwh2xyxy
---
:::ultralytics.yolo.utils.ops.ltwh2xyxy
<br><br>
# segments2boxes
---
:::ultralytics.yolo.utils.ops.segments2boxes
<br><br>
# resample_segments
---
:::ultralytics.yolo.utils.ops.resample_segments
<br><br>
# crop_mask
---
:::ultralytics.yolo.utils.ops.crop_mask
<br><br>
# process_mask_upsample
---
:::ultralytics.yolo.utils.ops.process_mask_upsample
<br><br>
# process_mask
---
:::ultralytics.yolo.utils.ops.process_mask
<br><br>
# process_mask_native
---
:::ultralytics.yolo.utils.ops.process_mask_native
<br><br>
# scale_coords
---
:::ultralytics.yolo.utils.ops.scale_coords
<br><br>
# masks2segments
---
:::ultralytics.yolo.utils.ops.masks2segments
<br><br>
# clean_str
---
:::ultralytics.yolo.utils.ops.clean_str
<br><br>

View File

@ -0,0 +1,43 @@
---
description: 'Discover the power of YOLO''s plotting functions: Colors, Labels and Images. Code examples to output targets and visualize features. Check it now.'
---
# Colors
---
:::ultralytics.yolo.utils.plotting.Colors
<br><br>
# Annotator
---
:::ultralytics.yolo.utils.plotting.Annotator
<br><br>
# plot_labels
---
:::ultralytics.yolo.utils.plotting.plot_labels
<br><br>
# save_one_box
---
:::ultralytics.yolo.utils.plotting.save_one_box
<br><br>
# plot_images
---
:::ultralytics.yolo.utils.plotting.plot_images
<br><br>
# plot_results
---
:::ultralytics.yolo.utils.plotting.plot_results
<br><br>
# output_to_target
---
:::ultralytics.yolo.utils.plotting.output_to_target
<br><br>
# feature_visualization
---
:::ultralytics.yolo.utils.plotting.feature_visualization
<br><br>

View File

@ -0,0 +1,33 @@
---
description: Improve your YOLO models with Ultralytics' TaskAlignedAssigner, select_highest_overlaps, and dist2bbox utilities. Streamline your workflow today.
---
# TaskAlignedAssigner
---
:::ultralytics.yolo.utils.tal.TaskAlignedAssigner
<br><br>
# select_candidates_in_gts
---
:::ultralytics.yolo.utils.tal.select_candidates_in_gts
<br><br>
# select_highest_overlaps
---
:::ultralytics.yolo.utils.tal.select_highest_overlaps
<br><br>
# make_anchors
---
:::ultralytics.yolo.utils.tal.make_anchors
<br><br>
# dist2bbox
---
:::ultralytics.yolo.utils.tal.dist2bbox
<br><br>
# bbox2dist
---
:::ultralytics.yolo.utils.tal.bbox2dist
<br><br>

View File

@ -0,0 +1,123 @@
---
description: Optimize your PyTorch models with Ultralytics YOLO's torch_utils functions such as ModelEMA, select_device, and is_parallel.
---
# ModelEMA
---
:::ultralytics.yolo.utils.torch_utils.ModelEMA
<br><br>
# EarlyStopping
---
:::ultralytics.yolo.utils.torch_utils.EarlyStopping
<br><br>
# torch_distributed_zero_first
---
:::ultralytics.yolo.utils.torch_utils.torch_distributed_zero_first
<br><br>
# smart_inference_mode
---
:::ultralytics.yolo.utils.torch_utils.smart_inference_mode
<br><br>
# select_device
---
:::ultralytics.yolo.utils.torch_utils.select_device
<br><br>
# time_sync
---
:::ultralytics.yolo.utils.torch_utils.time_sync
<br><br>
# fuse_conv_and_bn
---
:::ultralytics.yolo.utils.torch_utils.fuse_conv_and_bn
<br><br>
# fuse_deconv_and_bn
---
:::ultralytics.yolo.utils.torch_utils.fuse_deconv_and_bn
<br><br>
# model_info
---
:::ultralytics.yolo.utils.torch_utils.model_info
<br><br>
# get_num_params
---
:::ultralytics.yolo.utils.torch_utils.get_num_params
<br><br>
# get_num_gradients
---
:::ultralytics.yolo.utils.torch_utils.get_num_gradients
<br><br>
# get_flops
---
:::ultralytics.yolo.utils.torch_utils.get_flops
<br><br>
# initialize_weights
---
:::ultralytics.yolo.utils.torch_utils.initialize_weights
<br><br>
# scale_img
---
:::ultralytics.yolo.utils.torch_utils.scale_img
<br><br>
# make_divisible
---
:::ultralytics.yolo.utils.torch_utils.make_divisible
<br><br>
# copy_attr
---
:::ultralytics.yolo.utils.torch_utils.copy_attr
<br><br>
# get_latest_opset
---
:::ultralytics.yolo.utils.torch_utils.get_latest_opset
<br><br>
# intersect_dicts
---
:::ultralytics.yolo.utils.torch_utils.intersect_dicts
<br><br>
# is_parallel
---
:::ultralytics.yolo.utils.torch_utils.is_parallel
<br><br>
# de_parallel
---
:::ultralytics.yolo.utils.torch_utils.de_parallel
<br><br>
# one_cycle
---
:::ultralytics.yolo.utils.torch_utils.one_cycle
<br><br>
# init_seeds
---
:::ultralytics.yolo.utils.torch_utils.init_seeds
<br><br>
# strip_optimizer
---
:::ultralytics.yolo.utils.torch_utils.strip_optimizer
<br><br>
# profile
---
:::ultralytics.yolo.utils.torch_utils.profile
<br><br>

View File

@ -0,0 +1,13 @@
---
description: Learn how to use ClassificationPredictor in Ultralytics YOLOv8 for object classification tasks in a simple and efficient way.
---
# ClassificationPredictor
---
:::ultralytics.yolo.v8.classify.predict.ClassificationPredictor
<br><br>
# predict
---
:::ultralytics.yolo.v8.classify.predict.predict
<br><br>

View File

@ -0,0 +1,13 @@
---
description: Train a custom image classification model using Ultralytics YOLOv8 with ClassificationTrainer. Boost accuracy and efficiency today.
---
# ClassificationTrainer
---
:::ultralytics.yolo.v8.classify.train.ClassificationTrainer
<br><br>
# train
---
:::ultralytics.yolo.v8.classify.train.train
<br><br>

View File

@ -0,0 +1,13 @@
---
description: Ensure model classification accuracy with Ultralytics YOLO's ClassificationValidator. Validate and improve your model with ease.
---
# ClassificationValidator
---
:::ultralytics.yolo.v8.classify.val.ClassificationValidator
<br><br>
# val
---
:::ultralytics.yolo.v8.classify.val.val
<br><br>

View File

@ -0,0 +1,13 @@
---
description: Detect and predict objects in images and videos using the Ultralytics YOLO v8 model with DetectionPredictor.
---
# DetectionPredictor
---
:::ultralytics.yolo.v8.detect.predict.DetectionPredictor
<br><br>
# predict
---
:::ultralytics.yolo.v8.detect.predict.predict
<br><br>

View File

@ -0,0 +1,18 @@
---
description: Train and optimize custom object detection models with Ultralytics DetectionTrainer and train functions. Get started with YOLO v8 today.
---
# DetectionTrainer
---
:::ultralytics.yolo.v8.detect.train.DetectionTrainer
<br><br>
# Loss
---
:::ultralytics.yolo.v8.detect.train.Loss
<br><br>
# train
---
:::ultralytics.yolo.v8.detect.train.train
<br><br>

View File

@ -0,0 +1,13 @@
---
description: Validate YOLOv5 detections using this PyTorch module. Ensure model accuracy with NMS IOU threshold tuning and label mapping.
---
# DetectionValidator
---
:::ultralytics.yolo.v8.detect.val.DetectionValidator
<br><br>
# val
---
:::ultralytics.yolo.v8.detect.val.val
<br><br>

View File

@ -0,0 +1,13 @@
---
description: Predict human pose coordinates and confidence scores using YOLOv5. Use on real-time video streams or static images.
---
# PosePredictor
---
:::ultralytics.yolo.v8.pose.predict.PosePredictor
<br><br>
# predict
---
:::ultralytics.yolo.v8.pose.predict.predict
<br><br>

View File

@ -0,0 +1,18 @@
---
description: Boost posture detection using PoseTrainer and train models using train() API. Learn PoseLoss for ultra-fast and accurate pose detection with Ultralytics YOLO.
---
# PoseTrainer
---
:::ultralytics.yolo.v8.pose.train.PoseTrainer
<br><br>
# PoseLoss
---
:::ultralytics.yolo.v8.pose.train.PoseLoss
<br><br>
# train
---
:::ultralytics.yolo.v8.pose.train.train
<br><br>

View File

@ -0,0 +1,13 @@
---
description: Ensure proper human poses in images with YOLOv8 Pose Validation, part of the Ultralytics YOLO v8 suite.
---
# PoseValidator
---
:::ultralytics.yolo.v8.pose.val.PoseValidator
<br><br>
# val
---
:::ultralytics.yolo.v8.pose.val.val
<br><br>

View File

@ -0,0 +1,13 @@
---
description: '"Use SegmentationPredictor in YOLOv8 for efficient object detection and segmentation. Explore Ultralytics YOLO Docs for more information."'
---
# SegmentationPredictor
---
:::ultralytics.yolo.v8.segment.predict.SegmentationPredictor
<br><br>
# predict
---
:::ultralytics.yolo.v8.segment.predict.predict
<br><br>

View File

@ -0,0 +1,18 @@
---
description: Learn about SegmentationTrainer and Train in Ultralytics YOLO v8 for efficient object detection models. Improve your training with Ultralytics Docs.
---
# SegmentationTrainer
---
:::ultralytics.yolo.v8.segment.train.SegmentationTrainer
<br><br>
# SegLoss
---
:::ultralytics.yolo.v8.segment.train.SegLoss
<br><br>
# train
---
:::ultralytics.yolo.v8.segment.train.train
<br><br>

View File

@ -0,0 +1,13 @@
---
description: Ensure segmentation quality on large datasets with SegmentationValidator. Review and visualize results with ease. Learn more at Ultralytics Docs.
---
# SegmentationValidator
---
:::ultralytics.yolo.v8.segment.val.SegmentationValidator
<br><br>
# val
---
:::ultralytics.yolo.v8.segment.val.val
<br><br>