退购1.1定位算法

This commit is contained in:
jiajie555
2023-08-10 12:25:23 +08:00
commit 11e12f1899
371 changed files with 46027 additions and 0 deletions

68
docker/Dockerfile Normal file
View File

@ -0,0 +1,68 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
# Builds ultralytics/ultralytics:latest image on DockerHub https://hub.docker.com/r/ultralytics/ultralytics
# Image is CUDA-optimized for YOLOv8 single/multi-GPU training and inference
# Start FROM PyTorch image https://hub.docker.com/r/pytorch/pytorch or nvcr.io/nvidia/pytorch:23.03-py3
FROM pytorch/pytorch:2.0.0-cuda11.7-cudnn8-runtime
# Downloads to user config dir
ADD https://ultralytics.com/assets/Arial.ttf https://ultralytics.com/assets/Arial.Unicode.ttf /root/.config/Ultralytics/
# Install linux packages
# g++ required to build 'tflite_support' package
RUN apt update \
&& apt install --no-install-recommends -y gcc git zip curl htop libgl1-mesa-glx libglib2.0-0 libpython3-dev gnupg g++
# RUN alias python=python3
# Security updates
# https://security.snyk.io/vuln/SNYK-UBUNTU1804-OPENSSL-3314796
RUN apt upgrade --no-install-recommends -y openssl tar
# Create working directory
RUN mkdir -p /usr/src/ultralytics
WORKDIR /usr/src/ultralytics
# Copy contents
# COPY . /usr/src/app (issues as not a .git directory)
RUN git clone https://github.com/ultralytics/ultralytics /usr/src/ultralytics
ADD https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8n.pt /usr/src/ultralytics/
# Install pip packages
RUN python3 -m pip install --upgrade pip wheel
RUN pip install --no-cache -e . albumentations comet tensorboard
# Set environment variables
ENV OMP_NUM_THREADS=1
# Usage Examples -------------------------------------------------------------------------------------------------------
# Build and Push
# t=ultralytics/ultralytics:latest && sudo docker build -f docker/Dockerfile -t $t . && sudo docker push $t
# Pull and Run
# t=ultralytics/ultralytics:latest && sudo docker pull $t && sudo docker run -it --ipc=host --gpus all $t
# Pull and Run with local directory access
# t=ultralytics/ultralytics:latest && sudo docker pull $t && sudo docker run -it --ipc=host --gpus all -v "$(pwd)"/datasets:/usr/src/datasets $t
# Kill all
# sudo docker kill $(sudo docker ps -q)
# Kill all image-based
# sudo docker kill $(sudo docker ps -qa --filter ancestor=ultralytics/ultralytics:latest)
# DockerHub tag update
# t=ultralytics/ultralytics:latest tnew=ultralytics/ultralytics:v6.2 && sudo docker pull $t && sudo docker tag $t $tnew && sudo docker push $tnew
# Clean up
# sudo docker system prune -a --volumes
# Update Ubuntu drivers
# https://www.maketecheasier.com/install-nvidia-drivers-ubuntu/
# DDP test
# python -m torch.distributed.run --nproc_per_node 2 --master_port 1 train.py --epochs 3
# GCP VM from Image
# docker.io/ultralytics/ultralytics:latest

36
docker/Dockerfile-arm64 Normal file
View File

@ -0,0 +1,36 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
# Builds ultralytics/ultralytics:latest-arm64 image on DockerHub https://hub.docker.com/r/ultralytics/ultralytics
# Image is aarch64-compatible for Apple M1 and other ARM architectures i.e. Jetson Nano and Raspberry Pi
# Start FROM Ubuntu image https://hub.docker.com/_/ubuntu
FROM arm64v8/ubuntu:22.10
# Downloads to user config dir
ADD https://ultralytics.com/assets/Arial.ttf https://ultralytics.com/assets/Arial.Unicode.ttf /root/.config/Ultralytics/
# Install linux packages
RUN apt update \
&& apt install --no-install-recommends -y python3-pip git zip curl htop gcc libgl1-mesa-glx libglib2.0-0 libpython3-dev
# RUN alias python=python3
# Create working directory
RUN mkdir -p /usr/src/ultralytics
WORKDIR /usr/src/ultralytics
# Copy contents
# COPY . /usr/src/app (issues as not a .git directory)
RUN git clone https://github.com/ultralytics/ultralytics /usr/src/ultralytics
ADD https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8n.pt /usr/src/ultralytics/
# Install pip packages
RUN python3 -m pip install --upgrade pip wheel
RUN pip install --no-cache -e .
# Usage Examples -------------------------------------------------------------------------------------------------------
# Build and Push
# t=ultralytics/ultralytics:latest-arm64 && sudo docker build --platform linux/arm64 -f docker/Dockerfile-arm64 -t $t . && sudo docker push $t
# Pull and Run
# t=ultralytics/ultralytics:latest-arm64 && sudo docker pull $t && sudo docker run -it --ipc=host -v "$(pwd)"/datasets:/usr/src/datasets $t

37
docker/Dockerfile-cpu Normal file
View File

@ -0,0 +1,37 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
# Builds ultralytics/ultralytics:latest-cpu image on DockerHub https://hub.docker.com/r/ultralytics/ultralytics
# Image is CPU-optimized for ONNX, OpenVINO and PyTorch YOLOv8 deployments
# Start FROM Ubuntu image https://hub.docker.com/_/ubuntu
FROM ubuntu:22.10
# Downloads to user config dir
ADD https://ultralytics.com/assets/Arial.ttf https://ultralytics.com/assets/Arial.Unicode.ttf /root/.config/Ultralytics/
# Install linux packages
# g++ required to build 'tflite_support' package
RUN apt update \
&& apt install --no-install-recommends -y python3-pip git zip curl htop libgl1-mesa-glx libglib2.0-0 libpython3-dev gnupg g++
# RUN alias python=python3
# Create working directory
RUN mkdir -p /usr/src/ultralytics
WORKDIR /usr/src/ultralytics
# Copy contents
# COPY . /usr/src/app (issues as not a .git directory)
RUN git clone https://github.com/ultralytics/ultralytics /usr/src/ultralytics
ADD https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8n.pt /usr/src/ultralytics/
# Install pip packages
RUN python3 -m pip install --upgrade pip wheel
RUN pip install --no-cache -e . --extra-index-url https://download.pytorch.org/whl/cpu
# Usage Examples -------------------------------------------------------------------------------------------------------
# Build and Push
# t=ultralytics/ultralytics:latest-cpu && sudo docker build -f docker/Dockerfile-cpu -t $t . && sudo docker push $t
# Pull and Run
# t=ultralytics/ultralytics:latest-cpu && sudo docker pull $t && sudo docker run -it --ipc=host -v "$(pwd)"/datasets:/usr/src/datasets $t

47
docker/Dockerfile-jetson Normal file
View File

@ -0,0 +1,47 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
# Builds ultralytics/ultralytics:jetson image on DockerHub https://hub.docker.com/r/ultralytics/ultralytics
# Supports JetPack for YOLOv8 on Jetson Nano, TX1/TX2, Xavier NX, AGX Xavier, AGX Orin, and Orin NX
# Start FROM https://catalog.ngc.nvidia.com/orgs/nvidia/containers/l4t-pytorch
FROM nvcr.io/nvidia/l4t-pytorch:r35.2.1-pth2.0-py3
# Downloads to user config dir
ADD https://ultralytics.com/assets/Arial.ttf https://ultralytics.com/assets/Arial.Unicode.ttf /root/.config/Ultralytics/
# Install linux packages
# g++ required to build 'tflite_support' package
RUN apt update \
&& apt install --no-install-recommends -y gcc git zip curl htop libgl1-mesa-glx libglib2.0-0 libpython3-dev gnupg g++
# RUN alias python=python3
# Create working directory
RUN mkdir -p /usr/src/ultralytics
WORKDIR /usr/src/ultralytics
# Copy contents
# COPY . /usr/src/app (issues as not a .git directory)
RUN git clone https://github.com/ultralytics/ultralytics /usr/src/ultralytics
ADD https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8n.pt /usr/src/ultralytics/
# Install pip packages manually for TensorRT compatibility https://github.com/NVIDIA/TensorRT/issues/2567
RUN python3 -m pip install --upgrade pip wheel
RUN pip install --no-cache tqdm matplotlib pyyaml psutil thop pandas onnx "numpy==1.23"
RUN pip install --no-cache -e .
# Resolve duplicate OpenCV installation issues in https://github.com/ultralytics/ultralytics/issues/2407
RUN apt-get remove `dpkg -l | grep opencv | awk '{print $2}'`
RUN pip uninstall -y opencv-python
RUN rm /usr/local/lib/python3.8/dist-packages/cv2 # Optional
RUN pip install "opencv-python<4.7"
# Set environment variables
ENV OMP_NUM_THREADS=1
# Usage Examples -------------------------------------------------------------------------------------------------------
# Build and Push
# t=ultralytics/ultralytics:latest-jetson && sudo docker build --platform linux/arm64 -f docker/Dockerfile-jetson -t $t . && sudo docker push $t
# Pull and Run
# t=ultralytics/ultralytics:jetson && sudo docker pull $t && sudo docker run -it --runtime=nvidia $t