Files
ieemoo-ai-detecttracking/featureVal.py
2025-04-18 14:41:53 +08:00

285 lines
7.6 KiB
Python

# -*- coding: utf-8 -*-
"""
Created on Fri May 31 14:50:21 2024
@author: ym
"""
import cv2
import numpy as np
import torch
from scipy.spatial.distance import cdist
from tracking.trackers.reid.config import config as ReIDConfig
from tracking.trackers.reid.reid_interface import ReIDInterface
ReIDEncoder = ReIDInterface(ReIDConfig)
def read_data_file(datapath):
with open(datapath, 'r') as file:
lines = file.readlines()
Videos = []
FrameBoxes, FrameFeats = [], []
boxes, feats = [], []
bboxes, ffeats = [], []
timestamp = []
t1 = None
for line in lines:
if line.find('CameraId') >= 0:
t = int(line.split(',')[1].split(':')[1])
timestamp.append(t)
if len(boxes) and len(feats):
FrameBoxes.append(np.array(boxes, dtype = np.float32))
FrameFeats.append(np.array(feats, dtype = np.float32))
boxes, feats = [], []
if t1 and t - t1 > 1e4:
Videos.append((FrameBoxes, FrameFeats))
FrameBoxes, FrameFeats = [], []
t1 = int(line.split(',')[1].split(':')[1])
if line.find('box') >= 0:
box = line.split(':', )[1].split(',')[:-1]
boxes.append(box)
bboxes.append(boxes)
if line.find('feat') >= 0:
feat = line.split(':', )[1].split(',')[:-1]
feats.append(feat)
ffeats.append(feat)
FrameBoxes.append(np.array(boxes, dtype = np.float32))
FrameFeats.append(np.array(feats, dtype = np.float32))
Videos.append((FrameBoxes, FrameFeats))
TimeStamp = np.array(timestamp, dtype = np.float32)
DimesDiff = np.diff((timestamp))
return Videos
def inference_image(image, detections):
H, W, _ = np.shape(image)
imgs = []
batch_patches = []
patches = []
for d in range(np.size(detections, 0)):
tlbr = detections[d, :4].astype(np.int_)
tlbr[0] = max(0, tlbr[0])
tlbr[1] = max(0, tlbr[1])
tlbr[2] = min(W - 1, tlbr[2])
tlbr[3] = min(H - 1, tlbr[3])
img1 = image[tlbr[1]:tlbr[3], tlbr[0]:tlbr[2], :]
img = img1[:, :, ::-1].copy() # the model expects RGB inputs
patch = ReIDEncoder.transform(img)
imgs.append(img1)
# patch = patch.to(device=self.device).half()
if str(ReIDEncoder.device) != "cpu":
patch = patch.to(device=ReIDEncoder.device).half()
else:
patch = patch.to(device=ReIDEncoder.device)
patches.append(patch)
if (d + 1) % ReIDEncoder.batch_size == 0:
patches = torch.stack(patches, dim=0)
batch_patches.append(patches)
patches = []
if len(patches):
patches = torch.stack(patches, dim=0)
batch_patches.append(patches)
features = np.zeros((0, ReIDEncoder.embedding_size))
for patches in batch_patches:
pred = ReIDEncoder.model(patches)
pred[torch.isinf(pred)] = 1.0
feat = pred.cpu().data.numpy()
features = np.vstack((features, feat))
return imgs, features
def readimg():
imgpath = r"D:\datasets\ym\Img_ResnetData\result\0.png"
image = cv2.imread(imgpath)
img = cv2.resize(image, (224, 224))
cv2.imwrite('0_224x224.jpg', img)
def readdata(datapath):
with open(datapath, 'r') as file:
lines = file.readlines()
dlist = lines[0].split(',')
dfloat = [float(d) for d in dlist]
afeat = np.array(dfloat).reshape(1, -1)
return afeat
def readrawimg(datapath):
with open(datapath, 'r') as file:
llines = file.readlines()
imgs = []
row = 224
for i in range(8):
lines = llines[i*224 : (i+1)*224]
img = np.empty((224, 224, 0), dtype=np.float32)
imgr = np.empty((0, 224), dtype=np.float32)
imgg = np.empty((0, 224), dtype=np.float32)
imgb = np.empty((0, 224), dtype=np.float32)
for line in lines:
dlist = line.split(' ')[0:224]
img_r = np.array([float(s.split(',')[0]) for s in dlist], dtype=np.float32).reshape(1, -1)
img_g = np.array([float(s.split(',')[1]) for s in dlist], dtype=np.float32).reshape(1, -1)
img_b = np.array([float(s.split(',')[2]) for s in dlist], dtype=np.float32).reshape(1, -1)
# img_r = [float(s.split(',')[0]) for s in dlist if len(s.split(',')[0].encode('utf-8')) == 4]
# img_g = [float(s.split(',')[1]) for s in dlist if len(s.split(',')[1].encode('utf-8')) == 4]
# img_b = [float(s.split(',')[2]) for s in dlist if len(s.split(',')[2].encode('utf-8')) == 4]
imgr = np.concatenate((imgr, img_r), axis=0)
imgg = np.concatenate((imgg, img_g), axis=0)
imgb = np.concatenate((imgb, img_b), axis=0)
imgr = imgr[:, :, None]
imgg = imgg[:, :, None]
imgb = imgb[:, :, None]
img = np.concatenate((imgb, imgg, imgr), axis=2).astype(np.uint8)
imgs.append(img)
return imgs
def inference(image):
patches = []
image = image[:, :, ::-1].copy() # the model expects RGB inputs
patch = ReIDEncoder.transform(image)
patch = patch.to(device=ReIDEncoder.device)
patches.append(patch)
patches = torch.stack(patches, dim=0)
pred = ReIDEncoder.model(patches)
pred[torch.isinf(pred)] = 1.0
bfeat = pred.cpu().data.numpy()
return bfeat
def test_img_feat():
# datapath = r"D:\datasets\ym\Img_ResnetData\aa\aa.txt"
# afeat = readdata(datapath)
imgpath = r"D:\datasets\ym\Img_ResnetData\aa\aa.jpg"
img = cv2.imread(imgpath)
bfeat = inference(img)
datapath = r"D:\datasets\ym\Img_ResnetData\rawimg\7.txt"
afeat = readdata(datapath)
rawpath = r"D:\datasets\ym\Img_ResnetData\rawimg\28950640607_mat_rgb"
imgx = readrawimg(rawpath)
cv2.imwrite("rawimg.png", imgx[7])
bfeatx = inference(imgx[7])
cost_matrix = 1 - np.maximum(0.0, cdist(afeat, bfeatx, 'cosine'))
imgpath1 = r"D:\datasets\ym\Img_ResnetData\result\0_224x224.png"
img1 = cv2.imread(imgpath1)
bfeat1 = inference(img1)
aafeat = afeat / np.linalg.norm(afeat, ord=2, axis=1, keepdims=True)
bbfeat = bfeat / np.linalg.norm(bfeat, ord=2, axis=1, keepdims=True)
cost_matrix = 1 - np.maximum(0.0, cdist(aafeat, bbfeat, 'cosine'))
print("Done!!!")
def main():
imgpath = r"D:\datasets\ym\Img_ResnetData\20240531-103547_0354b1cb-53fa-48de-86cd-ac3c5b127ada_6921168593576\3568800050000_0.jpeg"
datapath = r"D:\datasets\ym\Img_ResnetData\20240531-103547_0354b1cb-53fa-48de-86cd-ac3c5b127ada_6921168593576\0_tracker_inout.data"
savepath = r"D:\datasets\ym\Img_ResnetData\result"
image = cv2.imread(imgpath)
Videos = read_data_file(datapath)
bboxes, afeats = Videos[0][0][0], Videos[0][1][0]
imgs, bfeats = inference_image(image, bboxes)
aafeats = afeats / np.linalg.norm(afeats, ord=2, axis=1, keepdims=True)
bbfeats = bfeats / np.linalg.norm(bfeats, ord=2, axis=1, keepdims=True)
cost_matrix = 1 - np.maximum(0.0, cdist(aafeats, bbfeats, 'cosine'))
for i, img in enumerate(imgs):
cv2.imwrite(savepath + f"\{i}.png", img)
print("Done!!!!")
if __name__ == '__main__':
# main()
# readimg()
test_img_feat()