Files
ieemoo-ai-detecttracking/tracking/trackers/utils/matching.py
2025-04-18 14:41:53 +08:00

216 lines
8.5 KiB
Python

# Ultralytics YOLO 🚀, AGPL-3.0 license
import numpy as np
import math
import torch
import scipy
from scipy.spatial.distance import cdist
# from ultralytics.utils.metrics import bbox_ioa
try:
import lap # for linear_assignment
assert lap.__version__ # verify package is not directory
except (ImportError, AssertionError, AttributeError):
from ultralytics.utils.checks import check_requirements
check_requirements('lapx>=0.5.2') # update to lap package from https://github.com/rathaROG/lapx
import lap
def bbox_iou(box1, box2, GIoU=False, DIoU=False, CIoU=False, eps=1e-7):
'''由根目录下 utils.metrics.metrics.bbox_iou 更改而来'''
# Returns Intersection over Union (IoU) of box1(1,4) to box2(n,4)
# Get the coordinates of bounding boxes
# x1, y1, x2, y2 = box1
# box1 = torch.tensor(box1)
# box2 = torch.tensor(box2)
b1_x1, b1_y1, b1_x2, b1_y2 = box1.T
b2_x1, b2_y1, b2_x2, b2_y2 = box2.T
w1, h1 = b1_x2 - b1_x1, (b1_y2 - b1_y1).clip(eps)
w2, h2 = b2_x2 - b2_x1, (b2_y2 - b2_y1).clip(eps)
# Intersection area
# inter = (b1_x2.minimum(b2_x2) - b1_x1.maximum(b2_x1)).clamp(0) * \
# (b1_y2.minimum(b2_y2) - b1_y1.maximum(b2_y1)).clamp(0)
inter = (np.minimum(b1_x2[:, None], b2_x2) - np.maximum(b1_x1[:, None], b2_x1)).clip(0) * \
(np.minimum(b1_y2[:, None], b2_y2) - np.maximum(b1_y1[:, None], b2_y1)).clip(0)
# Union Area
box1_area = w1 * h1
box2_area = w2 * h2
union = box1_area[:, None] + box2_area - inter + eps
# IoU
iou = inter / union
if CIoU or DIoU or GIoU:
cw = np.maximum(b1_x2[:, None], b2_x2) - np.minimum(b1_x1[:, None], b2_x1) # convex (smallest enclosing box) width
ch = np.maximum(b1_y2[:, None], b2_y2) - np.minimum(b1_y1[:, None], b2_y1) # convex height
if CIoU or DIoU: # Distance or Complete IoU https://arxiv.org/abs/1911.08287v1
c2 = cw ** 2 + ch ** 2 + eps # convex diagonal squared
'''center dist ** 2'''
rho2 = ((b1_x1[:, None] + b1_x2[:, None] - b2_x1 - b2_x2) ** 2 + \
(b1_y1[:, None] + b1_y2[:, None] - b2_y1 - b2_y2) ** 2) / 4
if CIoU: # https://github.com/Zzh-tju/DIoU-SSD-pytorch/blob/master/utils/box/box_utils.py#L47
v = (4 / math.pi ** 2) * (np.arctan(w1 / h1)[:, None] - np.arctan(w2 / h2))**2
with torch.no_grad():
alpha = v / (v - iou + (1 + eps))
return iou - (rho2 / c2 + v * alpha) # CIoU
return iou - rho2 / c2 # DIoU
c_area = cw * ch + eps # convex area
return iou - (c_area - union) / c_area # GIoU https://arxiv.org/pdf/1902.09630.pdf
return iou # IoU
def bbox_ioa(box1, box2, iou=False, eps=1e-7):
"""
Calculate the intersection over box2 area given box1 and box2. Boxes are in x1y1x2y2 format.
Args:
box1 (np.array): A numpy array of shape (n, 4) representing n bounding boxes.
box2 (np.array): A numpy array of shape (m, 4) representing m bounding boxes.
iou (bool): Calculate the standard iou if True else return inter_area/box2_area.
eps (float, optional): A small value to avoid division by zero. Defaults to 1e-7.
Returns:
(np.array): A numpy array of shape (n, m) representing the intersection over box2 area.
"""
# Get the coordinates of bounding boxes
b1_x1, b1_y1, b1_x2, b1_y2 = box1.T
b2_x1, b2_y1, b2_x2, b2_y2 = box2.T
# Intersection area
inter_area = (np.minimum(b1_x2[:, None], b2_x2) - np.maximum(b1_x1[:, None], b2_x1)).clip(0) * \
(np.minimum(b1_y2[:, None], b2_y2) - np.maximum(b1_y1[:, None], b2_y1)).clip(0)
# box2 area
area = (b2_x2 - b2_x1) * (b2_y2 - b2_y1)
if iou:
box1_area = (b1_x2 - b1_x1) * (b1_y2 - b1_y1)
area = area + box1_area[:, None] - inter_area
# Intersection over box2 area
return inter_area / (area + eps)
# def linear_assignment(cost_matrix, thresh, use_lap=True):
def linear_assignment(cost_matrix: np.ndarray, thresh: float, use_lap: bool = True) -> tuple:
"""
Perform linear assignment using scipy or lap.lapjv.
Args:
cost_matrix (np.ndarray): The matrix containing cost values for assignments.
thresh (float): Threshold for considering an assignment valid.
use_lap (bool, optional): Whether to use lap.lapjv. Defaults to True.
Returns:
(tuple): Tuple containing matched indices, unmatched indices from 'a', and unmatched indices from 'b'.
"""
if cost_matrix.size == 0:
return np.empty((0, 2), dtype=int), tuple(range(cost_matrix.shape[0])), tuple(range(cost_matrix.shape[1]))
if use_lap:
# https://github.com/gatagat/lap
_, x, y = lap.lapjv(cost_matrix, extend_cost=True, cost_limit=thresh)
matches = [[ix, mx] for ix, mx in enumerate(x) if mx >= 0]
unmatched_a = np.where(x < 0)[0]
unmatched_b = np.where(y < 0)[0]
else:
# https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.linear_sum_assignment.html
x, y = scipy.optimize.linear_sum_assignment(cost_matrix) # row x, col y
matches = np.asarray([[x[i], y[i]] for i in range(len(x)) if cost_matrix[x[i], y[i]] <= thresh])
if len(matches) == 0:
unmatched_a = list(np.arange(cost_matrix.shape[0]))
unmatched_b = list(np.arange(cost_matrix.shape[1]))
else:
unmatched_a = list(set(np.arange(cost_matrix.shape[0])) - set(matches[:, 0]))
unmatched_b = list(set(np.arange(cost_matrix.shape[1])) - set(matches[:, 1]))
return matches, unmatched_a, unmatched_b
# def iou_distance(atracks, btracks):
def iou_distance(atracks: list, btracks: list) -> np.ndarray:
"""
Compute cost based on Intersection over Union (IoU) between tracks.
Args:
atracks (list[STrack] | list[np.ndarray]): List of tracks 'a' or bounding boxes.
btracks (list[STrack] | list[np.ndarray]): List of tracks 'b' or bounding boxes.
Returns:
(np.ndarray): Cost matrix computed based on IoU.
"""
if (len(atracks) > 0 and isinstance(atracks[0], np.ndarray)) \
or (len(btracks) > 0 and isinstance(btracks[0], np.ndarray)):
atlbrs = atracks
btlbrs = btracks
else:
atlbrs = [track.tlbr for track in atracks]
btlbrs = [track.tlbr for track in btracks]
ious = np.zeros((len(atlbrs), len(btlbrs)), dtype=np.float32)
if len(atlbrs) and len(btlbrs):
box1 = np.ascontiguousarray(atlbrs, dtype=np.float32)
box2 = np.ascontiguousarray(btlbrs, dtype=np.float32)
ious = bbox_ioa(box1, box2, iou=True)
ious_g = bbox_iou(box1, box2, GIoU=True).clip(-1.0, 1.0)
ious_d = bbox_iou(box1, box2, DIoU=True).clip(-1.0, 1.0)
ious_c = bbox_iou(box1, box2, CIoU=True).clip(-1.0, 1.0)
return 1 - ious # cost matrix
def embedding_distance(tracks, detections, metric='cosine'):
"""
Compute distance between tracks and detections based on embeddings.
Args:
tracks (list[STrack]): List of tracks.
detections (list[BaseTrack]): List of detections.
metric (str, optional): Metric for distance computation. Defaults to 'cosine'.
Returns:
(np.ndarray): Cost matrix computed based on embeddings.
"""
cost_matrix = np.zeros((len(tracks), len(detections)), dtype=np.float32)
if cost_matrix.size == 0:
return cost_matrix
det_features = np.asarray([track.curr_feat for track in detections], dtype=np.float32)
# for i, track in enumerate(tracks):
# cost_matrix[i, :] = np.maximum(0.0, cdist(track.smooth_feat.reshape(1,-1), det_features, metric))
track_features = np.asarray([track.smooth_feat for track in tracks], dtype=np.float32)
cost_matrix = np.maximum(0.0, cdist(track_features, det_features, metric)) # Normalized features
return cost_matrix
def fuse_score(cost_matrix, detections):
"""
Fuses cost matrix with detection scores to produce a single similarity matrix.
Args:
cost_matrix (np.ndarray): The matrix containing cost values for assignments.
detections (list[BaseTrack]): List of detections with scores.
Returns:
(np.ndarray): Fused similarity matrix.
"""
if cost_matrix.size == 0:
return cost_matrix
iou_sim = 1 - cost_matrix
det_scores = np.array([det.score for det in detections])
det_scores = np.expand_dims(det_scores, axis=0).repeat(cost_matrix.shape[0], axis=0)
fuse_sim = iou_sim * det_scores
return 1 - fuse_sim # fuse_cost