389 lines
14 KiB
Python
389 lines
14 KiB
Python
# -*- coding: utf-8 -*-
|
|
"""
|
|
Created on Sun Sep 29 08:59:21 2024
|
|
|
|
@author: ym
|
|
"""
|
|
import os
|
|
# import sys
|
|
import cv2
|
|
import pickle
|
|
import numpy as np
|
|
from pathlib import Path
|
|
from scipy.spatial.distance import cdist
|
|
from track_reid import yolo_resnet_tracker, yolov10_resnet_tracker
|
|
|
|
from tracking.dotrack.dotracks_back import doBackTracks
|
|
from tracking.dotrack.dotracks_front import doFrontTracks
|
|
from tracking.utils.drawtracks import plot_frameID_y2, draw_all_trajectories
|
|
from utils.getsource import get_image_pairs, get_video_pairs
|
|
from tracking.utils.read_data import read_similar
|
|
|
|
|
|
def save_subimgs(imgdict, boxes, spath, ctype, featdict = None):
|
|
'''
|
|
当前 box 特征和该轨迹前一个 box 特征的相似度,可用于和跟踪序列中的相似度进行比较
|
|
'''
|
|
boxes = boxes[np.argsort(boxes[:, 7])]
|
|
for i in range(len(boxes)):
|
|
simi = None
|
|
tid, fid, bid = int(boxes[i, 4]), int(boxes[i, 7]), int(boxes[i, 8])
|
|
|
|
if i>0:
|
|
_, fid0, bid0 = int(boxes[i-1, 4]), int(boxes[i-1, 7]), int(boxes[i-1, 8])
|
|
if f"{fid0}_{bid0}" in featdict.keys() and f"{fid}_{bid}" in featdict.keys():
|
|
feat0 = featdict[f"{fid0}_{bid0}"]
|
|
feat1 = featdict[f"{fid}_{bid}"]
|
|
simi = 1 - np.maximum(0.0, cdist(feat0[None, :], feat1[None, :], "cosine"))[0][0]
|
|
|
|
img = imgdict[f"{fid}_{bid}"]
|
|
imgpath = spath / f"{ctype}_tid{tid}-{fid}-{bid}.png"
|
|
if simi is not None:
|
|
imgpath = spath / f"{ctype}_tid{tid}-{fid}-{bid}_sim{simi:.2f}.png"
|
|
|
|
cv2.imwrite(imgpath, img)
|
|
|
|
|
|
def save_subimgs_1(imgdict, boxes, spath, ctype, simidict = None):
|
|
'''
|
|
当前 box 特征和该轨迹 smooth_feat 特征的相似度, yolo_resnet_tracker 函数中,
|
|
采用该方式记录特征相似度
|
|
'''
|
|
for i in range(len(boxes)):
|
|
tid, fid, bid = int(boxes[i, 4]), int(boxes[i, 7]), int(boxes[i, 8])
|
|
|
|
key = f"{fid}_{bid}"
|
|
img = imgdict[key]
|
|
imgpath = spath / f"{ctype}_tid{tid}-{fid}-{bid}.png"
|
|
if simidict is not None and key in simidict.keys():
|
|
imgpath = spath / f"{ctype}_tid{tid}-{fid}-{bid}_sim{simidict[key]:.2f}.png"
|
|
|
|
cv2.imwrite(imgpath, img)
|
|
|
|
def show_result(event_tracks, yrtDict, savepath_pipe):
|
|
'''保存 Tracking 输出的运动轨迹子图,并记录相似度'''
|
|
|
|
savepath_pipe_subimgs = savepath_pipe / Path("subimgs")
|
|
if not savepath_pipe_subimgs.exists():
|
|
savepath_pipe_subimgs.mkdir(parents=True, exist_ok=True)
|
|
|
|
|
|
|
|
|
|
for CamerType, vts in event_tracks:
|
|
if len(vts.tracks)==0: continue
|
|
if CamerType == 'front':
|
|
# yolos = ShoppingDict["frontCamera"]["yoloResnetTracker"]
|
|
|
|
yolos = yrtDict["frontyrt"]
|
|
ctype = 1
|
|
if CamerType == 'back':
|
|
# yolos = ShoppingDict["backCamera"]["yoloResnetTracker"]
|
|
|
|
yolos = yrtDict["backyrt"]
|
|
ctype = 0
|
|
|
|
imgdict, featdict, simidict = {}, {}, {}
|
|
for y in yolos:
|
|
imgdict.update(y["imgs"])
|
|
featdict.update(y["feats"])
|
|
simidict.update(y["featsimi"])
|
|
|
|
for track in vts.Residual:
|
|
if isinstance(track, np.ndarray):
|
|
save_subimgs(imgdict, track, savepath_pipe_subimgs, ctype, featdict)
|
|
else:
|
|
save_subimgs(imgdict, track.slt_boxes, savepath_pipe_subimgs, ctype, featdict)
|
|
|
|
'''(3) 轨迹显示与保存'''
|
|
illus = [None, None]
|
|
for CamerType, vts in event_tracks:
|
|
if len(vts.tracks)==0: continue
|
|
|
|
if CamerType == 'front':
|
|
edgeline = cv2.imread("./tracking/shopcart/cart_tempt/board_ftmp_line.png")
|
|
|
|
h, w = edgeline.shape[:2]
|
|
# nh, nw = h//2, w//2
|
|
# edgeline = cv2.resize(edgeline, (nw, nh), interpolation=cv2.INTER_AREA)
|
|
|
|
img_tracking = draw_all_trajectories(vts, edgeline, savepath_pipe, CamerType, draw5p=True)
|
|
illus[0] = img_tracking
|
|
|
|
plt = plot_frameID_y2(vts)
|
|
plt.savefig(os.path.join(savepath_pipe, "front_y2.png"))
|
|
|
|
if CamerType == 'back':
|
|
edgeline = cv2.imread("./tracking/shopcart/cart_tempt/edgeline.png")
|
|
|
|
h, w = edgeline.shape[:2]
|
|
# nh, nw = h//2, w//2
|
|
# edgeline = cv2.resize(edgeline, (nw, nh), interpolation=cv2.INTER_AREA)
|
|
|
|
img_tracking = draw_all_trajectories(vts, edgeline, savepath_pipe, CamerType, draw5p=True)
|
|
illus[1] = img_tracking
|
|
|
|
illus = [im for im in illus if im is not None]
|
|
if len(illus):
|
|
img_cat = np.concatenate(illus, axis = 1)
|
|
if len(illus)==2:
|
|
H, W = img_cat.shape[:2]
|
|
cv2.line(img_cat, (int(W/2), 0), (int(W/2), int(H)), (128, 128, 255), 3)
|
|
|
|
trajpath = os.path.join(savepath_pipe, "trajectory.png")
|
|
cv2.imwrite(trajpath, img_cat)
|
|
|
|
|
|
|
|
|
|
def pipeline(eventpath,
|
|
SourceType,
|
|
weights,
|
|
DataType = "raw", #raw, pkl: images or videos, pkl, pickle file
|
|
YoloVersion="V5",
|
|
savepath = None,
|
|
saveimages = True
|
|
):
|
|
|
|
## 构造购物事件字典
|
|
evtname = Path(eventpath).stem
|
|
barcode = evtname.split('_')[-1] if len(evtname.split('_'))>=2 \
|
|
and len(evtname.split('_')[-1])>=8 \
|
|
and evtname.split('_')[-1].isdigit() else ''
|
|
|
|
'''事件结果存储文件夹: savepath_pipe, savepath_pkl'''
|
|
if not savepath:
|
|
savepath = Path(__file__).resolve().parents[0] / "events_result"
|
|
savepath_pipe = Path(savepath) / Path("yolos_tracking") / evtname
|
|
|
|
|
|
savepath_pkl = Path(savepath) / "shopping_pkl"
|
|
if not savepath_pkl.exists():
|
|
savepath_pkl.mkdir(parents=True, exist_ok=True)
|
|
pklpath = Path(savepath_pkl) / Path(str(evtname)+".pickle")
|
|
|
|
|
|
|
|
yrt_out = []
|
|
if DataType == "raw":
|
|
### 不重复执行已经过yolo-resnet-tracker
|
|
if pklpath.exists():
|
|
print(f"Pickle file have saved: {evtname}.pickle")
|
|
return
|
|
|
|
if SourceType == "video":
|
|
vpaths = get_video_pairs(eventpath)
|
|
elif SourceType == "image":
|
|
vpaths = get_image_pairs(eventpath)
|
|
|
|
|
|
|
|
for vpath in vpaths:
|
|
'''================= 2. 事件结果存储文件夹 ================='''
|
|
|
|
|
|
if isinstance(vpath, list):
|
|
savepath_pipe_imgs = savepath_pipe / Path("images")
|
|
else:
|
|
savepath_pipe_imgs = savepath_pipe / Path(str(Path(vpath).stem))
|
|
|
|
if not savepath_pipe_imgs.exists():
|
|
savepath_pipe_imgs.mkdir(parents=True, exist_ok=True)
|
|
|
|
optdict = {}
|
|
optdict["weights"] = weights
|
|
optdict["source"] = vpath
|
|
optdict["save_dir"] = savepath_pipe_imgs
|
|
optdict["is_save_img"] = saveimages
|
|
optdict["is_save_video"] = True
|
|
|
|
|
|
if YoloVersion == "V5":
|
|
yrtOut = yolo_resnet_tracker(**optdict)
|
|
elif YoloVersion == "V10":
|
|
yrtOut = yolov10_resnet_tracker(**optdict)
|
|
|
|
yrt_out.append((vpath, yrtOut))
|
|
|
|
elif DataType == "pkl":
|
|
pass
|
|
|
|
else:
|
|
return
|
|
|
|
|
|
|
|
'''====================== 构造 ShoppingDict 模块 ======================='''
|
|
ShoppingDict = {"eventPath": eventpath,
|
|
"eventName": evtname,
|
|
"barcode": barcode,
|
|
"eventType": '', # "input", "output", "other"
|
|
"frontCamera": {},
|
|
"backCamera": {},
|
|
"one2n": [] #
|
|
}
|
|
procpath = Path(eventpath).joinpath('process.data')
|
|
if procpath.is_file():
|
|
SimiDict = read_similar(procpath)
|
|
ShoppingDict["one2n"] = SimiDict['one2n']
|
|
|
|
yrtDict = {}
|
|
event_tracks = []
|
|
for vpath, yrtOut in yrt_out:
|
|
'''================= 1. 构造相机事件字典 ================='''
|
|
CameraEvent = {"cameraType": '', # "front", "back"
|
|
"videoPath": '',
|
|
"imagePaths": [],
|
|
"yoloResnetTracker": [],
|
|
"tracking": [],
|
|
}
|
|
|
|
if isinstance(vpath, list):
|
|
CameraEvent["imagePaths"] = vpath
|
|
bname = os.path.basename(vpath[0])
|
|
if not isinstance(vpath, list):
|
|
CameraEvent["videoPath"] = vpath
|
|
bname = os.path.basename(vpath).split('.')[0]
|
|
if bname.split('_')[0] == "0" or bname.find('back')>=0:
|
|
CameraEvent["cameraType"] = "back"
|
|
if bname.split('_')[0] == "1" or bname.find('front')>=0:
|
|
CameraEvent["cameraType"] = "front"
|
|
|
|
|
|
'''2种保存方式: (1) no save subimg, (2) save img'''
|
|
###(1) save images
|
|
yrtOut_save = []
|
|
for frdict in yrtOut:
|
|
fr_dict = {}
|
|
for k, v in frdict.items():
|
|
if k != "imgs":
|
|
fr_dict[k]=v
|
|
yrtOut_save.append(fr_dict)
|
|
CameraEvent["yoloResnetTracker"] = yrtOut_save
|
|
|
|
###(2) no save images
|
|
# CameraEvent["yoloResnetTracker"] = yrtOut
|
|
|
|
'''================= 4. tracking ================='''
|
|
'''(1) 生成用于 tracking 模块的 boxes、feats'''
|
|
bboxes = np.empty((0, 6), dtype=np.float64)
|
|
trackerboxes = np.empty((0, 9), dtype=np.float64)
|
|
trackefeats = {}
|
|
for frameDict in yrtOut:
|
|
tboxes = frameDict["tboxes"]
|
|
ffeats = frameDict["feats"]
|
|
|
|
boxes = frameDict["bboxes"]
|
|
bboxes = np.concatenate((bboxes, np.array(boxes)), axis=0)
|
|
trackerboxes = np.concatenate((trackerboxes, np.array(tboxes)), axis=0)
|
|
for i in range(len(tboxes)):
|
|
fid, bid = int(tboxes[i, 7]), int(tboxes[i, 8])
|
|
trackefeats.update({f"{fid}_{bid}": ffeats[f"{fid}_{bid}"]})
|
|
|
|
|
|
'''(2) tracking, 后摄'''
|
|
if CameraEvent["cameraType"] == "back":
|
|
vts = doBackTracks(trackerboxes, trackefeats)
|
|
vts.classify()
|
|
event_tracks.append(("back", vts))
|
|
|
|
CameraEvent["tracking"] = vts
|
|
ShoppingDict["backCamera"] = CameraEvent
|
|
|
|
yrtDict["backyrt"] = yrtOut
|
|
|
|
'''(2) tracking, 前摄'''
|
|
if CameraEvent["cameraType"] == "front":
|
|
vts = doFrontTracks(trackerboxes, trackefeats)
|
|
vts.classify()
|
|
event_tracks.append(("front", vts))
|
|
|
|
CameraEvent["tracking"] = vts
|
|
ShoppingDict["frontCamera"] = CameraEvent
|
|
|
|
yrtDict["frontyrt"] = yrtOut
|
|
|
|
'''========================== 保存模块 ================================='''
|
|
# 保存 ShoppingDict
|
|
with open(str(pklpath), 'wb') as f:
|
|
pickle.dump(ShoppingDict, f)
|
|
|
|
# 绘制并保存轨迹图
|
|
show_result(event_tracks, yrtDict, savepath_pipe)
|
|
|
|
|
|
|
|
def \
|
|
execute_pipeline(evtdir = r"D:\datasets\ym\后台数据\unzip",
|
|
DataType = "raw", # raw, pkl
|
|
save_path = r"D:\work\result_pipeline",
|
|
kk=1,
|
|
source_type = "video", # video, image,
|
|
yolo_ver = "V10", # V10, V5
|
|
weight_yolo_v5 = r'./ckpts/best_cls10_0906.pt' ,
|
|
weight_yolo_v10 = r'./ckpts/best_v10s_width0375_1205.pt',
|
|
saveimages = True
|
|
):
|
|
'''
|
|
运行函数 pipeline(),遍历事件文件夹,每个文件夹是一个事件
|
|
'''
|
|
parmDict = {}
|
|
parmDict["DataType"] = DataType
|
|
parmDict["savepath"] = save_path
|
|
parmDict["SourceType"] = source_type
|
|
|
|
parmDict["YoloVersion"] = yolo_ver
|
|
if parmDict["YoloVersion"] == "V5":
|
|
parmDict["weights"] = weight_yolo_v5
|
|
elif parmDict["YoloVersion"] == "V10":
|
|
parmDict["weights"] = weight_yolo_v10
|
|
|
|
parmDict["saveimages"] = saveimages
|
|
|
|
|
|
evtdir = Path(evtdir)
|
|
errEvents = []
|
|
k = 0
|
|
for item in evtdir.iterdir():
|
|
if item.is_dir():
|
|
# item = evtdir/Path("20241212-171505-f0afe929-fdfe-4efa-94d0-2fa748d65fbb_6907992518930")
|
|
parmDict["eventpath"] = item
|
|
pipeline(**parmDict)
|
|
|
|
# try:
|
|
# pipeline(**parmDict)
|
|
# except Exception as e:
|
|
# errEvents.append(str(item))
|
|
|
|
k+=1
|
|
if kk is not None and k==kk:
|
|
break
|
|
|
|
errfile = os.path.join(parmDict["savepath"], 'error_events.txt')
|
|
with open(errfile, 'w', encoding='utf-8') as f:
|
|
for line in errEvents:
|
|
f.write(line + '\n')
|
|
|
|
if __name__ == "__main__":
|
|
# datapath = r'/home/wqg/dataset/test_dataset/base_dataset/single_event/source/'
|
|
# savepath = r'/home/wqg/dataset/pipeline/test_result/single_event_V10'
|
|
|
|
datapath = r'/home/wqg/dataset/test_dataset/base_dataset/single_event/source/'
|
|
savepath = r'/home/wqg/dataset/pipeline/test_result/single_event_V10'
|
|
|
|
execute_pipeline(evtdir = datapath,
|
|
DataType = "raw", # raw, pkl
|
|
kk=1,
|
|
source_type = "video", # video, image,
|
|
save_path = savepath,
|
|
yolo_ver = "V10", # V10, V5
|
|
weight_yolo_v5 = r'./ckpts/best_cls10_0906.pt' ,
|
|
weight_yolo_v10 = r'./ckpts/best_v10s_width0375_1205.pt',
|
|
saveimages = False
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
|