155 lines
5.5 KiB
Python
155 lines
5.5 KiB
Python
# -*- coding: utf-8 -*-
|
||
"""
|
||
Created on Tue Dec 10 14:30:16 2024
|
||
|
||
@author: ym
|
||
"""
|
||
import os
|
||
import sys
|
||
import numpy as np
|
||
sys.path.append(r"D:\DetectTracking")
|
||
from tracking.utils.read_data import read_tracking_output, read_similar #, extract_data, read_deletedBarcode_file
|
||
|
||
|
||
IMG_FORMAT = ['.bmp', '.jpg', '.jpeg', '.png']
|
||
|
||
|
||
def creat_shopping_event(eventPath):
|
||
'''构造放入商品事件字典,这些事件需满足条件:
|
||
1) 前后摄至少有一条轨迹输出
|
||
2) 保存有帧图像,以便裁剪出 boxe 子图
|
||
'''
|
||
|
||
'''evtName 为一次购物事件'''
|
||
evtName = os.path.basename(eventPath)
|
||
evtList = evtName.split('_')
|
||
|
||
'''================ 0. 检查 evtName 及 eventPath 正确性和有效性 ================'''
|
||
if evtName.find('2024')<0 and len(evtList[0])!=15:
|
||
return
|
||
if not os.path.isdir(eventPath):
|
||
return
|
||
|
||
if len(evtList)==1 or (len(evtList)==2 and len(evtList[1])==0):
|
||
barcode = ''
|
||
else:
|
||
barcode = evtList[-1]
|
||
|
||
if len(evtList)==3 and evtList[-1]== evtList[-2]:
|
||
evtType = 'input'
|
||
else:
|
||
evtType = 'other'
|
||
|
||
'''================ 1. 构造事件描述字典,暂定 9 items ==============='''
|
||
|
||
|
||
|
||
|
||
event = {}
|
||
event['barcode'] = barcode
|
||
event['type'] = evtType
|
||
event['filepath'] = eventPath
|
||
event['back_imgpaths'] = []
|
||
event['front_imgpaths'] = []
|
||
event['back_boxes'] = np.empty((0, 9), dtype=np.float64)
|
||
event['front_boxes'] = np.empty((0, 9), dtype=np.float64)
|
||
event['back_feats'] = np.empty((0, 256), dtype=np.float64)
|
||
event['front_feats'] = np.empty((0, 256), dtype=np.float64)
|
||
event['feats_compose'] = np.empty((0, 256), dtype=np.float64)
|
||
event['one2one'] = None
|
||
event['one2n'] = None
|
||
event['feats_select'] = np.empty((0, 256), dtype=np.float64)
|
||
|
||
|
||
'''================= 2. 读取 data 文件 ============================='''
|
||
for dataname in os.listdir(eventPath):
|
||
# filename = '1_track.data'
|
||
datapath = os.path.join(eventPath, dataname)
|
||
if not os.path.isfile(datapath): continue
|
||
|
||
CamerType = dataname.split('_')[0]
|
||
''' 2.1 读取 0/1_track.data 中数据,暂不考虑'''
|
||
# if dataname.find("_track.data")>0:
|
||
# bboxes, ffeats, trackerboxes, tracker_feat_dict, trackingboxes, tracking_feat_dict = extract_data(datapath)
|
||
|
||
''' 2.2 读取 0/1_tracking_output.data 中数据'''
|
||
if dataname.find("_tracking_output.data")>0:
|
||
tracking_output_boxes, tracking_output_feats = read_tracking_output(datapath)
|
||
if len(tracking_output_boxes) != len(tracking_output_feats): continue
|
||
if CamerType == '0':
|
||
event['back_boxes'] = tracking_output_boxes
|
||
event['back_feats'] = tracking_output_feats
|
||
elif CamerType == '1':
|
||
event['front_boxes'] = tracking_output_boxes
|
||
event['front_feats'] = tracking_output_feats
|
||
|
||
if dataname.find("process.data")==0:
|
||
simiDict = read_similar(datapath)
|
||
event['one2one'] = simiDict['one2one']
|
||
event['one2n'] = simiDict['one2n']
|
||
|
||
|
||
if len(event['back_boxes'])==0 or len(event['front_boxes'])==0:
|
||
return None
|
||
|
||
'''2.3 事件的特征表征方式: 特征选择、特征集成'''
|
||
bk_feats = event['back_feats']
|
||
ft_feats = event['front_feats']
|
||
|
||
'''2.3.1 特征集成'''
|
||
feats_compose = np.empty((0, 256), dtype=np.float64)
|
||
if len(ft_feats):
|
||
feats_compose = np.concatenate((feats_compose, ft_feats), axis=0)
|
||
if len(bk_feats):
|
||
feats_compose = np.concatenate((feats_compose, bk_feats), axis=0)
|
||
event['feats_compose'] = feats_compose
|
||
|
||
'''2.3.1 特征选择'''
|
||
if len(ft_feats):
|
||
event['feats_select'] = ft_feats
|
||
|
||
|
||
'''================ 3. 读取图像文件地址,并按照帧ID排序 ============='''
|
||
frontImgs, frontFid = [], []
|
||
backImgs, backFid = [], []
|
||
for imgname in os.listdir(eventPath):
|
||
name, ext = os.path.splitext(imgname)
|
||
if ext not in IMG_FORMAT or name.find('frameId')<0: continue
|
||
|
||
CamerType = name.split('_')[0]
|
||
frameId = int(name.split('_')[3])
|
||
imgpath = os.path.join(eventPath, imgname)
|
||
if CamerType == '0':
|
||
backImgs.append(imgpath)
|
||
backFid.append(frameId)
|
||
if CamerType == '1':
|
||
frontImgs.append(imgpath)
|
||
frontFid.append(frameId)
|
||
|
||
frontIdx = np.argsort(np.array(frontFid))
|
||
backIdx = np.argsort(np.array(backFid))
|
||
|
||
'''3.1 生成依据帧 ID 排序的前后摄图像地址列表'''
|
||
frontImgs = [frontImgs[i] for i in frontIdx]
|
||
backImgs = [backImgs[i] for i in backIdx]
|
||
|
||
'''3.2 将前、后摄图像路径添加至事件字典'''
|
||
|
||
|
||
bfid = event['back_boxes'][:, 7].astype(np.int64)
|
||
ffid = event['front_boxes'][:, 7].astype(np.int64)
|
||
if len(bfid) and max(bfid) <= len(backImgs):
|
||
event['back_imgpaths'] = [backImgs[i-1] for i in bfid]
|
||
if len(ffid) and max(ffid) <= len(frontImgs):
|
||
event['front_imgpaths'] = [frontImgs[i-1] for i in ffid]
|
||
|
||
|
||
'''================ 4. 判断当前事件有效性,并添加至事件列表 =========='''
|
||
condt1 = len(event['back_imgpaths'])==0 or len(event['front_imgpaths'])==0
|
||
condt2 = len(event['front_feats'])==0 and len(event['back_feats'])==0
|
||
|
||
if condt1 or condt2:
|
||
print(f"Event: {evtName}, Error, condt1: {condt1}, condt2: {condt2}")
|
||
return None
|
||
|
||
return event |