# -*- coding: utf-8 -*- """ Created on Fri Feb 28 16:27:17 2025 @author: ym """ import os import time import pickle import numpy as np from PIL import Image from scipy.spatial.distance import cdist from feat_extract.config import config as conf from feat_extract.inference import FeatsInterface #, inference_image Encoder = FeatsInterface(conf) def main(): imgpaths = r"D:\全实时\202502\result\Yolos_Tracking\20250228-160049-188_6921168558018_6921168558018\a" featDict = {} imgs, imgfiles = [], [] for filename in os.listdir(imgpaths): file, ext = os.path.splitext(filename) imgpath = os.path.join(imgpaths, filename) img = Image.open(imgpath) imgs.append(img) imgfiles.append(filename) feature = Encoder.inference([img]) feature /= np.linalg.norm(feature, axis=1)[:, None] feature_ft32 = feature.astype(np.float32) featDict[file] = feature_ft32 feature = Encoder.inference(imgs) feature /= np.linalg.norm(feature, axis=1)[:, None] feature_ft32 = feature.astype(np.float32) matrix = 1 - cdist(feature, feature, 'cosine') print("do") if __name__ == '__main__': main()