diff --git a/process_addWrite.py b/process_addWrite.py new file mode 100644 index 0000000..53449f1 --- /dev/null +++ b/process_addWrite.py @@ -0,0 +1,542 @@ +# -*- coding: utf-8 -*- +""" +Created on Sun Sep 29 08:59:21 2024 + +@author: ym +""" +import os +# import sys +import cv2 +import pickle +import numpy as np +from pathlib import Path +from scipy.spatial.distance import cdist +from track_reid import yolo_resnet_tracker, yolov10_resnet_tracker + +from tracking.dotrack.dotracks_back import doBackTracks +from tracking.dotrack.dotracks_front import doFrontTracks +from tracking.utils.drawtracks import plot_frameID_y2, draw_all_trajectories +from utils.getsource import get_image_pairs, get_video_pairs +from tracking.utils.read_data import read_similar, get_process_csv_data + +from openpyxl import Workbook, load_workbook + + +def save_subimgs(imgdict, boxes, spath, ctype, featdict = None): + ''' + 当前 box 特征和该轨迹前一个 box 特征的相似度,可用于和跟踪序列中的相似度进行比较 + ''' + boxes = boxes[np.argsort(boxes[:, 7])] + for i in range(len(boxes)): + simi = None + tid, fid, bid = int(boxes[i, 4]), int(boxes[i, 7]), int(boxes[i, 8]) + + if i>0: + _, fid0, bid0 = int(boxes[i-1, 4]), int(boxes[i-1, 7]), int(boxes[i-1, 8]) + if f"{fid0}_{bid0}" in featdict.keys() and f"{fid}_{bid}" in featdict.keys(): + feat0 = featdict[f"{fid0}_{bid0}"] + feat1 = featdict[f"{fid}_{bid}"] + simi = 1 - np.maximum(0.0, cdist(feat0[None, :], feat1[None, :], "cosine"))[0][0] + + img = imgdict[f"{fid}_{bid}"] + imgpath = spath / f"{ctype}_tid{tid}-{fid}-{bid}.png" + if simi is not None: + imgpath = spath / f"{ctype}_tid{tid}-{fid}-{bid}_sim{simi:.2f}.png" + + cv2.imwrite(imgpath, img) + + +def save_subimgs_1(imgdict, boxes, spath, ctype, simidict = None): + ''' + 当前 box 特征和该轨迹 smooth_feat 特征的相似度, yolo_resnet_tracker 函数中, + 采用该方式记录特征相似度 + ''' + for i in range(len(boxes)): + tid, fid, bid = int(boxes[i, 4]), int(boxes[i, 7]), int(boxes[i, 8]) + + key = f"{fid}_{bid}" + img = imgdict[key] + imgpath = spath / f"{ctype}_tid{tid}-{fid}-{bid}.png" + if simidict is not None and key in simidict.keys(): + imgpath = spath / f"{ctype}_tid{tid}-{fid}-{bid}_sim{simidict[key]:.2f}.png" + + cv2.imwrite(imgpath, img) + +def show_result(eventpath, event_tracks, yrtDict, savepath_pipe): + '''保存 Tracking 输出的运动轨迹子图,并记录相似度''' + + savepath_pipe_subimgs = savepath_pipe / Path("subimgs") + if not savepath_pipe_subimgs.exists(): + savepath_pipe_subimgs.mkdir(parents=True, exist_ok=True) + + + for CamerType, vts in event_tracks: + if len(vts.tracks)==0: continue + if CamerType == 'front': + # yolos = ShoppingDict["frontCamera"]["yoloResnetTracker"] + + yolos = yrtDict["frontyrt"] + ctype = 1 + if CamerType == 'back': + # yolos = ShoppingDict["backCamera"]["yoloResnetTracker"] + + yolos = yrtDict["backyrt"] + ctype = 0 + + imgdict, featdict, simidict = {}, {}, {} + for y in yolos: + imgdict.update(y["imgs"]) + featdict.update(y["feats"]) + simidict.update(y["featsimi"]) + + for track in vts.Residual: + if isinstance(track, np.ndarray): + save_subimgs(imgdict, track, savepath_pipe_subimgs, ctype, featdict) + else: + save_subimgs(imgdict, track.slt_boxes, savepath_pipe_subimgs, ctype, featdict) + + '''(3) 轨迹显示与保存''' + illus = [None, None] + for CamerType, vts in event_tracks: + if len(vts.tracks)==0: continue + + if CamerType == 'front': + edgeline = cv2.imread("./tracking/shopcart/cart_tempt/board_ftmp_line.png") + + h, w = edgeline.shape[:2] + # nh, nw = h//2, w//2 + # edgeline = cv2.resize(edgeline, (nw, nh), interpolation=cv2.INTER_AREA) + + img_tracking = draw_all_trajectories(vts, edgeline, savepath_pipe, CamerType, draw5p=True) + illus[0] = img_tracking + + plt = plot_frameID_y2(vts) + '''==========yj callbackdata=========''' + plt.savefig(os.path.join(eventpath, "front_y2.png")) + '''========================================''' + + if CamerType == 'back': + edgeline = cv2.imread("./tracking/shopcart/cart_tempt/edgeline.png") + + h, w = edgeline.shape[:2] + # nh, nw = h//2, w//2 + # edgeline = cv2.resize(edgeline, (nw, nh), interpolation=cv2.INTER_AREA) + + img_tracking = draw_all_trajectories(vts, edgeline, savepath_pipe, CamerType, draw5p=True) + illus[1] = img_tracking + + illus = [im for im in illus if im is not None] + if len(illus): + img_cat = np.concatenate(illus, axis = 1) + if len(illus)==2: + H, W = img_cat.shape[:2] + cv2.line(img_cat, (int(W/2), 0), (int(W/2), int(H)), (128, 128, 255), 3) + + '''==========yj callbackdata=========''' + trajpath = os.path.join(eventpath, "trajectory.png") + # trajpath = os.path.join(savepath_pipe, "trajectory.png") + '''======================================''' + cv2.imwrite(trajpath, img_cat) + + + + +def pipeline(dict_data, + pickle_exist, + eventpath, + SourceType, + weights, + DataType = "raw", #raw, pkl: images or videos, pkl, pickle file + YoloVersion="V5", + savepath = None, + saveimages = True, + + ): + + ## 构造购物事件字典 + evtname = Path(eventpath).stem + barcode = evtname.split('_')[-1] if len(evtname.split('_'))>=2 \ + and len(evtname.split('_')[-1])>=8 \ + and evtname.split('_')[-1].isdigit() else '' + + '''事件结果存储文件夹: savepath_pipe, savepath_pkl''' + if not savepath: + savepath = Path(__file__).resolve().parents[0] / "events_result" + savepath_pipe = Path(savepath) / Path("yolos_tracking") / evtname + + + savepath_pkl = Path(savepath) / "shopping_pkl" + if not savepath_pkl.exists(): + savepath_pkl.mkdir(parents=True, exist_ok=True) + pklpath = Path(savepath_pkl) / Path(str(evtname)+".pickle") + + + + yrt_out = [] + if DataType == "raw": + if not pickle_exist: + ### 不重复执行已经过yolo-resnet-tracker + if pklpath.exists(): + print(f"Pickle file have saved: {evtname}.pickle") + return + + if SourceType == "video": + vpaths = get_video_pairs(eventpath) + elif SourceType == "image": + vpaths = get_image_pairs(eventpath) + + + + for vpath in vpaths: + '''================= 2. 事件结果存储文件夹 =================''' + + + if isinstance(vpath, list): + savepath_pipe_imgs = savepath_pipe / Path("images") + else: + savepath_pipe_imgs = savepath_pipe / Path(str(Path(vpath).stem)) + + if not savepath_pipe_imgs.exists(): + savepath_pipe_imgs.mkdir(parents=True, exist_ok=True) + + optdict = {} + optdict["weights"] = weights + optdict["source"] = vpath + optdict["save_dir"] = savepath_pipe_imgs + + optdict["is_save_img"] = saveimages + optdict["is_save_video"] = True + + + if YoloVersion == "V5": + yrtOut = yolo_resnet_tracker(**optdict) + elif YoloVersion == "V10": + yrtOut = yolov10_resnet_tracker(**optdict) + + yrt_out.append((vpath, yrtOut)) + + elif DataType == "pkl": + pass + + else: + return + + + + '''====================== 构造 ShoppingDict 模块 =======================''' + ShoppingDict = {"eventPath": eventpath, + "eventName": evtname, + "barcode": barcode, + "eventType": '', # "input", "output", "other" + "frontCamera": {}, + "backCamera": {}, + "one2n": [] # + } + procpath = Path(eventpath).joinpath('process.data') + if procpath.is_file(): + SimiDict = read_similar(procpath) + ShoppingDict["one2n"] = SimiDict['one2n'] + + yrtDict = {} + event_tracks = [] + for vpath, yrtOut in yrt_out: + '''================= 1. 构造相机事件字典 =================''' + CameraEvent = {"cameraType": '', # "front", "back" + "videoPath": '', + "imagePaths": [], + "yoloResnetTracker": [], + "tracking": [], + } + + if isinstance(vpath, list): + CameraEvent["imagePaths"] = vpath + bname = os.path.basename(vpath[0]) + if not isinstance(vpath, list): + CameraEvent["videoPath"] = vpath + bname = os.path.basename(vpath).split('.')[0] + if bname.split('_')[0] == "0" or bname.find('back')>=0: + CameraEvent["cameraType"] = "back" + if bname.split('_')[0] == "1" or bname.find('front')>=0: + CameraEvent["cameraType"] = "front" + + + '''2种保存方式: (1) no save subimg, (2) save img''' + ###(1) save images + yrtOut_save = [] + for frdict in yrtOut: + fr_dict = {} + for k, v in frdict.items(): + if k != "imgs": + fr_dict[k]=v + yrtOut_save.append(fr_dict) + CameraEvent["yoloResnetTracker"] = yrtOut_save + + ###(2) no save images + # CameraEvent["yoloResnetTracker"] = yrtOut + + '''================= 4. tracking =================''' + '''(1) 生成用于 tracking 模块的 boxes、feats''' + bboxes = np.empty((0, 6), dtype=np.float64) + trackerboxes = np.empty((0, 9), dtype=np.float64) + trackefeats = {} + for frameDict in yrtOut: + tboxes = frameDict["tboxes"] + ffeats = frameDict["feats"] + + boxes = frameDict["bboxes"] + bboxes = np.concatenate((bboxes, np.array(boxes)), axis=0) + trackerboxes = np.concatenate((trackerboxes, np.array(tboxes)), axis=0) + for i in range(len(tboxes)): + fid, bid = int(tboxes[i, 7]), int(tboxes[i, 8]) + trackefeats.update({f"{fid}_{bid}": ffeats[f"{fid}_{bid}"]}) + + + '''(2) tracking, 后摄''' + if CameraEvent["cameraType"] == "back": + vts = doBackTracks(trackerboxes, trackefeats) + vts.classify() + event_tracks.append(("back", vts)) + + CameraEvent["tracking"] = vts + ShoppingDict["backCamera"] = CameraEvent + + '''====yj callbackdata=======''' + back_cnts = len(vts.Residual) + dict_data['后摄轨迹数'] = back_cnts + print(f"back_cnts: {back_cnts}") + '''==============================''' + + yrtDict["backyrt"] = yrtOut + + '''(2) tracking, 前摄''' + if CameraEvent["cameraType"] == "front": + vts = doFrontTracks(trackerboxes, trackefeats) + vts.classify() + event_tracks.append(("front", vts)) + + CameraEvent["tracking"] = vts + ShoppingDict["frontCamera"] = CameraEvent + + '''====yj callbackdata=======''' + front_cnts = len(vts.Residual) + dict_data['前摄轨迹数'] = front_cnts + print(f"front_cnts: {front_cnts}") + '''==============================''' + + yrtDict["frontyrt"] = yrtOut + + '''========================== 保存模块 =================================''' + + # 保存 ShoppingDict + with open(str(pklpath), 'wb') as f: + pickle.dump(ShoppingDict, f) + + # 绘制并保存轨迹图 + show_result(eventpath, event_tracks, yrtDict, savepath_pipe) + return dict_data + +class WriteExcel: + + def is_excel(self, input_excel): + + # 若文件存在,加载工作簿 + wb = load_workbook(input_excel) + sheet_name = wb.sheetnames[0] ##默认回传分析表只有一个sheet + # 获取活动工作表 + ws = wb.active + sheet = wb[sheet_name] + ##确定新增列的位置 + # new_col_index = sheet.max_column + return wb, ws, sheet + + def init_excel(self, input_excel, output_excel, headers, max_col=13): + if os.path.exists(output_excel): + wb, ws, sheet = self.is_excel(output_excel) + return wb, ws, sheet + elif os.path.exists(input_excel): + wb, ws, sheet = self.is_excel(input_excel) + self.add_header(wb, sheet, max_col, headers, output_excel) + return wb, ws, sheet + else: + raise FileNotFoundError(f"文件 '{input_excel}' 不存在") + + '''在已有excel文件中新增列标题''' + def add_header(self, wb, sheet, column, headers, file_name): + + write_data = {} + sub_data = {} + for i, head in enumerate(headers): + k = column + i + 1 + sub_data[k] = head + write_data[1] = sub_data + self.add_data_to_excel(wb, sheet, write_data, file_name) + + def add_data_to_excel(self, wb, sheet, write_data, file_name): + ''' + 示例写入数据,格式为 {行号: {列号: 值}} + write_data = { + 5: {11: 1, 12: 2, 13: 3} + } + ''' + # 写入指定行列的数据 + for row_num, col_data in write_data.items(): + for col_num, value in col_data.items(): + # print('row_num', row_num, 'col_num', col_num, 'value', value) + sheet.cell(row=row_num, column=col_num, value=str(value)) + wb.save(file_name) + + def get_simiTitle_index(self, ws, title_name='事件名'): + '''获取excel文件中标题名称与追加内容相同部分的列索引 + 例如:默认以"事件名"为基准,追加统一事件名下不同组成信息''' + # 获取列标题 + headers = [cell.value for cell in ws[1]] + # # 找到“事件名”所在的列索引 + event_name_index = headers.index(title_name) if title_name in headers else None + if event_name_index is None: + print("未找到标题为'事件名'的列") + return + else: + return event_name_index + + def get_event_row(self, sheet, event_name_index, event_name): + '''获得当前事件名event_name在excel文件中所在的行索引''' + row_index = 0 + for row, content in enumerate(sheet.iter_rows(min_row=2, values_only=True)): + # print('row', row, content[event_name_index]) + if content[event_name_index] == event_name: + row_index = row + 2 ### 默认只有一行标题,若有两行标题则需改为+3 + # print('row_index', row_index) + break + return row_index + def write_simi_add(self, wb, ws, sheet, max_col, evtname, dict_data, headers, file_name): + ''' + 在已有excel文件中追加内容 + 找出事件名所在行索引和原excel最大列索引,在原excel最大列索引后指定行写入新内容,内容顺序与新增headers顺序一致 + ''' + event_index = self.get_simiTitle_index(ws) + if event_index is not None: + print('evtname', evtname) + row_index = self.get_event_row(sheet, event_index, evtname) + if row_index > 0: + sub_dict = {} + print('headers', headers) + for i, header in enumerate(headers): + col_index = max_col + i + 1 + # print('list(dict_data.keys())', list(dict_data.keys())) + if header in list(dict_data.keys()): + sub_dict[col_index] = dict_data[header] + else: + sub_dict[col_index] = '' + write_data = {row_index: sub_dict} + self.add_data_to_excel(wb, sheet, write_data, file_name) + + print("=========save excel===========") + else: + raise Exception(f"未找到事件名:{evtname}") + else: + raise Exception("未找到标题为'事件名'的列") + + +def execute_pipeline(evtdir = r"D:\datasets\ym\后台数据\unzip", + DataType = "raw", # raw, pkl + save_path = r"D:\work\result_pipeline", + kk=1, + source_type = "video", # video, image, + yolo_ver = "V10", # V10, V5 + weight_yolo_v5 = r'./ckpts/best_cls10_0906.pt' , + weight_yolo_v10 = r'./ckpts/best_v10s_width0375_1205.pt', + saveimages = True, + max_col = 12, + track_txt = '' + ): + ''' + 运行函数 pipeline(),遍历事件文件夹,每个文件夹是一个事件 + ''' + parmDict = {} + parmDict["DataType"] = DataType + parmDict["savepath"] = save_path + parmDict["SourceType"] = source_type + + parmDict["YoloVersion"] = yolo_ver + if parmDict["YoloVersion"] == "V5": + parmDict["weights"] = weight_yolo_v5 + elif parmDict["YoloVersion"] == "V10": + parmDict["weights"] = weight_yolo_v10 + + parmDict["saveimages"] = saveimages + + + evtdir = Path(evtdir) + errEvents = [] + # k = 0 + '''=========change callbackdata==============''' + csv_name = 'data.csv' + xlsx_name = '现场回传数据分析表.xlsx' + output_name = '现场回传数据分析表_all.xlsx' + # headers = ['algroStartToEnd', 'one2one', 'one2SN', 'one2n', '前摄轨迹数', '后摄轨迹数'] + headers = ['algroStartToEnd', 'one2one', 'one2SN', 'one2n'] + + + excelWriter = WriteExcel() ## 实例化excel对象 + + for name in evtdir.iterdir(): ##人名 + for date_file in name.iterdir(): ##2025-01-13 + # try: + xlsx_data = os.path.join(date_file, xlsx_name) + csv_data = os.path.join(date_file, csv_name) + excel_name = os.path.join(date_file, output_name) + wb, ws, sheet = excelWriter.init_excel(xlsx_data, excel_name, headers, max_col) + if csv_data == '': + with open('no_datacsv.txt', 'a') as f: + f.write(str(date_file) + '\n') + + + for item in date_file.iterdir(): + # dict_data = {} + if item.is_dir(): + # item = evtdir/Path("20241212-171505-f0afe929-fdfe-4efa-94d0-2fa748d65fbb_6907992518930") + parmDict["eventpath"] = item + event_name = str(item.name) + dict_data = get_process_csv_data(csv_data, item) + print('dict_data', dict_data) + # dict_data_all = pipeline(dict_data, pickle_exist, **parmDict) + if dict_data is not None: #已保存pickle文件的事件返回为None + # print('dict_data_all', dict_data_all) + excelWriter.write_simi_add(wb, ws, sheet, max_col, event_name, dict_data, headers, excel_name) + + # except Exception as e: + # with open('process_error.txt', 'a') as f: + # f.write(str(date_file) + ':' + str(e) + '\n') + + + +if __name__ == "__main__": + # datapath = '/home/yujia/yj/gpu_code/callback_data_test/' + # datapath = '/home/yujia/yj/gpu_code/callback_data_test_0417/' + # savepath = '/home/yujia/yj/gpu_code/result_0417_v10/' + + datapath = '/shareData/data/temp_data/tengXunCloud_data/code_test_0427/' + # savepath = '/shareData/data/temp_data/tengXunCloud_data/code_test/pipline_result/' ##保存pipline结果路径 + + max_col = 12 ##excel表格列索引从0开始,从这列开始写入代码解析内容 + # track_txt = '轨迹数为空.txt' + track_txt = '' ##第一次跑pipline + + execute_pipeline(evtdir=datapath, + DataType = "raw", # raw, pkl + kk=1, + source_type = "video", # video, image, + save_path = '', + yolo_ver = "V5", # V10, V5 ##20250401之前使用V5 ressnet使用resv10 + weight_yolo_v5 = './ckpts/best_cls10_0906.pt' , + weight_yolo_v10 = './ckpts/best_v10s_width0375_1205.pt', + saveimages = False, + max_col = max_col, + track_txt = track_txt + ) + + + + + + \ No newline at end of file