回传数据解析,兼容v5和v10
This commit is contained in:
210
utils/segment/metrics.py
Normal file
210
utils/segment/metrics.py
Normal file
@ -0,0 +1,210 @@
|
||||
# YOLOv5 🚀 by Ultralytics, AGPL-3.0 license
|
||||
"""
|
||||
Model validation metrics
|
||||
"""
|
||||
|
||||
import numpy as np
|
||||
|
||||
from ..metrics import ap_per_class
|
||||
|
||||
|
||||
def fitness(x):
|
||||
# Model fitness as a weighted combination of metrics
|
||||
w = [0.0, 0.0, 0.1, 0.9, 0.0, 0.0, 0.1, 0.9]
|
||||
return (x[:, :8] * w).sum(1)
|
||||
|
||||
|
||||
def ap_per_class_box_and_mask(
|
||||
tp_m,
|
||||
tp_b,
|
||||
conf,
|
||||
pred_cls,
|
||||
target_cls,
|
||||
plot=False,
|
||||
save_dir='.',
|
||||
names=(),
|
||||
):
|
||||
"""
|
||||
Args:
|
||||
tp_b: tp of boxes.
|
||||
tp_m: tp of masks.
|
||||
other arguments see `func: ap_per_class`.
|
||||
"""
|
||||
results_boxes = ap_per_class(tp_b,
|
||||
conf,
|
||||
pred_cls,
|
||||
target_cls,
|
||||
plot=plot,
|
||||
save_dir=save_dir,
|
||||
names=names,
|
||||
prefix='Box')[2:]
|
||||
results_masks = ap_per_class(tp_m,
|
||||
conf,
|
||||
pred_cls,
|
||||
target_cls,
|
||||
plot=plot,
|
||||
save_dir=save_dir,
|
||||
names=names,
|
||||
prefix='Mask')[2:]
|
||||
|
||||
results = {
|
||||
'boxes': {
|
||||
'p': results_boxes[0],
|
||||
'r': results_boxes[1],
|
||||
'ap': results_boxes[3],
|
||||
'f1': results_boxes[2],
|
||||
'ap_class': results_boxes[4]},
|
||||
'masks': {
|
||||
'p': results_masks[0],
|
||||
'r': results_masks[1],
|
||||
'ap': results_masks[3],
|
||||
'f1': results_masks[2],
|
||||
'ap_class': results_masks[4]}}
|
||||
return results
|
||||
|
||||
|
||||
class Metric:
|
||||
|
||||
def __init__(self) -> None:
|
||||
self.p = [] # (nc, )
|
||||
self.r = [] # (nc, )
|
||||
self.f1 = [] # (nc, )
|
||||
self.all_ap = [] # (nc, 10)
|
||||
self.ap_class_index = [] # (nc, )
|
||||
|
||||
@property
|
||||
def ap50(self):
|
||||
"""AP@0.5 of all classes.
|
||||
Return:
|
||||
(nc, ) or [].
|
||||
"""
|
||||
return self.all_ap[:, 0] if len(self.all_ap) else []
|
||||
|
||||
@property
|
||||
def ap(self):
|
||||
"""AP@0.5:0.95
|
||||
Return:
|
||||
(nc, ) or [].
|
||||
"""
|
||||
return self.all_ap.mean(1) if len(self.all_ap) else []
|
||||
|
||||
@property
|
||||
def mp(self):
|
||||
"""mean precision of all classes.
|
||||
Return:
|
||||
float.
|
||||
"""
|
||||
return self.p.mean() if len(self.p) else 0.0
|
||||
|
||||
@property
|
||||
def mr(self):
|
||||
"""mean recall of all classes.
|
||||
Return:
|
||||
float.
|
||||
"""
|
||||
return self.r.mean() if len(self.r) else 0.0
|
||||
|
||||
@property
|
||||
def map50(self):
|
||||
"""Mean AP@0.5 of all classes.
|
||||
Return:
|
||||
float.
|
||||
"""
|
||||
return self.all_ap[:, 0].mean() if len(self.all_ap) else 0.0
|
||||
|
||||
@property
|
||||
def map(self):
|
||||
"""Mean AP@0.5:0.95 of all classes.
|
||||
Return:
|
||||
float.
|
||||
"""
|
||||
return self.all_ap.mean() if len(self.all_ap) else 0.0
|
||||
|
||||
def mean_results(self):
|
||||
"""Mean of results, return mp, mr, map50, map"""
|
||||
return (self.mp, self.mr, self.map50, self.map)
|
||||
|
||||
def class_result(self, i):
|
||||
"""class-aware result, return p[i], r[i], ap50[i], ap[i]"""
|
||||
return (self.p[i], self.r[i], self.ap50[i], self.ap[i])
|
||||
|
||||
def get_maps(self, nc):
|
||||
maps = np.zeros(nc) + self.map
|
||||
for i, c in enumerate(self.ap_class_index):
|
||||
maps[c] = self.ap[i]
|
||||
return maps
|
||||
|
||||
def update(self, results):
|
||||
"""
|
||||
Args:
|
||||
results: tuple(p, r, ap, f1, ap_class)
|
||||
"""
|
||||
p, r, all_ap, f1, ap_class_index = results
|
||||
self.p = p
|
||||
self.r = r
|
||||
self.all_ap = all_ap
|
||||
self.f1 = f1
|
||||
self.ap_class_index = ap_class_index
|
||||
|
||||
|
||||
class Metrics:
|
||||
"""Metric for boxes and masks."""
|
||||
|
||||
def __init__(self) -> None:
|
||||
self.metric_box = Metric()
|
||||
self.metric_mask = Metric()
|
||||
|
||||
def update(self, results):
|
||||
"""
|
||||
Args:
|
||||
results: Dict{'boxes': Dict{}, 'masks': Dict{}}
|
||||
"""
|
||||
self.metric_box.update(list(results['boxes'].values()))
|
||||
self.metric_mask.update(list(results['masks'].values()))
|
||||
|
||||
def mean_results(self):
|
||||
return self.metric_box.mean_results() + self.metric_mask.mean_results()
|
||||
|
||||
def class_result(self, i):
|
||||
return self.metric_box.class_result(i) + self.metric_mask.class_result(i)
|
||||
|
||||
def get_maps(self, nc):
|
||||
return self.metric_box.get_maps(nc) + self.metric_mask.get_maps(nc)
|
||||
|
||||
@property
|
||||
def ap_class_index(self):
|
||||
# boxes and masks have the same ap_class_index
|
||||
return self.metric_box.ap_class_index
|
||||
|
||||
|
||||
KEYS = [
|
||||
'train/box_loss',
|
||||
'train/seg_loss', # train loss
|
||||
'train/obj_loss',
|
||||
'train/cls_loss',
|
||||
'metrics/precision(B)',
|
||||
'metrics/recall(B)',
|
||||
'metrics/mAP_0.5(B)',
|
||||
'metrics/mAP_0.5:0.95(B)', # metrics
|
||||
'metrics/precision(M)',
|
||||
'metrics/recall(M)',
|
||||
'metrics/mAP_0.5(M)',
|
||||
'metrics/mAP_0.5:0.95(M)', # metrics
|
||||
'val/box_loss',
|
||||
'val/seg_loss', # val loss
|
||||
'val/obj_loss',
|
||||
'val/cls_loss',
|
||||
'x/lr0',
|
||||
'x/lr1',
|
||||
'x/lr2', ]
|
||||
|
||||
BEST_KEYS = [
|
||||
'best/epoch',
|
||||
'best/precision(B)',
|
||||
'best/recall(B)',
|
||||
'best/mAP_0.5(B)',
|
||||
'best/mAP_0.5:0.95(B)',
|
||||
'best/precision(M)',
|
||||
'best/recall(M)',
|
||||
'best/mAP_0.5(M)',
|
||||
'best/mAP_0.5:0.95(M)', ]
|
Reference in New Issue
Block a user