回传数据解析,兼容v5和v10
This commit is contained in:
88
ultralytics/utils/patches.py
Normal file
88
ultralytics/utils/patches.py
Normal file
@ -0,0 +1,88 @@
|
||||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||
"""Monkey patches to update/extend functionality of existing functions."""
|
||||
|
||||
import time
|
||||
from pathlib import Path
|
||||
|
||||
import cv2
|
||||
import numpy as np
|
||||
import torch
|
||||
|
||||
# OpenCV Multilanguage-friendly functions ------------------------------------------------------------------------------
|
||||
_imshow = cv2.imshow # copy to avoid recursion errors
|
||||
|
||||
|
||||
def imread(filename: str, flags: int = cv2.IMREAD_COLOR):
|
||||
"""
|
||||
Read an image from a file.
|
||||
|
||||
Args:
|
||||
filename (str): Path to the file to read.
|
||||
flags (int, optional): Flag that can take values of cv2.IMREAD_*. Defaults to cv2.IMREAD_COLOR.
|
||||
|
||||
Returns:
|
||||
(np.ndarray): The read image.
|
||||
"""
|
||||
return cv2.imdecode(np.fromfile(filename, np.uint8), flags)
|
||||
|
||||
|
||||
def imwrite(filename: str, img: np.ndarray, params=None):
|
||||
"""
|
||||
Write an image to a file.
|
||||
|
||||
Args:
|
||||
filename (str): Path to the file to write.
|
||||
img (np.ndarray): Image to write.
|
||||
params (list of ints, optional): Additional parameters. See OpenCV documentation.
|
||||
|
||||
Returns:
|
||||
(bool): True if the file was written, False otherwise.
|
||||
"""
|
||||
try:
|
||||
cv2.imencode(Path(filename).suffix, img, params)[1].tofile(filename)
|
||||
return True
|
||||
except Exception:
|
||||
return False
|
||||
|
||||
|
||||
def imshow(winname: str, mat: np.ndarray):
|
||||
"""
|
||||
Displays an image in the specified window.
|
||||
|
||||
Args:
|
||||
winname (str): Name of the window.
|
||||
mat (np.ndarray): Image to be shown.
|
||||
"""
|
||||
_imshow(winname.encode("unicode_escape").decode(), mat)
|
||||
|
||||
|
||||
# PyTorch functions ----------------------------------------------------------------------------------------------------
|
||||
_torch_save = torch.save # copy to avoid recursion errors
|
||||
|
||||
|
||||
def torch_save(*args, use_dill=True, **kwargs):
|
||||
"""
|
||||
Optionally use dill to serialize lambda functions where pickle does not, adding robustness with 3 retries and
|
||||
exponential standoff in case of save failure.
|
||||
|
||||
Args:
|
||||
*args (tuple): Positional arguments to pass to torch.save.
|
||||
use_dill (bool): Whether to try using dill for serialization if available. Defaults to True.
|
||||
**kwargs (any): Keyword arguments to pass to torch.save.
|
||||
"""
|
||||
try:
|
||||
assert use_dill
|
||||
import dill as pickle
|
||||
except (AssertionError, ImportError):
|
||||
import pickle
|
||||
|
||||
if "pickle_module" not in kwargs:
|
||||
kwargs["pickle_module"] = pickle
|
||||
|
||||
for i in range(4): # 3 retries
|
||||
try:
|
||||
return _torch_save(*args, **kwargs)
|
||||
except RuntimeError as e: # unable to save, possibly waiting for device to flush or antivirus scan
|
||||
if i == 3:
|
||||
raise e
|
||||
time.sleep((2**i) / 2) # exponential standoff: 0.5s, 1.0s, 2.0s
|
Reference in New Issue
Block a user