回传数据解析,兼容v5和v10
This commit is contained in:
404
ultralytics/utils/benchmarks.py
Normal file
404
ultralytics/utils/benchmarks.py
Normal file
@ -0,0 +1,404 @@
|
||||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||
"""
|
||||
Benchmark a YOLO model formats for speed and accuracy.
|
||||
|
||||
Usage:
|
||||
from ultralytics.utils.benchmarks import ProfileModels, benchmark
|
||||
ProfileModels(['yolov8n.yaml', 'yolov8s.yaml']).profile()
|
||||
benchmark(model='yolov8n.pt', imgsz=160)
|
||||
|
||||
Format | `format=argument` | Model
|
||||
--- | --- | ---
|
||||
PyTorch | - | yolov8n.pt
|
||||
TorchScript | `torchscript` | yolov8n.torchscript
|
||||
ONNX | `onnx` | yolov8n.onnx
|
||||
OpenVINO | `openvino` | yolov8n_openvino_model/
|
||||
TensorRT | `engine` | yolov8n.engine
|
||||
CoreML | `coreml` | yolov8n.mlpackage
|
||||
TensorFlow SavedModel | `saved_model` | yolov8n_saved_model/
|
||||
TensorFlow GraphDef | `pb` | yolov8n.pb
|
||||
TensorFlow Lite | `tflite` | yolov8n.tflite
|
||||
TensorFlow Edge TPU | `edgetpu` | yolov8n_edgetpu.tflite
|
||||
TensorFlow.js | `tfjs` | yolov8n_web_model/
|
||||
PaddlePaddle | `paddle` | yolov8n_paddle_model/
|
||||
NCNN | `ncnn` | yolov8n_ncnn_model/
|
||||
"""
|
||||
|
||||
import glob
|
||||
import platform
|
||||
import time
|
||||
from pathlib import Path
|
||||
|
||||
import numpy as np
|
||||
import torch.cuda
|
||||
|
||||
from ultralytics import YOLO, YOLOWorld
|
||||
from ultralytics.cfg import TASK2DATA, TASK2METRIC
|
||||
from ultralytics.engine.exporter import export_formats
|
||||
from ultralytics.utils import ASSETS, LINUX, LOGGER, MACOS, TQDM, WEIGHTS_DIR
|
||||
from ultralytics.utils.checks import IS_PYTHON_3_12, check_requirements, check_yolo
|
||||
from ultralytics.utils.files import file_size
|
||||
from ultralytics.utils.torch_utils import select_device
|
||||
|
||||
|
||||
def benchmark(
|
||||
model=WEIGHTS_DIR / "yolov8n.pt", data=None, imgsz=160, half=False, int8=False, device="cpu", verbose=False
|
||||
):
|
||||
"""
|
||||
Benchmark a YOLO model across different formats for speed and accuracy.
|
||||
|
||||
Args:
|
||||
model (str | Path | optional): Path to the model file or directory. Default is
|
||||
Path(SETTINGS['weights_dir']) / 'yolov8n.pt'.
|
||||
data (str, optional): Dataset to evaluate on, inherited from TASK2DATA if not passed. Default is None.
|
||||
imgsz (int, optional): Image size for the benchmark. Default is 160.
|
||||
half (bool, optional): Use half-precision for the model if True. Default is False.
|
||||
int8 (bool, optional): Use int8-precision for the model if True. Default is False.
|
||||
device (str, optional): Device to run the benchmark on, either 'cpu' or 'cuda'. Default is 'cpu'.
|
||||
verbose (bool | float | optional): If True or a float, assert benchmarks pass with given metric.
|
||||
Default is False.
|
||||
|
||||
Returns:
|
||||
df (pandas.DataFrame): A pandas DataFrame with benchmark results for each format, including file size,
|
||||
metric, and inference time.
|
||||
|
||||
Example:
|
||||
```python
|
||||
from ultralytics.utils.benchmarks import benchmark
|
||||
|
||||
benchmark(model='yolov8n.pt', imgsz=640)
|
||||
```
|
||||
"""
|
||||
|
||||
import pandas as pd
|
||||
|
||||
pd.options.display.max_columns = 10
|
||||
pd.options.display.width = 120
|
||||
device = select_device(device, verbose=False)
|
||||
if isinstance(model, (str, Path)):
|
||||
model = YOLO(model)
|
||||
|
||||
y = []
|
||||
t0 = time.time()
|
||||
for i, (name, format, suffix, cpu, gpu) in export_formats().iterrows(): # index, (name, format, suffix, CPU, GPU)
|
||||
emoji, filename = "❌", None # export defaults
|
||||
try:
|
||||
# Checks
|
||||
if i == 9: # Edge TPU
|
||||
assert LINUX, "Edge TPU export only supported on Linux"
|
||||
elif i == 7: # TF GraphDef
|
||||
assert model.task != "obb", "TensorFlow GraphDef not supported for OBB task"
|
||||
elif i in {5, 10}: # CoreML and TF.js
|
||||
assert MACOS or LINUX, "export only supported on macOS and Linux"
|
||||
if i in {3, 5}: # CoreML and OpenVINO
|
||||
assert not IS_PYTHON_3_12, "CoreML and OpenVINO not supported on Python 3.12"
|
||||
if i in {6, 7, 8, 9, 10}: # All TF formats
|
||||
assert not isinstance(model, YOLOWorld), "YOLOWorldv2 TensorFlow exports not supported by onnx2tf yet"
|
||||
if i in {11}: # Paddle
|
||||
assert not isinstance(model, YOLOWorld), "YOLOWorldv2 Paddle exports not supported yet"
|
||||
if i in {12}: # NCNN
|
||||
assert not isinstance(model, YOLOWorld), "YOLOWorldv2 NCNN exports not supported yet"
|
||||
if "cpu" in device.type:
|
||||
assert cpu, "inference not supported on CPU"
|
||||
if "cuda" in device.type:
|
||||
assert gpu, "inference not supported on GPU"
|
||||
|
||||
# Export
|
||||
if format == "-":
|
||||
filename = model.ckpt_path or model.cfg
|
||||
exported_model = model # PyTorch format
|
||||
else:
|
||||
filename = model.export(imgsz=imgsz, format=format, half=half, int8=int8, device=device, verbose=False)
|
||||
exported_model = YOLO(filename, task=model.task)
|
||||
assert suffix in str(filename), "export failed"
|
||||
emoji = "❎" # indicates export succeeded
|
||||
|
||||
# Predict
|
||||
assert model.task != "pose" or i != 7, "GraphDef Pose inference is not supported"
|
||||
assert i not in (9, 10), "inference not supported" # Edge TPU and TF.js are unsupported
|
||||
assert i != 5 or platform.system() == "Darwin", "inference only supported on macOS>=10.13" # CoreML
|
||||
exported_model.predict(ASSETS / "bus.jpg", imgsz=imgsz, device=device, half=half)
|
||||
|
||||
# Validate
|
||||
data = data or TASK2DATA[model.task] # task to dataset, i.e. coco8.yaml for task=detect
|
||||
key = TASK2METRIC[model.task] # task to metric, i.e. metrics/mAP50-95(B) for task=detect
|
||||
results = exported_model.val(
|
||||
data=data, batch=1, imgsz=imgsz, plots=False, device=device, half=half, int8=int8, verbose=False
|
||||
)
|
||||
metric, speed = results.results_dict[key], results.speed["inference"]
|
||||
y.append([name, "✅", round(file_size(filename), 1), round(metric, 4), round(speed, 2)])
|
||||
except Exception as e:
|
||||
if verbose:
|
||||
assert type(e) is AssertionError, f"Benchmark failure for {name}: {e}"
|
||||
LOGGER.warning(f"ERROR ❌️ Benchmark failure for {name}: {e}")
|
||||
y.append([name, emoji, round(file_size(filename), 1), None, None]) # mAP, t_inference
|
||||
|
||||
# Print results
|
||||
check_yolo(device=device) # print system info
|
||||
df = pd.DataFrame(y, columns=["Format", "Status❔", "Size (MB)", key, "Inference time (ms/im)"])
|
||||
|
||||
name = Path(model.ckpt_path).name
|
||||
s = f"\nBenchmarks complete for {name} on {data} at imgsz={imgsz} ({time.time() - t0:.2f}s)\n{df}\n"
|
||||
LOGGER.info(s)
|
||||
with open("benchmarks.log", "a", errors="ignore", encoding="utf-8") as f:
|
||||
f.write(s)
|
||||
|
||||
if verbose and isinstance(verbose, float):
|
||||
metrics = df[key].array # values to compare to floor
|
||||
floor = verbose # minimum metric floor to pass, i.e. = 0.29 mAP for YOLOv5n
|
||||
assert all(x > floor for x in metrics if pd.notna(x)), f"Benchmark failure: metric(s) < floor {floor}"
|
||||
|
||||
return df
|
||||
|
||||
|
||||
class ProfileModels:
|
||||
"""
|
||||
ProfileModels class for profiling different models on ONNX and TensorRT.
|
||||
|
||||
This class profiles the performance of different models, returning results such as model speed and FLOPs.
|
||||
|
||||
Attributes:
|
||||
paths (list): Paths of the models to profile.
|
||||
num_timed_runs (int): Number of timed runs for the profiling. Default is 100.
|
||||
num_warmup_runs (int): Number of warmup runs before profiling. Default is 10.
|
||||
min_time (float): Minimum number of seconds to profile for. Default is 60.
|
||||
imgsz (int): Image size used in the models. Default is 640.
|
||||
|
||||
Methods:
|
||||
profile(): Profiles the models and prints the result.
|
||||
|
||||
Example:
|
||||
```python
|
||||
from ultralytics.utils.benchmarks import ProfileModels
|
||||
|
||||
ProfileModels(['yolov8n.yaml', 'yolov8s.yaml'], imgsz=640).profile()
|
||||
```
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
paths: list,
|
||||
num_timed_runs=100,
|
||||
num_warmup_runs=10,
|
||||
min_time=60,
|
||||
imgsz=640,
|
||||
half=True,
|
||||
trt=True,
|
||||
device=None,
|
||||
):
|
||||
"""
|
||||
Initialize the ProfileModels class for profiling models.
|
||||
|
||||
Args:
|
||||
paths (list): List of paths of the models to be profiled.
|
||||
num_timed_runs (int, optional): Number of timed runs for the profiling. Default is 100.
|
||||
num_warmup_runs (int, optional): Number of warmup runs before the actual profiling starts. Default is 10.
|
||||
min_time (float, optional): Minimum time in seconds for profiling a model. Default is 60.
|
||||
imgsz (int, optional): Size of the image used during profiling. Default is 640.
|
||||
half (bool, optional): Flag to indicate whether to use half-precision floating point for profiling.
|
||||
trt (bool, optional): Flag to indicate whether to profile using TensorRT. Default is True.
|
||||
device (torch.device, optional): Device used for profiling. If None, it is determined automatically.
|
||||
"""
|
||||
self.paths = paths
|
||||
self.num_timed_runs = num_timed_runs
|
||||
self.num_warmup_runs = num_warmup_runs
|
||||
self.min_time = min_time
|
||||
self.imgsz = imgsz
|
||||
self.half = half
|
||||
self.trt = trt # run TensorRT profiling
|
||||
self.device = device or torch.device(0 if torch.cuda.is_available() else "cpu")
|
||||
|
||||
def profile(self):
|
||||
"""Logs the benchmarking results of a model, checks metrics against floor and returns the results."""
|
||||
files = self.get_files()
|
||||
|
||||
if not files:
|
||||
print("No matching *.pt or *.onnx files found.")
|
||||
return
|
||||
|
||||
table_rows = []
|
||||
output = []
|
||||
for file in files:
|
||||
engine_file = file.with_suffix(".engine")
|
||||
if file.suffix in (".pt", ".yaml", ".yml"):
|
||||
model = YOLO(str(file))
|
||||
model.fuse() # to report correct params and GFLOPs in model.info()
|
||||
model_info = model.info()
|
||||
if self.trt and self.device.type != "cpu" and not engine_file.is_file():
|
||||
engine_file = model.export(
|
||||
format="engine", half=self.half, imgsz=self.imgsz, device=self.device, verbose=False
|
||||
)
|
||||
onnx_file = model.export(
|
||||
format="onnx", half=self.half, imgsz=self.imgsz, simplify=True, device=self.device, verbose=False
|
||||
)
|
||||
elif file.suffix == ".onnx":
|
||||
model_info = self.get_onnx_model_info(file)
|
||||
onnx_file = file
|
||||
else:
|
||||
continue
|
||||
|
||||
t_engine = self.profile_tensorrt_model(str(engine_file))
|
||||
t_onnx = self.profile_onnx_model(str(onnx_file))
|
||||
table_rows.append(self.generate_table_row(file.stem, t_onnx, t_engine, model_info))
|
||||
output.append(self.generate_results_dict(file.stem, t_onnx, t_engine, model_info))
|
||||
|
||||
self.print_table(table_rows)
|
||||
return output
|
||||
|
||||
def get_files(self):
|
||||
"""Returns a list of paths for all relevant model files given by the user."""
|
||||
files = []
|
||||
for path in self.paths:
|
||||
path = Path(path)
|
||||
if path.is_dir():
|
||||
extensions = ["*.pt", "*.onnx", "*.yaml"]
|
||||
files.extend([file for ext in extensions for file in glob.glob(str(path / ext))])
|
||||
elif path.suffix in {".pt", ".yaml", ".yml"}: # add non-existing
|
||||
files.append(str(path))
|
||||
else:
|
||||
files.extend(glob.glob(str(path)))
|
||||
|
||||
print(f"Profiling: {sorted(files)}")
|
||||
return [Path(file) for file in sorted(files)]
|
||||
|
||||
def get_onnx_model_info(self, onnx_file: str):
|
||||
"""Retrieves the information including number of layers, parameters, gradients and FLOPs for an ONNX model
|
||||
file.
|
||||
"""
|
||||
return 0.0, 0.0, 0.0, 0.0 # return (num_layers, num_params, num_gradients, num_flops)
|
||||
|
||||
@staticmethod
|
||||
def iterative_sigma_clipping(data, sigma=2, max_iters=3):
|
||||
"""Applies an iterative sigma clipping algorithm to the given data times number of iterations."""
|
||||
data = np.array(data)
|
||||
for _ in range(max_iters):
|
||||
mean, std = np.mean(data), np.std(data)
|
||||
clipped_data = data[(data > mean - sigma * std) & (data < mean + sigma * std)]
|
||||
if len(clipped_data) == len(data):
|
||||
break
|
||||
data = clipped_data
|
||||
return data
|
||||
|
||||
def profile_tensorrt_model(self, engine_file: str, eps: float = 1e-3):
|
||||
"""Profiles the TensorRT model, measuring average run time and standard deviation among runs."""
|
||||
if not self.trt or not Path(engine_file).is_file():
|
||||
return 0.0, 0.0
|
||||
|
||||
# Model and input
|
||||
model = YOLO(engine_file)
|
||||
input_data = np.random.rand(self.imgsz, self.imgsz, 3).astype(np.float32) # must be FP32
|
||||
|
||||
# Warmup runs
|
||||
elapsed = 0.0
|
||||
for _ in range(3):
|
||||
start_time = time.time()
|
||||
for _ in range(self.num_warmup_runs):
|
||||
model(input_data, imgsz=self.imgsz, verbose=False)
|
||||
elapsed = time.time() - start_time
|
||||
|
||||
# Compute number of runs as higher of min_time or num_timed_runs
|
||||
num_runs = max(round(self.min_time / (elapsed + eps) * self.num_warmup_runs), self.num_timed_runs * 50)
|
||||
|
||||
# Timed runs
|
||||
run_times = []
|
||||
for _ in TQDM(range(num_runs), desc=engine_file):
|
||||
results = model(input_data, imgsz=self.imgsz, verbose=False)
|
||||
run_times.append(results[0].speed["inference"]) # Convert to milliseconds
|
||||
|
||||
run_times = self.iterative_sigma_clipping(np.array(run_times), sigma=2, max_iters=3) # sigma clipping
|
||||
return np.mean(run_times), np.std(run_times)
|
||||
|
||||
def profile_onnx_model(self, onnx_file: str, eps: float = 1e-3):
|
||||
"""Profiles an ONNX model by executing it multiple times and returns the mean and standard deviation of run
|
||||
times.
|
||||
"""
|
||||
check_requirements("onnxruntime")
|
||||
import onnxruntime as ort
|
||||
|
||||
# Session with either 'TensorrtExecutionProvider', 'CUDAExecutionProvider', 'CPUExecutionProvider'
|
||||
sess_options = ort.SessionOptions()
|
||||
sess_options.graph_optimization_level = ort.GraphOptimizationLevel.ORT_ENABLE_ALL
|
||||
sess_options.intra_op_num_threads = 8 # Limit the number of threads
|
||||
sess = ort.InferenceSession(onnx_file, sess_options, providers=["CPUExecutionProvider"])
|
||||
|
||||
input_tensor = sess.get_inputs()[0]
|
||||
input_type = input_tensor.type
|
||||
dynamic = not all(isinstance(dim, int) and dim >= 0 for dim in input_tensor.shape) # dynamic input shape
|
||||
input_shape = (1, 3, self.imgsz, self.imgsz) if dynamic else input_tensor.shape
|
||||
|
||||
# Mapping ONNX datatype to numpy datatype
|
||||
if "float16" in input_type:
|
||||
input_dtype = np.float16
|
||||
elif "float" in input_type:
|
||||
input_dtype = np.float32
|
||||
elif "double" in input_type:
|
||||
input_dtype = np.float64
|
||||
elif "int64" in input_type:
|
||||
input_dtype = np.int64
|
||||
elif "int32" in input_type:
|
||||
input_dtype = np.int32
|
||||
else:
|
||||
raise ValueError(f"Unsupported ONNX datatype {input_type}")
|
||||
|
||||
input_data = np.random.rand(*input_shape).astype(input_dtype)
|
||||
input_name = input_tensor.name
|
||||
output_name = sess.get_outputs()[0].name
|
||||
|
||||
# Warmup runs
|
||||
elapsed = 0.0
|
||||
for _ in range(3):
|
||||
start_time = time.time()
|
||||
for _ in range(self.num_warmup_runs):
|
||||
sess.run([output_name], {input_name: input_data})
|
||||
elapsed = time.time() - start_time
|
||||
|
||||
# Compute number of runs as higher of min_time or num_timed_runs
|
||||
num_runs = max(round(self.min_time / (elapsed + eps) * self.num_warmup_runs), self.num_timed_runs)
|
||||
|
||||
# Timed runs
|
||||
run_times = []
|
||||
for _ in TQDM(range(num_runs), desc=onnx_file):
|
||||
start_time = time.time()
|
||||
sess.run([output_name], {input_name: input_data})
|
||||
run_times.append((time.time() - start_time) * 1000) # Convert to milliseconds
|
||||
|
||||
run_times = self.iterative_sigma_clipping(np.array(run_times), sigma=2, max_iters=5) # sigma clipping
|
||||
return np.mean(run_times), np.std(run_times)
|
||||
|
||||
def generate_table_row(self, model_name, t_onnx, t_engine, model_info):
|
||||
"""Generates a formatted string for a table row that includes model performance and metric details."""
|
||||
layers, params, gradients, flops = model_info
|
||||
return (
|
||||
f"| {model_name:18s} | {self.imgsz} | - | {t_onnx[0]:.2f} ± {t_onnx[1]:.2f} ms | {t_engine[0]:.2f} ± "
|
||||
f"{t_engine[1]:.2f} ms | {params / 1e6:.1f} | {flops:.1f} |"
|
||||
)
|
||||
|
||||
@staticmethod
|
||||
def generate_results_dict(model_name, t_onnx, t_engine, model_info):
|
||||
"""Generates a dictionary of model details including name, parameters, GFLOPS and speed metrics."""
|
||||
layers, params, gradients, flops = model_info
|
||||
return {
|
||||
"model/name": model_name,
|
||||
"model/parameters": params,
|
||||
"model/GFLOPs": round(flops, 3),
|
||||
"model/speed_ONNX(ms)": round(t_onnx[0], 3),
|
||||
"model/speed_TensorRT(ms)": round(t_engine[0], 3),
|
||||
}
|
||||
|
||||
@staticmethod
|
||||
def print_table(table_rows):
|
||||
"""Formats and prints a comparison table for different models with given statistics and performance data."""
|
||||
gpu = torch.cuda.get_device_name(0) if torch.cuda.is_available() else "GPU"
|
||||
header = (
|
||||
f"| Model | size<br><sup>(pixels) | mAP<sup>val<br>50-95 | Speed<br><sup>CPU ONNX<br>(ms) | "
|
||||
f"Speed<br><sup>{gpu} TensorRT<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |"
|
||||
)
|
||||
separator = (
|
||||
"|-------------|---------------------|--------------------|------------------------------|"
|
||||
"-----------------------------------|------------------|-----------------|"
|
||||
)
|
||||
|
||||
print(f"\n\n{header}")
|
||||
print(separator)
|
||||
for row in table_rows:
|
||||
print(row)
|
Reference in New Issue
Block a user