回传数据解析,兼容v5和v10

This commit is contained in:
jiajie555
2025-04-18 14:41:53 +08:00
commit 010f5c445a
888 changed files with 93632 additions and 0 deletions

View File

@ -0,0 +1 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license

View File

@ -0,0 +1,363 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
import copy
import cv2
import numpy as np
from ultralytics.utils import LOGGER
class GMC:
"""
Generalized Motion Compensation (GMC) class for tracking and object detection in video frames.
This class provides methods for tracking and detecting objects based on several tracking algorithms including ORB,
SIFT, ECC, and Sparse Optical Flow. It also supports downscaling of frames for computational efficiency.
Attributes:
method (str): The method used for tracking. Options include 'orb', 'sift', 'ecc', 'sparseOptFlow', 'none'.
downscale (int): Factor by which to downscale the frames for processing.
prevFrame (np.ndarray): Stores the previous frame for tracking.
prevKeyPoints (list): Stores the keypoints from the previous frame.
prevDescriptors (np.ndarray): Stores the descriptors from the previous frame.
initializedFirstFrame (bool): Flag to indicate if the first frame has been processed.
Methods:
__init__(self, method='sparseOptFlow', downscale=2): Initializes a GMC object with the specified method
and downscale factor.
apply(self, raw_frame, detections=None): Applies the chosen method to a raw frame and optionally uses
provided detections.
applyEcc(self, raw_frame, detections=None): Applies the ECC algorithm to a raw frame.
applyFeatures(self, raw_frame, detections=None): Applies feature-based methods like ORB or SIFT to a raw frame.
applySparseOptFlow(self, raw_frame, detections=None): Applies the Sparse Optical Flow method to a raw frame.
"""
def __init__(self, method: str = "sparseOptFlow", downscale: int = 2) -> None:
"""
Initialize a video tracker with specified parameters.
Args:
method (str): The method used for tracking. Options include 'orb', 'sift', 'ecc', 'sparseOptFlow', 'none'.
downscale (int): Downscale factor for processing frames.
"""
super().__init__()
self.method = method
self.downscale = max(1, int(downscale))
if self.method == "orb":
self.detector = cv2.FastFeatureDetector_create(20)
self.extractor = cv2.ORB_create()
self.matcher = cv2.BFMatcher(cv2.NORM_HAMMING)
elif self.method == "sift":
self.detector = cv2.SIFT_create(nOctaveLayers=3, contrastThreshold=0.02, edgeThreshold=20)
self.extractor = cv2.SIFT_create(nOctaveLayers=3, contrastThreshold=0.02, edgeThreshold=20)
self.matcher = cv2.BFMatcher(cv2.NORM_L2)
elif self.method == "ecc":
number_of_iterations = 5000
termination_eps = 1e-6
self.warp_mode = cv2.MOTION_EUCLIDEAN
self.criteria = (cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, number_of_iterations, termination_eps)
elif self.method == "sparseOptFlow":
self.feature_params = dict(
maxCorners=1000, qualityLevel=0.01, minDistance=1, blockSize=3, useHarrisDetector=False, k=0.04
)
elif self.method in {"none", "None", None}:
self.method = None
else:
raise ValueError(f"Error: Unknown GMC method:{method}")
self.prevFrame = None
self.prevKeyPoints = None
self.prevDescriptors = None
self.initializedFirstFrame = False
def apply(self, raw_frame: np.array, detections: list = None) -> np.array:
"""
Apply object detection on a raw frame using specified method.
Args:
raw_frame (np.ndarray): The raw frame to be processed.
detections (list): List of detections to be used in the processing.
Returns:
(np.ndarray): Processed frame.
Examples:
>>> gmc = GMC()
>>> gmc.apply(np.array([[1, 2, 3], [4, 5, 6]]))
array([[1, 2, 3],
[4, 5, 6]])
"""
if self.method in ["orb", "sift"]:
return self.applyFeatures(raw_frame, detections)
elif self.method == "ecc":
return self.applyEcc(raw_frame)
elif self.method == "sparseOptFlow":
return self.applySparseOptFlow(raw_frame)
else:
return np.eye(2, 3)
def applyEcc(self, raw_frame: np.array) -> np.array:
"""
Apply ECC algorithm to a raw frame.
Args:
raw_frame (np.ndarray): The raw frame to be processed.
Returns:
(np.ndarray): Processed frame.
Examples:
>>> gmc = GMC()
>>> gmc.applyEcc(np.array([[1, 2, 3], [4, 5, 6]]))
array([[1, 2, 3],
[4, 5, 6]])
"""
height, width, _ = raw_frame.shape
frame = cv2.cvtColor(raw_frame, cv2.COLOR_BGR2GRAY)
H = np.eye(2, 3, dtype=np.float32)
# Downscale image
if self.downscale > 1.0:
frame = cv2.GaussianBlur(frame, (3, 3), 1.5)
frame = cv2.resize(frame, (width // self.downscale, height // self.downscale))
width = width // self.downscale
height = height // self.downscale
# Handle first frame
if not self.initializedFirstFrame:
# Initialize data
self.prevFrame = frame.copy()
# Initialization done
self.initializedFirstFrame = True
return H
# Run the ECC algorithm. The results are stored in warp_matrix.
# (cc, H) = cv2.findTransformECC(self.prevFrame, frame, H, self.warp_mode, self.criteria)
try:
(_, H) = cv2.findTransformECC(self.prevFrame, frame, H, self.warp_mode, self.criteria, None, 1)
except Exception as e:
LOGGER.warning(f"WARNING: find transform failed. Set warp as identity {e}")
return H
def applyFeatures(self, raw_frame: np.array, detections: list = None) -> np.array:
"""
Apply feature-based methods like ORB or SIFT to a raw frame.
Args:
raw_frame (np.ndarray): The raw frame to be processed.
detections (list): List of detections to be used in the processing.
Returns:
(np.ndarray): Processed frame.
Examples:
>>> gmc = GMC()
>>> gmc.applyFeatures(np.array([[1, 2, 3], [4, 5, 6]]))
array([[1, 2, 3],
[4, 5, 6]])
"""
height, width, _ = raw_frame.shape
frame = cv2.cvtColor(raw_frame, cv2.COLOR_BGR2GRAY)
H = np.eye(2, 3)
# Downscale image
if self.downscale > 1.0:
frame = cv2.resize(frame, (width // self.downscale, height // self.downscale))
width = width // self.downscale
height = height // self.downscale
# Find the keypoints
mask = np.zeros_like(frame)
mask[int(0.02 * height) : int(0.98 * height), int(0.02 * width) : int(0.98 * width)] = 255
if detections is not None:
for det in detections:
tlbr = (det[:4] / self.downscale).astype(np.int_)
mask[tlbr[1] : tlbr[3], tlbr[0] : tlbr[2]] = 0
keypoints = self.detector.detect(frame, mask)
# Compute the descriptors
keypoints, descriptors = self.extractor.compute(frame, keypoints)
# Handle first frame
if not self.initializedFirstFrame:
# Initialize data
self.prevFrame = frame.copy()
self.prevKeyPoints = copy.copy(keypoints)
self.prevDescriptors = copy.copy(descriptors)
# Initialization done
self.initializedFirstFrame = True
return H
# Match descriptors
knnMatches = self.matcher.knnMatch(self.prevDescriptors, descriptors, 2)
# Filter matches based on smallest spatial distance
matches = []
spatialDistances = []
maxSpatialDistance = 0.25 * np.array([width, height])
# Handle empty matches case
if len(knnMatches) == 0:
# Store to next iteration
self.prevFrame = frame.copy()
self.prevKeyPoints = copy.copy(keypoints)
self.prevDescriptors = copy.copy(descriptors)
return H
for m, n in knnMatches:
if m.distance < 0.9 * n.distance:
prevKeyPointLocation = self.prevKeyPoints[m.queryIdx].pt
currKeyPointLocation = keypoints[m.trainIdx].pt
spatialDistance = (
prevKeyPointLocation[0] - currKeyPointLocation[0],
prevKeyPointLocation[1] - currKeyPointLocation[1],
)
if (np.abs(spatialDistance[0]) < maxSpatialDistance[0]) and (
np.abs(spatialDistance[1]) < maxSpatialDistance[1]
):
spatialDistances.append(spatialDistance)
matches.append(m)
meanSpatialDistances = np.mean(spatialDistances, 0)
stdSpatialDistances = np.std(spatialDistances, 0)
inliers = (spatialDistances - meanSpatialDistances) < 2.5 * stdSpatialDistances
goodMatches = []
prevPoints = []
currPoints = []
for i in range(len(matches)):
if inliers[i, 0] and inliers[i, 1]:
goodMatches.append(matches[i])
prevPoints.append(self.prevKeyPoints[matches[i].queryIdx].pt)
currPoints.append(keypoints[matches[i].trainIdx].pt)
prevPoints = np.array(prevPoints)
currPoints = np.array(currPoints)
# Draw the keypoint matches on the output image
# if False:
# import matplotlib.pyplot as plt
# matches_img = np.hstack((self.prevFrame, frame))
# matches_img = cv2.cvtColor(matches_img, cv2.COLOR_GRAY2BGR)
# W = self.prevFrame.shape[1]
# for m in goodMatches:
# prev_pt = np.array(self.prevKeyPoints[m.queryIdx].pt, dtype=np.int_)
# curr_pt = np.array(keypoints[m.trainIdx].pt, dtype=np.int_)
# curr_pt[0] += W
# color = np.random.randint(0, 255, 3)
# color = (int(color[0]), int(color[1]), int(color[2]))
#
# matches_img = cv2.line(matches_img, prev_pt, curr_pt, tuple(color), 1, cv2.LINE_AA)
# matches_img = cv2.circle(matches_img, prev_pt, 2, tuple(color), -1)
# matches_img = cv2.circle(matches_img, curr_pt, 2, tuple(color), -1)
#
# plt.figure()
# plt.imshow(matches_img)
# plt.show()
# Find rigid matrix
if prevPoints.shape[0] > 4:
H, inliers = cv2.estimateAffinePartial2D(prevPoints, currPoints, cv2.RANSAC)
# Handle downscale
if self.downscale > 1.0:
H[0, 2] *= self.downscale
H[1, 2] *= self.downscale
else:
LOGGER.warning("WARNING: not enough matching points")
# Store to next iteration
self.prevFrame = frame.copy()
self.prevKeyPoints = copy.copy(keypoints)
self.prevDescriptors = copy.copy(descriptors)
return H
def applySparseOptFlow(self, raw_frame: np.array) -> np.array:
"""
Apply Sparse Optical Flow method to a raw frame.
Args:
raw_frame (np.ndarray): The raw frame to be processed.
Returns:
(np.ndarray): Processed frame.
Examples:
>>> gmc = GMC()
>>> gmc.applySparseOptFlow(np.array([[1, 2, 3], [4, 5, 6]]))
array([[1, 2, 3],
[4, 5, 6]])
"""
height, width, _ = raw_frame.shape
frame = cv2.cvtColor(raw_frame, cv2.COLOR_BGR2GRAY)
H = np.eye(2, 3)
# Downscale image
if self.downscale > 1.0:
frame = cv2.resize(frame, (width // self.downscale, height // self.downscale))
# Find the keypoints
keypoints = cv2.goodFeaturesToTrack(frame, mask=None, **self.feature_params)
# Handle first frame
if not self.initializedFirstFrame:
self.prevFrame = frame.copy()
self.prevKeyPoints = copy.copy(keypoints)
self.initializedFirstFrame = True
return H
# Find correspondences
matchedKeypoints, status, _ = cv2.calcOpticalFlowPyrLK(self.prevFrame, frame, self.prevKeyPoints, None)
# Leave good correspondences only
prevPoints = []
currPoints = []
for i in range(len(status)):
if status[i]:
prevPoints.append(self.prevKeyPoints[i])
currPoints.append(matchedKeypoints[i])
prevPoints = np.array(prevPoints)
currPoints = np.array(currPoints)
# Find rigid matrix
if (prevPoints.shape[0] > 4) and (prevPoints.shape[0] == prevPoints.shape[0]):
H, _ = cv2.estimateAffinePartial2D(prevPoints, currPoints, cv2.RANSAC)
if self.downscale > 1.0:
H[0, 2] *= self.downscale
H[1, 2] *= self.downscale
else:
LOGGER.warning("WARNING: not enough matching points")
self.prevFrame = frame.copy()
self.prevKeyPoints = copy.copy(keypoints)
return H
def reset_params(self) -> None:
"""Reset parameters."""
self.prevFrame = None
self.prevKeyPoints = None
self.prevDescriptors = None
self.initializedFirstFrame = False

View File

@ -0,0 +1,360 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
import numpy as np
import scipy.linalg
class KalmanFilterXYAH:
"""
For bytetrack. A simple Kalman filter for tracking bounding boxes in image space.
The 8-dimensional state space (x, y, a, h, vx, vy, va, vh) contains the bounding box center position (x, y), aspect
ratio a, height h, and their respective velocities.
Object motion follows a constant velocity model. The bounding box location (x, y, a, h) is taken as direct
observation of the state space (linear observation model).
"""
def __init__(self):
"""Initialize Kalman filter model matrices with motion and observation uncertainty weights."""
ndim, dt = 4, 1.0
# Create Kalman filter model matrices
self._motion_mat = np.eye(2 * ndim, 2 * ndim)
for i in range(ndim):
self._motion_mat[i, ndim + i] = dt
self._update_mat = np.eye(ndim, 2 * ndim)
# Motion and observation uncertainty are chosen relative to the current state estimate. These weights control
# the amount of uncertainty in the model.
self._std_weight_position = 1.0 / 20
self._std_weight_velocity = 1.0 / 160
def initiate(self, measurement: np.ndarray) -> tuple:
"""
Create track from unassociated measurement.
Args:
measurement (ndarray): Bounding box coordinates (x, y, a, h) with center position (x, y), aspect ratio a,
and height h.
Returns:
(tuple[ndarray, ndarray]): Returns the mean vector (8 dimensional) and covariance matrix (8x8 dimensional) of
the new track. Unobserved velocities are initialized to 0 mean.
"""
mean_pos = measurement
mean_vel = np.zeros_like(mean_pos)
mean = np.r_[mean_pos, mean_vel]
std = [
2 * self._std_weight_position * measurement[3],
2 * self._std_weight_position * measurement[3],
1e-2,
2 * self._std_weight_position * measurement[3],
10 * self._std_weight_velocity * measurement[3],
10 * self._std_weight_velocity * measurement[3],
1e-5,
10 * self._std_weight_velocity * measurement[3],
]
covariance = np.diag(np.square(std))
return mean, covariance
def predict(self, mean: np.ndarray, covariance: np.ndarray) -> tuple:
"""
Run Kalman filter prediction step.
Args:
mean (ndarray): The 8 dimensional mean vector of the object state at the previous time step.
covariance (ndarray): The 8x8 dimensional covariance matrix of the object state at the previous time step.
Returns:
(tuple[ndarray, ndarray]): Returns the mean vector and covariance matrix of the predicted state. Unobserved
velocities are initialized to 0 mean.
"""
std_pos = [
self._std_weight_position * mean[3],
self._std_weight_position * mean[3],
1e-2,
self._std_weight_position * mean[3],
]
std_vel = [
self._std_weight_velocity * mean[3],
self._std_weight_velocity * mean[3],
1e-5,
self._std_weight_velocity * mean[3],
]
motion_cov = np.diag(np.square(np.r_[std_pos, std_vel]))
mean = np.dot(mean, self._motion_mat.T)
covariance = np.linalg.multi_dot((self._motion_mat, covariance, self._motion_mat.T)) + motion_cov
return mean, covariance
def project(self, mean: np.ndarray, covariance: np.ndarray) -> tuple:
"""
Project state distribution to measurement space.
Args:
mean (ndarray): The state's mean vector (8 dimensional array).
covariance (ndarray): The state's covariance matrix (8x8 dimensional).
Returns:
(tuple[ndarray, ndarray]): Returns the projected mean and covariance matrix of the given state estimate.
"""
std = [
self._std_weight_position * mean[3],
self._std_weight_position * mean[3],
1e-1,
self._std_weight_position * mean[3],
]
innovation_cov = np.diag(np.square(std))
mean = np.dot(self._update_mat, mean)
covariance = np.linalg.multi_dot((self._update_mat, covariance, self._update_mat.T))
return mean, covariance + innovation_cov
def multi_predict(self, mean: np.ndarray, covariance: np.ndarray) -> tuple:
"""
Run Kalman filter prediction step (Vectorized version).
Args:
mean (ndarray): The Nx8 dimensional mean matrix of the object states at the previous time step.
covariance (ndarray): The Nx8x8 covariance matrix of the object states at the previous time step.
Returns:
(tuple[ndarray, ndarray]): Returns the mean vector and covariance matrix of the predicted state. Unobserved
velocities are initialized to 0 mean.
"""
std_pos = [
self._std_weight_position * mean[:, 3],
self._std_weight_position * mean[:, 3],
1e-2 * np.ones_like(mean[:, 3]),
self._std_weight_position * mean[:, 3],
]
std_vel = [
self._std_weight_velocity * mean[:, 3],
self._std_weight_velocity * mean[:, 3],
1e-5 * np.ones_like(mean[:, 3]),
self._std_weight_velocity * mean[:, 3],
]
sqr = np.square(np.r_[std_pos, std_vel]).T
motion_cov = [np.diag(sqr[i]) for i in range(len(mean))]
motion_cov = np.asarray(motion_cov)
mean = np.dot(mean, self._motion_mat.T)
left = np.dot(self._motion_mat, covariance).transpose((1, 0, 2))
covariance = np.dot(left, self._motion_mat.T) + motion_cov
return mean, covariance
def update(self, mean: np.ndarray, covariance: np.ndarray, measurement: np.ndarray) -> tuple:
"""
Run Kalman filter correction step.
Args:
mean (ndarray): The predicted state's mean vector (8 dimensional).
covariance (ndarray): The state's covariance matrix (8x8 dimensional).
measurement (ndarray): The 4 dimensional measurement vector (x, y, a, h), where (x, y) is the center
position, a the aspect ratio, and h the height of the bounding box.
Returns:
(tuple[ndarray, ndarray]): Returns the measurement-corrected state distribution.
"""
projected_mean, projected_cov = self.project(mean, covariance)
chol_factor, lower = scipy.linalg.cho_factor(projected_cov, lower=True, check_finite=False)
kalman_gain = scipy.linalg.cho_solve(
(chol_factor, lower), np.dot(covariance, self._update_mat.T).T, check_finite=False
).T
innovation = measurement - projected_mean
new_mean = mean + np.dot(innovation, kalman_gain.T)
new_covariance = covariance - np.linalg.multi_dot((kalman_gain, projected_cov, kalman_gain.T))
return new_mean, new_covariance
def gating_distance(
self,
mean: np.ndarray,
covariance: np.ndarray,
measurements: np.ndarray,
only_position: bool = False,
metric: str = "maha",
) -> np.ndarray:
"""
Compute gating distance between state distribution and measurements. A suitable distance threshold can be
obtained from `chi2inv95`. If `only_position` is False, the chi-square distribution has 4 degrees of freedom,
otherwise 2.
Args:
mean (ndarray): Mean vector over the state distribution (8 dimensional).
covariance (ndarray): Covariance of the state distribution (8x8 dimensional).
measurements (ndarray): An Nx4 matrix of N measurements, each in format (x, y, a, h) where (x, y)
is the bounding box center position, a the aspect ratio, and h the height.
only_position (bool, optional): If True, distance computation is done with respect to the bounding box
center position only. Defaults to False.
metric (str, optional): The metric to use for calculating the distance. Options are 'gaussian' for the
squared Euclidean distance and 'maha' for the squared Mahalanobis distance. Defaults to 'maha'.
Returns:
(np.ndarray): Returns an array of length N, where the i-th element contains the squared distance between
(mean, covariance) and `measurements[i]`.
"""
mean, covariance = self.project(mean, covariance)
if only_position:
mean, covariance = mean[:2], covariance[:2, :2]
measurements = measurements[:, :2]
d = measurements - mean
if metric == "gaussian":
return np.sum(d * d, axis=1)
elif metric == "maha":
cholesky_factor = np.linalg.cholesky(covariance)
z = scipy.linalg.solve_triangular(cholesky_factor, d.T, lower=True, check_finite=False, overwrite_b=True)
return np.sum(z * z, axis=0) # square maha
else:
raise ValueError("Invalid distance metric")
class KalmanFilterXYWH(KalmanFilterXYAH):
"""
For BoT-SORT. A simple Kalman filter for tracking bounding boxes in image space.
The 8-dimensional state space (x, y, w, h, vx, vy, vw, vh) contains the bounding box center position (x, y), width
w, height h, and their respective velocities.
Object motion follows a constant velocity model. The bounding box location (x, y, w, h) is taken as direct
observation of the state space (linear observation model).
"""
def initiate(self, measurement: np.ndarray) -> tuple:
"""
Create track from unassociated measurement.
Args:
measurement (ndarray): Bounding box coordinates (x, y, w, h) with center position (x, y), width, and height.
Returns:
(tuple[ndarray, ndarray]): Returns the mean vector (8 dimensional) and covariance matrix (8x8 dimensional) of
the new track. Unobserved velocities are initialized to 0 mean.
"""
mean_pos = measurement
mean_vel = np.zeros_like(mean_pos)
mean = np.r_[mean_pos, mean_vel]
std = [
2 * self._std_weight_position * measurement[2],
2 * self._std_weight_position * measurement[3],
2 * self._std_weight_position * measurement[2],
2 * self._std_weight_position * measurement[3],
10 * self._std_weight_velocity * measurement[2],
10 * self._std_weight_velocity * measurement[3],
10 * self._std_weight_velocity * measurement[2],
10 * self._std_weight_velocity * measurement[3],
]
covariance = np.diag(np.square(std))
return mean, covariance
def predict(self, mean, covariance) -> tuple:
"""
Run Kalman filter prediction step.
Args:
mean (ndarray): The 8 dimensional mean vector of the object state at the previous time step.
covariance (ndarray): The 8x8 dimensional covariance matrix of the object state at the previous time step.
Returns:
(tuple[ndarray, ndarray]): Returns the mean vector and covariance matrix of the predicted state. Unobserved
velocities are initialized to 0 mean.
"""
std_pos = [
self._std_weight_position * mean[2],
self._std_weight_position * mean[3],
self._std_weight_position * mean[2],
self._std_weight_position * mean[3],
]
std_vel = [
self._std_weight_velocity * mean[2],
self._std_weight_velocity * mean[3],
self._std_weight_velocity * mean[2],
self._std_weight_velocity * mean[3],
]
motion_cov = np.diag(np.square(np.r_[std_pos, std_vel]))
mean = np.dot(mean, self._motion_mat.T)
covariance = np.linalg.multi_dot((self._motion_mat, covariance, self._motion_mat.T)) + motion_cov
return mean, covariance
def project(self, mean, covariance) -> tuple:
"""
Project state distribution to measurement space.
Args:
mean (ndarray): The state's mean vector (8 dimensional array).
covariance (ndarray): The state's covariance matrix (8x8 dimensional).
Returns:
(tuple[ndarray, ndarray]): Returns the projected mean and covariance matrix of the given state estimate.
"""
std = [
self._std_weight_position * mean[2],
self._std_weight_position * mean[3],
self._std_weight_position * mean[2],
self._std_weight_position * mean[3],
]
innovation_cov = np.diag(np.square(std))
mean = np.dot(self._update_mat, mean)
covariance = np.linalg.multi_dot((self._update_mat, covariance, self._update_mat.T))
return mean, covariance + innovation_cov
def multi_predict(self, mean, covariance) -> tuple:
"""
Run Kalman filter prediction step (Vectorized version).
Args:
mean (ndarray): The Nx8 dimensional mean matrix of the object states at the previous time step.
covariance (ndarray): The Nx8x8 covariance matrix of the object states at the previous time step.
Returns:
(tuple[ndarray, ndarray]): Returns the mean vector and covariance matrix of the predicted state. Unobserved
velocities are initialized to 0 mean.
"""
std_pos = [
self._std_weight_position * mean[:, 2],
self._std_weight_position * mean[:, 3],
self._std_weight_position * mean[:, 2],
self._std_weight_position * mean[:, 3],
]
std_vel = [
self._std_weight_velocity * mean[:, 2],
self._std_weight_velocity * mean[:, 3],
self._std_weight_velocity * mean[:, 2],
self._std_weight_velocity * mean[:, 3],
]
sqr = np.square(np.r_[std_pos, std_vel]).T
motion_cov = [np.diag(sqr[i]) for i in range(len(mean))]
motion_cov = np.asarray(motion_cov)
mean = np.dot(mean, self._motion_mat.T)
left = np.dot(self._motion_mat, covariance).transpose((1, 0, 2))
covariance = np.dot(left, self._motion_mat.T) + motion_cov
return mean, covariance
def update(self, mean, covariance, measurement) -> tuple:
"""
Run Kalman filter correction step.
Args:
mean (ndarray): The predicted state's mean vector (8 dimensional).
covariance (ndarray): The state's covariance matrix (8x8 dimensional).
measurement (ndarray): The 4 dimensional measurement vector (x, y, w, h), where (x, y) is the center
position, w the width, and h the height of the bounding box.
Returns:
(tuple[ndarray, ndarray]): Returns the measurement-corrected state distribution.
"""
return super().update(mean, covariance, measurement)

View File

@ -0,0 +1,138 @@
# Ultralytics YOLO 🚀, AGPL-3.0 license
import numpy as np
import scipy
from scipy.spatial.distance import cdist
from ultralytics.utils.metrics import bbox_ioa, batch_probiou
try:
import lap # for linear_assignment
assert lap.__version__ # verify package is not directory
except (ImportError, AssertionError, AttributeError):
from ultralytics.utils.checks import check_requirements
check_requirements("lapx>=0.5.2") # update to lap package from https://github.com/rathaROG/lapx
import lap
def linear_assignment(cost_matrix: np.ndarray, thresh: float, use_lap: bool = True) -> tuple:
"""
Perform linear assignment using scipy or lap.lapjv.
Args:
cost_matrix (np.ndarray): The matrix containing cost values for assignments.
thresh (float): Threshold for considering an assignment valid.
use_lap (bool, optional): Whether to use lap.lapjv. Defaults to True.
Returns:
Tuple with:
- matched indices
- unmatched indices from 'a'
- unmatched indices from 'b'
"""
if cost_matrix.size == 0:
return np.empty((0, 2), dtype=int), tuple(range(cost_matrix.shape[0])), tuple(range(cost_matrix.shape[1]))
if use_lap:
# Use lap.lapjv
# https://github.com/gatagat/lap
_, x, y = lap.lapjv(cost_matrix, extend_cost=True, cost_limit=thresh)
matches = [[ix, mx] for ix, mx in enumerate(x) if mx >= 0]
unmatched_a = np.where(x < 0)[0]
unmatched_b = np.where(y < 0)[0]
else:
# Use scipy.optimize.linear_sum_assignment
# https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.linear_sum_assignment.html
x, y = scipy.optimize.linear_sum_assignment(cost_matrix) # row x, col y
matches = np.asarray([[x[i], y[i]] for i in range(len(x)) if cost_matrix[x[i], y[i]] <= thresh])
if len(matches) == 0:
unmatched_a = list(np.arange(cost_matrix.shape[0]))
unmatched_b = list(np.arange(cost_matrix.shape[1]))
else:
unmatched_a = list(set(np.arange(cost_matrix.shape[0])) - set(matches[:, 0]))
unmatched_b = list(set(np.arange(cost_matrix.shape[1])) - set(matches[:, 1]))
return matches, unmatched_a, unmatched_b
def iou_distance(atracks: list, btracks: list) -> np.ndarray:
"""
Compute cost based on Intersection over Union (IoU) between tracks.
Args:
atracks (list[STrack] | list[np.ndarray]): List of tracks 'a' or bounding boxes.
btracks (list[STrack] | list[np.ndarray]): List of tracks 'b' or bounding boxes.
Returns:
(np.ndarray): Cost matrix computed based on IoU.
"""
if atracks and isinstance(atracks[0], np.ndarray) or btracks and isinstance(btracks[0], np.ndarray):
atlbrs = atracks
btlbrs = btracks
else:
atlbrs = [track.xywha if track.angle is not None else track.xyxy for track in atracks]
btlbrs = [track.xywha if track.angle is not None else track.xyxy for track in btracks]
ious = np.zeros((len(atlbrs), len(btlbrs)), dtype=np.float32)
if len(atlbrs) and len(btlbrs):
if len(atlbrs[0]) == 5 and len(btlbrs[0]) == 5:
ious = batch_probiou(
np.ascontiguousarray(atlbrs, dtype=np.float32),
np.ascontiguousarray(btlbrs, dtype=np.float32),
).numpy()
else:
ious = bbox_ioa(
np.ascontiguousarray(atlbrs, dtype=np.float32),
np.ascontiguousarray(btlbrs, dtype=np.float32),
iou=True,
)
return 1 - ious # cost matrix
def embedding_distance(tracks: list, detections: list, metric: str = "cosine") -> np.ndarray:
"""
Compute distance between tracks and detections based on embeddings.
Args:
tracks (list[STrack]): List of tracks.
detections (list[BaseTrack]): List of detections.
metric (str, optional): Metric for distance computation. Defaults to 'cosine'.
Returns:
(np.ndarray): Cost matrix computed based on embeddings.
"""
cost_matrix = np.zeros((len(tracks), len(detections)), dtype=np.float32)
if cost_matrix.size == 0:
return cost_matrix
det_features = np.asarray([track.curr_feat for track in detections], dtype=np.float32)
# for i, track in enumerate(tracks):
# cost_matrix[i, :] = np.maximum(0.0, cdist(track.smooth_feat.reshape(1,-1), det_features, metric))
track_features = np.asarray([track.smooth_feat for track in tracks], dtype=np.float32)
cost_matrix = np.maximum(0.0, cdist(track_features, det_features, metric)) # Normalized features
return cost_matrix
def fuse_score(cost_matrix: np.ndarray, detections: list) -> np.ndarray:
"""
Fuses cost matrix with detection scores to produce a single similarity matrix.
Args:
cost_matrix (np.ndarray): The matrix containing cost values for assignments.
detections (list[BaseTrack]): List of detections with scores.
Returns:
(np.ndarray): Fused similarity matrix.
"""
if cost_matrix.size == 0:
return cost_matrix
iou_sim = 1 - cost_matrix
det_scores = np.array([det.score for det in detections])
det_scores = np.expand_dims(det_scores, axis=0).repeat(cost_matrix.shape[0], axis=0)
fuse_sim = iou_sim * det_scores
return 1 - fuse_sim # fuse_cost