回传数据解析,兼容v5和v10
This commit is contained in:
248
ultralytics/models/yolo/pose/val.py
Normal file
248
ultralytics/models/yolo/pose/val.py
Normal file
@ -0,0 +1,248 @@
|
||||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||
|
||||
from pathlib import Path
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
|
||||
from ultralytics.models.yolo.detect import DetectionValidator
|
||||
from ultralytics.utils import LOGGER, ops
|
||||
from ultralytics.utils.checks import check_requirements
|
||||
from ultralytics.utils.metrics import OKS_SIGMA, PoseMetrics, box_iou, kpt_iou
|
||||
from ultralytics.utils.plotting import output_to_target, plot_images
|
||||
|
||||
|
||||
class PoseValidator(DetectionValidator):
|
||||
"""
|
||||
A class extending the DetectionValidator class for validation based on a pose model.
|
||||
|
||||
Example:
|
||||
```python
|
||||
from ultralytics.models.yolo.pose import PoseValidator
|
||||
|
||||
args = dict(model='yolov8n-pose.pt', data='coco8-pose.yaml')
|
||||
validator = PoseValidator(args=args)
|
||||
validator()
|
||||
```
|
||||
"""
|
||||
|
||||
def __init__(self, dataloader=None, save_dir=None, pbar=None, args=None, _callbacks=None):
|
||||
"""Initialize a 'PoseValidator' object with custom parameters and assigned attributes."""
|
||||
super().__init__(dataloader, save_dir, pbar, args, _callbacks)
|
||||
self.sigma = None
|
||||
self.kpt_shape = None
|
||||
self.args.task = "pose"
|
||||
self.metrics = PoseMetrics(save_dir=self.save_dir, on_plot=self.on_plot)
|
||||
if isinstance(self.args.device, str) and self.args.device.lower() == "mps":
|
||||
LOGGER.warning(
|
||||
"WARNING ⚠️ Apple MPS known Pose bug. Recommend 'device=cpu' for Pose models. "
|
||||
"See https://github.com/ultralytics/ultralytics/issues/4031."
|
||||
)
|
||||
|
||||
def preprocess(self, batch):
|
||||
"""Preprocesses the batch by converting the 'keypoints' data into a float and moving it to the device."""
|
||||
batch = super().preprocess(batch)
|
||||
batch["keypoints"] = batch["keypoints"].to(self.device).float()
|
||||
return batch
|
||||
|
||||
def get_desc(self):
|
||||
"""Returns description of evaluation metrics in string format."""
|
||||
return ("%22s" + "%11s" * 10) % (
|
||||
"Class",
|
||||
"Images",
|
||||
"Instances",
|
||||
"Box(P",
|
||||
"R",
|
||||
"mAP50",
|
||||
"mAP50-95)",
|
||||
"Pose(P",
|
||||
"R",
|
||||
"mAP50",
|
||||
"mAP50-95)",
|
||||
)
|
||||
|
||||
def postprocess(self, preds):
|
||||
"""Apply non-maximum suppression and return detections with high confidence scores."""
|
||||
return ops.non_max_suppression(
|
||||
preds,
|
||||
self.args.conf,
|
||||
self.args.iou,
|
||||
labels=self.lb,
|
||||
multi_label=True,
|
||||
agnostic=self.args.single_cls,
|
||||
max_det=self.args.max_det,
|
||||
nc=self.nc,
|
||||
)
|
||||
|
||||
def init_metrics(self, model):
|
||||
"""Initiate pose estimation metrics for YOLO model."""
|
||||
super().init_metrics(model)
|
||||
self.kpt_shape = self.data["kpt_shape"]
|
||||
is_pose = self.kpt_shape == [17, 3]
|
||||
nkpt = self.kpt_shape[0]
|
||||
self.sigma = OKS_SIGMA if is_pose else np.ones(nkpt) / nkpt
|
||||
self.stats = dict(tp_p=[], tp=[], conf=[], pred_cls=[], target_cls=[])
|
||||
|
||||
def _prepare_batch(self, si, batch):
|
||||
"""Prepares a batch for processing by converting keypoints to float and moving to device."""
|
||||
pbatch = super()._prepare_batch(si, batch)
|
||||
kpts = batch["keypoints"][batch["batch_idx"] == si]
|
||||
h, w = pbatch["imgsz"]
|
||||
kpts = kpts.clone()
|
||||
kpts[..., 0] *= w
|
||||
kpts[..., 1] *= h
|
||||
kpts = ops.scale_coords(pbatch["imgsz"], kpts, pbatch["ori_shape"], ratio_pad=pbatch["ratio_pad"])
|
||||
pbatch["kpts"] = kpts
|
||||
return pbatch
|
||||
|
||||
def _prepare_pred(self, pred, pbatch):
|
||||
"""Prepares and scales keypoints in a batch for pose processing."""
|
||||
predn = super()._prepare_pred(pred, pbatch)
|
||||
nk = pbatch["kpts"].shape[1]
|
||||
pred_kpts = predn[:, 6:].view(len(predn), nk, -1)
|
||||
ops.scale_coords(pbatch["imgsz"], pred_kpts, pbatch["ori_shape"], ratio_pad=pbatch["ratio_pad"])
|
||||
return predn, pred_kpts
|
||||
|
||||
def update_metrics(self, preds, batch):
|
||||
"""Metrics."""
|
||||
for si, pred in enumerate(preds):
|
||||
self.seen += 1
|
||||
npr = len(pred)
|
||||
stat = dict(
|
||||
conf=torch.zeros(0, device=self.device),
|
||||
pred_cls=torch.zeros(0, device=self.device),
|
||||
tp=torch.zeros(npr, self.niou, dtype=torch.bool, device=self.device),
|
||||
tp_p=torch.zeros(npr, self.niou, dtype=torch.bool, device=self.device),
|
||||
)
|
||||
pbatch = self._prepare_batch(si, batch)
|
||||
cls, bbox = pbatch.pop("cls"), pbatch.pop("bbox")
|
||||
nl = len(cls)
|
||||
stat["target_cls"] = cls
|
||||
if npr == 0:
|
||||
if nl:
|
||||
for k in self.stats.keys():
|
||||
self.stats[k].append(stat[k])
|
||||
if self.args.plots:
|
||||
self.confusion_matrix.process_batch(detections=None, gt_bboxes=bbox, gt_cls=cls)
|
||||
continue
|
||||
|
||||
# Predictions
|
||||
if self.args.single_cls:
|
||||
pred[:, 5] = 0
|
||||
predn, pred_kpts = self._prepare_pred(pred, pbatch)
|
||||
stat["conf"] = predn[:, 4]
|
||||
stat["pred_cls"] = predn[:, 5]
|
||||
|
||||
# Evaluate
|
||||
if nl:
|
||||
stat["tp"] = self._process_batch(predn, bbox, cls)
|
||||
stat["tp_p"] = self._process_batch(predn, bbox, cls, pred_kpts, pbatch["kpts"])
|
||||
if self.args.plots:
|
||||
self.confusion_matrix.process_batch(predn, bbox, cls)
|
||||
|
||||
for k in self.stats.keys():
|
||||
self.stats[k].append(stat[k])
|
||||
|
||||
# Save
|
||||
if self.args.save_json:
|
||||
self.pred_to_json(predn, batch["im_file"][si])
|
||||
# if self.args.save_txt:
|
||||
# save_one_txt(predn, save_conf, shape, file=save_dir / 'labels' / f'{path.stem}.txt')
|
||||
|
||||
def _process_batch(self, detections, gt_bboxes, gt_cls, pred_kpts=None, gt_kpts=None):
|
||||
"""
|
||||
Return correct prediction matrix.
|
||||
|
||||
Args:
|
||||
detections (torch.Tensor): Tensor of shape [N, 6] representing detections.
|
||||
Each detection is of the format: x1, y1, x2, y2, conf, class.
|
||||
labels (torch.Tensor): Tensor of shape [M, 5] representing labels.
|
||||
Each label is of the format: class, x1, y1, x2, y2.
|
||||
pred_kpts (torch.Tensor, optional): Tensor of shape [N, 51] representing predicted keypoints.
|
||||
51 corresponds to 17 keypoints each with 3 values.
|
||||
gt_kpts (torch.Tensor, optional): Tensor of shape [N, 51] representing ground truth keypoints.
|
||||
|
||||
Returns:
|
||||
torch.Tensor: Correct prediction matrix of shape [N, 10] for 10 IoU levels.
|
||||
"""
|
||||
if pred_kpts is not None and gt_kpts is not None:
|
||||
# `0.53` is from https://github.com/jin-s13/xtcocoapi/blob/master/xtcocotools/cocoeval.py#L384
|
||||
area = ops.xyxy2xywh(gt_bboxes)[:, 2:].prod(1) * 0.53
|
||||
iou = kpt_iou(gt_kpts, pred_kpts, sigma=self.sigma, area=area)
|
||||
else: # boxes
|
||||
iou = box_iou(gt_bboxes, detections[:, :4])
|
||||
|
||||
return self.match_predictions(detections[:, 5], gt_cls, iou)
|
||||
|
||||
def plot_val_samples(self, batch, ni):
|
||||
"""Plots and saves validation set samples with predicted bounding boxes and keypoints."""
|
||||
plot_images(
|
||||
batch["img"],
|
||||
batch["batch_idx"],
|
||||
batch["cls"].squeeze(-1),
|
||||
batch["bboxes"],
|
||||
kpts=batch["keypoints"],
|
||||
paths=batch["im_file"],
|
||||
fname=self.save_dir / f"val_batch{ni}_labels.jpg",
|
||||
names=self.names,
|
||||
on_plot=self.on_plot,
|
||||
)
|
||||
|
||||
def plot_predictions(self, batch, preds, ni):
|
||||
"""Plots predictions for YOLO model."""
|
||||
pred_kpts = torch.cat([p[:, 6:].view(-1, *self.kpt_shape) for p in preds], 0)
|
||||
plot_images(
|
||||
batch["img"],
|
||||
*output_to_target(preds, max_det=self.args.max_det),
|
||||
kpts=pred_kpts,
|
||||
paths=batch["im_file"],
|
||||
fname=self.save_dir / f"val_batch{ni}_pred.jpg",
|
||||
names=self.names,
|
||||
on_plot=self.on_plot,
|
||||
) # pred
|
||||
|
||||
def pred_to_json(self, predn, filename):
|
||||
"""Converts YOLO predictions to COCO JSON format."""
|
||||
stem = Path(filename).stem
|
||||
image_id = int(stem) if stem.isnumeric() else stem
|
||||
box = ops.xyxy2xywh(predn[:, :4]) # xywh
|
||||
box[:, :2] -= box[:, 2:] / 2 # xy center to top-left corner
|
||||
for p, b in zip(predn.tolist(), box.tolist()):
|
||||
self.jdict.append(
|
||||
{
|
||||
"image_id": image_id,
|
||||
"category_id": self.class_map[int(p[5])],
|
||||
"bbox": [round(x, 3) for x in b],
|
||||
"keypoints": p[6:],
|
||||
"score": round(p[4], 5),
|
||||
}
|
||||
)
|
||||
|
||||
def eval_json(self, stats):
|
||||
"""Evaluates object detection model using COCO JSON format."""
|
||||
if self.args.save_json and self.is_coco and len(self.jdict):
|
||||
anno_json = self.data["path"] / "annotations/person_keypoints_val2017.json" # annotations
|
||||
pred_json = self.save_dir / "predictions.json" # predictions
|
||||
LOGGER.info(f"\nEvaluating pycocotools mAP using {pred_json} and {anno_json}...")
|
||||
try: # https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocoEvalDemo.ipynb
|
||||
check_requirements("pycocotools>=2.0.6")
|
||||
from pycocotools.coco import COCO # noqa
|
||||
from pycocotools.cocoeval import COCOeval # noqa
|
||||
|
||||
for x in anno_json, pred_json:
|
||||
assert x.is_file(), f"{x} file not found"
|
||||
anno = COCO(str(anno_json)) # init annotations api
|
||||
pred = anno.loadRes(str(pred_json)) # init predictions api (must pass string, not Path)
|
||||
for i, eval in enumerate([COCOeval(anno, pred, "bbox"), COCOeval(anno, pred, "keypoints")]):
|
||||
if self.is_coco:
|
||||
eval.params.imgIds = [int(Path(x).stem) for x in self.dataloader.dataset.im_files] # im to eval
|
||||
eval.evaluate()
|
||||
eval.accumulate()
|
||||
eval.summarize()
|
||||
idx = i * 4 + 2
|
||||
stats[self.metrics.keys[idx + 1]], stats[self.metrics.keys[idx]] = eval.stats[
|
||||
:2
|
||||
] # update mAP50-95 and mAP50
|
||||
except Exception as e:
|
||||
LOGGER.warning(f"pycocotools unable to run: {e}")
|
||||
return stats
|
Reference in New Issue
Block a user