回传数据解析,兼容v5和v10
This commit is contained in:
86
ultralytics/models/rtdetr/predict.py
Normal file
86
ultralytics/models/rtdetr/predict.py
Normal file
@ -0,0 +1,86 @@
|
||||
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||||
|
||||
import torch
|
||||
|
||||
from ultralytics.data.augment import LetterBox
|
||||
from ultralytics.engine.predictor import BasePredictor
|
||||
from ultralytics.engine.results import Results
|
||||
from ultralytics.utils import ops
|
||||
|
||||
|
||||
class RTDETRPredictor(BasePredictor):
|
||||
"""
|
||||
RT-DETR (Real-Time Detection Transformer) Predictor extending the BasePredictor class for making predictions using
|
||||
Baidu's RT-DETR model.
|
||||
|
||||
This class leverages the power of Vision Transformers to provide real-time object detection while maintaining
|
||||
high accuracy. It supports key features like efficient hybrid encoding and IoU-aware query selection.
|
||||
|
||||
Example:
|
||||
```python
|
||||
from ultralytics.utils import ASSETS
|
||||
from ultralytics.models.rtdetr import RTDETRPredictor
|
||||
|
||||
args = dict(model='rtdetr-l.pt', source=ASSETS)
|
||||
predictor = RTDETRPredictor(overrides=args)
|
||||
predictor.predict_cli()
|
||||
```
|
||||
|
||||
Attributes:
|
||||
imgsz (int): Image size for inference (must be square and scale-filled).
|
||||
args (dict): Argument overrides for the predictor.
|
||||
"""
|
||||
|
||||
def postprocess(self, preds, img, orig_imgs):
|
||||
"""
|
||||
Postprocess the raw predictions from the model to generate bounding boxes and confidence scores.
|
||||
|
||||
The method filters detections based on confidence and class if specified in `self.args`.
|
||||
|
||||
Args:
|
||||
preds (list): List of [predictions, extra] from the model.
|
||||
img (torch.Tensor): Processed input images.
|
||||
orig_imgs (list or torch.Tensor): Original, unprocessed images.
|
||||
|
||||
Returns:
|
||||
(list[Results]): A list of Results objects containing the post-processed bounding boxes, confidence scores,
|
||||
and class labels.
|
||||
"""
|
||||
if not isinstance(preds, (list, tuple)): # list for PyTorch inference but list[0] Tensor for export inference
|
||||
preds = [preds, None]
|
||||
|
||||
nd = preds[0].shape[-1]
|
||||
bboxes, scores = preds[0].split((4, nd - 4), dim=-1)
|
||||
|
||||
if not isinstance(orig_imgs, list): # input images are a torch.Tensor, not a list
|
||||
orig_imgs = ops.convert_torch2numpy_batch(orig_imgs)
|
||||
|
||||
results = []
|
||||
for i, bbox in enumerate(bboxes): # (300, 4)
|
||||
bbox = ops.xywh2xyxy(bbox)
|
||||
score, cls = scores[i].max(-1, keepdim=True) # (300, 1)
|
||||
idx = score.squeeze(-1) > self.args.conf # (300, )
|
||||
if self.args.classes is not None:
|
||||
idx = (cls == torch.tensor(self.args.classes, device=cls.device)).any(1) & idx
|
||||
pred = torch.cat([bbox, score, cls], dim=-1)[idx] # filter
|
||||
orig_img = orig_imgs[i]
|
||||
oh, ow = orig_img.shape[:2]
|
||||
pred[..., [0, 2]] *= ow
|
||||
pred[..., [1, 3]] *= oh
|
||||
img_path = self.batch[0][i]
|
||||
results.append(Results(orig_img, path=img_path, names=self.model.names, boxes=pred))
|
||||
return results
|
||||
|
||||
def pre_transform(self, im):
|
||||
"""
|
||||
Pre-transforms the input images before feeding them into the model for inference. The input images are
|
||||
letterboxed to ensure a square aspect ratio and scale-filled. The size must be square(640) and scaleFilled.
|
||||
|
||||
Args:
|
||||
im (list[np.ndarray] |torch.Tensor): Input images of shape (N,3,h,w) for tensor, [(h,w,3) x N] for list.
|
||||
|
||||
Returns:
|
||||
(list): List of pre-transformed images ready for model inference.
|
||||
"""
|
||||
letterbox = LetterBox(self.imgsz, auto=False, scaleFill=True)
|
||||
return [letterbox(image=x) for x in im]
|
Reference in New Issue
Block a user