回传数据解析,兼容v5和v10

This commit is contained in:
jiajie555
2025-04-18 14:41:53 +08:00
commit 010f5c445a
888 changed files with 93632 additions and 0 deletions

View File

@ -0,0 +1,277 @@
# -*- coding: utf-8 -*-
"""
Created on Mon Mar 4 18:36:31 2024
@author: ym
"""
import numpy as np
import cv2
import copy
import sys
from pathlib import Path
FILE = Path(__file__).resolve()
ROOT = FILE.parents[2] # YOLOv5 root directory
if str(ROOT) not in sys.path:
sys.path.append(str(ROOT))
from tracking.utils.mergetrack import track_equal_track
from scipy.spatial.distance import cdist
curpath = Path(__file__).resolve().parents[0]
curpath = Path(curpath)
parpath = curpath.parent
from .dotracks import doTracks, ShoppingCart
from .track_back import backTrack
class doBackTracks(doTracks):
def __init__(self, bboxes, trackefeats):
super().__init__(bboxes, trackefeats)
self.tracks = [backTrack(b, f) for b, f in zip(self.lboxes, self.lfeats)]
# self.similar_dict = self.similarity()
# self.shopcart = ShoppingCart(bboxes)
self.incart = self.getincart()
def getincart(self):
img1 = cv2.imread(str(parpath/'shopcart/cart_tempt/incart.png'), cv2.IMREAD_GRAYSCALE)
img2 = cv2.imread(str(parpath/'shopcart/cart_tempt/cartedge.png'), cv2.IMREAD_GRAYSCALE)
ret, binary1 = cv2.threshold(img1, 250, 255, cv2.THRESH_BINARY)
ret, binary2 = cv2.threshold(img2, 250, 255, cv2.THRESH_BINARY)
binary = cv2.bitwise_or(binary1, binary2)
return binary
def classify(self):
'''功能:对 tracks 中元素分类 '''
tracks = self.tracks
# 提取手的frame_id并和动目标的frame_id 进行关联
hand_tracks = [t for t in tracks if t.cls==0]
self.Hands.extend(hand_tracks)
tracks = self.sub_tracks(tracks, hand_tracks)
# 提取小孩的track并计算状态left, right, incart
kid_tracks = [t for t in tracks if t.cls==9]
kid_states = [self.kid_state(t) for t in kid_tracks]
self.Kids = [x for x in zip(kid_tracks, kid_states)]
tracks = self.sub_tracks(tracks, kid_tracks)
out_trcak = [t for t in tracks if t.isWholeOutCart]
tracks = self.sub_tracks(tracks, out_trcak)
static_tracks = [t for t in tracks if t.frnum>1 and t.is_static()]
self.Static.extend(static_tracks)
'''剔除静止目标后的 tracks'''
tracks = self.sub_tracks(tracks, static_tracks)
tracks_free = [t for t in tracks if t.frnum>1 and t.is_freemove()]
self.FreeMove.extend(tracks_free)
tracks = self.sub_tracks(tracks, tracks_free)
# '''购物框边界外具有运动状态的干扰目标'''
# out_trcak = [t for t in tracks if t.is_OutTrack()]
# tracks = self.sub_tracks(tracks, out_trcak)
'''轨迹循环归并'''
# merged_tracks = self.merge_tracks(tracks)
merged_tracks = self.merge_tracks_loop(tracks)
[self.associate_with_hand(htrack, gtrack) for htrack in hand_tracks for gtrack in tracks]
tracks = [t for t in merged_tracks if t.frnum > 1]
self.merged_tracks = merged_tracks
static_tracks = [t for t in tracks if t.frnum>1 and t.is_static()]
self.Static.extend(static_tracks)
tracks = self.sub_tracks(tracks, static_tracks)
# for gtrack in tracks:
# for htrack in hand_tracks:
# hand_ious = self.associate_with_hand(htrack, gtrack)
# if len(hand_ious):
# gtrack.Hands.append(htrack)
# gtrack.HandsIou.append(hand_ious)
# htrack.Goods.append((gtrack, hand_ious))
# for htrack in hand_tracks:
# self.merge_based_hands(htrack)
self.Residual = tracks
self.Confirmed = self.confirm_track()
def confirm_track(self):
Confirmed = None
mindist = 0
for track in self.Residual:
md = min(track.trajrects_wh)
if md > mindist:
mindist = copy.deepcopy(md)
Confirmed = copy.deepcopy(track)
if Confirmed is not None:
return [Confirmed]
return []
# def merge_based_hands(self, htrack):
# gtracks = htrack.Goods
# if len(gtracks) >= 2:
# atrack, afious = gtracks[0]
# btrack, bfious = gtracks[1]
def associate_with_hand(self, htrack, gtrack):
'''
迁移至基类:
手部 Track、商品 Track 建立关联的依据:
a. 运动帧的帧索引有交集
b. 帧索引交集部分iou均大于0
'''
assert htrack.cls==0 and gtrack.cls!=0 and gtrack.cls!=9, 'Track cls is Error!'
hand_ious = []
hboxes = np.empty(shape=(0, 9), dtype = np.float64)
gboxes = np.empty(shape=(0, 9), dtype = np.float64)
# start, end 为索引值,需要 start:(end+1)
for start, end in htrack.moving_index:
hboxes = np.concatenate((hboxes, htrack.boxes[start:end+1, :]), axis=0)
for start, end in gtrack.moving_index:
gboxes = np.concatenate((gboxes, gtrack.boxes[start:end+1, :]), axis=0)
hfids, gfids = hboxes[:, 7], gboxes[:, 7]
fids = sorted(set(hfids).intersection(set(gfids)))
if len(fids)==0:
return None
# print(f"Goods ID: {gtrack.tid}, Hand ID: {htrack.tid}")
for f in fids:
h = np.where(hboxes[:,7] == f)[0][0]
g = np.where(gboxes[:,7] == f)[0][0]
x11, y11, x12, y12 = hboxes[h, 0:4]
x21, y21, x22, y22 = gboxes[g, 0:4]
x1, y1 = max((x11, x21)), max((y11, y21))
x2, y2 = min((x12, x22)), min((y12, y22))
union = (x2 - x1).clip(0) * (y2 - y1).clip(0)
area1 = (x12 - x11) * (y12 - y11)
area2 = (x22 - x21) * (y22 - y21)
iou = union / (area1 + area2 - union + 1e-6)
if iou >= 0.01:
gtrack.Hands.append((htrack.tid, f, iou))
return gtrack.Hands
def merge_tracks(self, Residual):
"""
对不同id但可能是同一商品的目标进行归并
和 dotrack_front.py中函数相同可以合并可以合并至基类
"""
mergedTracks = self.base_merge_tracks(Residual)
oldtracks, newtracks = [], []
for tracklist in mergedTracks:
if len(tracklist) > 1:
boxes = np.empty((0, 9), dtype=np.float32)
feats = np.empty((0, 256), dtype=np.float32)
for i, track in enumerate(tracklist):
if i==0: ntid, ncls=track.boxes[0, 4], track.boxes[0, 6]
iboxes = track.boxes.copy()
ifeats = track.features.copy()
# iboxes[:, 4], iboxes[:, 6] = ntid, ncls
boxes = np.concatenate((boxes, iboxes), axis=0)
feats = np.concatenate((feats, ifeats), axis=0)
oldtracks.append(track)
fid_indices = np.argsort(boxes[:, 7])
boxes_fid = boxes[fid_indices]
feats_fid = feats[fid_indices]
newtracks.append(backTrack(boxes_fid, feats_fid))
elif len(tracklist) == 1:
oldtracks.append(tracklist[0])
newtracks.append(tracklist[0])
redu = self.sub_tracks(Residual, oldtracks)
merged = self.join_tracks(redu, newtracks)
return merged
def kid_state(self, track):
left_dist = track.cornpoints[:, 2]
right_dist = 1024 - track.cornpoints[:, 4]
if np.sum(left_dist<30)/track.frnum>0.8 and np.sum(right_dist>512)/track.frnum>0.7:
kidstate = "left"
elif np.sum(left_dist>512)/track.frnum>0.7 and np.sum(right_dist<30)/track.frnum>0.8:
kidstate = "right"
else:
kidstate = "incart"
return kidstate
def isuptrack(self, track):
Flag = False
return Flag
def isdowntrack(self, track):
Flag = False
return Flag
def isfreetrack(self, track):
Flag = False
return Flag