回传数据解析,兼容v5和v10

This commit is contained in:
jiajie555
2025-04-18 14:41:53 +08:00
commit 010f5c445a
888 changed files with 93632 additions and 0 deletions

551
contrast/utils/event.py Normal file
View File

@ -0,0 +1,551 @@
# -*- coding: utf-8 -*-
"""
Created on Tue Nov 26 17:35:05 2024
@author: ym
"""
import os
import sys
import cv2
import pickle
import numpy as np
from pathlib import Path
FILE = Path(__file__).resolve()
ROOT = FILE.parents[2] # YOLOv5 root directory
if str(ROOT) not in sys.path:
sys.path.append(str(ROOT))
from tracking.utils.plotting import Annotator, colors
from tracking.utils.drawtracks import drawTrack
from tracking.utils.read_data import extract_data, read_tracking_output, read_similar
from tracking.utils.read_data import extract_data_realtime, read_tracking_output_realtime
# import platform
# import pathlib
# plt = platform.system()
IMG_FORMAT = ['.bmp', '.jpg', '.jpeg', '.png']
VID_FORMAT = ['.mp4', '.avi']
def save_data(event, resultPath=None):
'''事件轨迹子图保存'''
if resultPath is None:
resultPath = os.path.dirname(os.path.abspath(__file__))
subimgpath = os.path.join(resultPath, f"{event.evtname}", "subimg")
imgspath = os.path.join(resultPath, f"{event.evtname}", "imgs")
if not os.path.exists(subimgpath):
os.makedirs(subimgpath)
if not os.path.exists(imgspath):
os.makedirs(imgspath)
##(2) 保存轨迹中的子图
subimgpairs = event.save_event_subimg(subimgpath)
for subimgName, subimg in subimgpairs:
spath = os.path.join(subimgpath, subimgName)
cv2.imwrite(spath, subimg)
##(3) 保存序列图像
imgpairs = event.plot_save_image(imgspath)
for imgname, img in imgpairs:
spath = os.path.join(imgspath, imgname)
cv2.imwrite(spath, img)
##(4) 保存轨迹散点图
img_cat = event.draw_tracks()
trajpath = os.path.join(resultPath, "trajectory")
if not os.path.exists(trajpath):
os.makedirs(trajpath)
traj_imgpath = os.path.join(trajpath, event.evtname+".png")
cv2.imwrite(traj_imgpath, img_cat)
def array2list(bboxes):
'''
将 bboxes 变换为 track 列表
bboxes: [x1, y1, x2, y2, track_id, score, cls, frame_index, box_index]
Return
lboxes列表列表中元素具有同一 track_idx1y1x2y2 格式
[x1, y1, x2, y2, track_id, score, cls, frame_index, box_index]
'''
lboxes = []
if len(bboxes)==0:
return []
trackID = np.unique(bboxes[:, 4].astype(int))
track_ids = bboxes[:, 4].astype(int)
for t_id in trackID:
idx = np.where(track_ids == t_id)[0]
box = bboxes[idx, :]
lboxes.append(box)
return lboxes
class ShoppingEvent:
def __init__(self, eventpath, stype="data"):
'''stype: str, 'source', 'data', 'realtime', 共三种
source: 前后摄视频经 pipeline 生成的文件
data: 基于事件切分的原 data 文件版本
realtime: 全实时生成的 data 文件
'''
self.eventpath = eventpath
self.evtname = str(Path(eventpath).stem)
self.barcode = ''
self.evtType = ''
'''=========== path of image and video =========== '''
self.back_videopath = ''
self.front_videopath = ''
self.back_imgpaths = []
self.front_imgpaths = []
'''=========== process.data ==============================='''
self.one2one = None
self.one2n = None
self.one2SN = None
'''=========== 0/1_track.data ============================='''
self.back_yolobboxes = []
self.back_yolofeats = []
self.back_trackerboxes = np.empty((0, 9), dtype=np.float64) ##和类doTracks兼容
self.back_trackerfeats = {}
self.back_trackingboxes = []
self.back_trackingfeats = []
self.front_yolobboxes = []
self.front_yolofeats = []
self.front_trackerboxes = np.empty((0, 9), dtype=np.float64) ##和类doTracks兼容
self.front_trackerfeats = {}
self.front_trackingboxes = []
self.front_trackingfeats = []
'''=========== 0/1_tracking_output.data ==================='''
self.back_boxes = []
self.back_feats = []
self.front_boxes = []
self.front_feats = []
if stype=="data":
self.from_datafile(eventpath)
if stype=="realtime":
self.from_realtime_datafile(eventpath)
if stype=="source":
self.from_source_pkl(eventpath)
self.feats_select = np.empty((0, 256), dtype=np.float64)
self.feats_compose = np.empty((0, 256), dtype=np.float64)
self.select_feats()
self.compose_feats()
# if stype=="image":
# self.from_image(eventpath)
def kerndata(self, ShoppingDict, camtype="backCamera"):
'''
camtype: str, "backCamera" or "frontCamera"
'''
yoloboxes, resfeats = [], []
trackerboxes = np.empty((0, 9), dtype=np.float64)
trackefeats = {}
trackingboxes, trackingfeats = [], []
frameDictList = ShoppingDict[camtype]["yoloResnetTracker"]
for frameDict in frameDictList:
yoloboxes.append(frameDict["bboxes"])
tboxes = frameDict["tboxes"]
trackefeats.update(frameDict["feats"])
trackerboxes = np.concatenate((trackerboxes, np.array(tboxes)), axis=0)
Residual = ShoppingDict[camtype]["tracking"].Residual
for track in Residual:
trackingboxes.append(track.boxes)
trackingfeats.append(track.features)
kdata = (yoloboxes, resfeats, trackerboxes, trackefeats, trackingboxes, trackingfeats)
tracking_out_boxes, tracking_out_feats = [], []
Confirmed = ShoppingDict[camtype]["tracking"].Confirmed
for track in Confirmed:
tracking_out_boxes.append(track.boxes)
tracking_out_feats.append(track.features)
outdata = (tracking_out_boxes, tracking_out_feats)
return kdata, outdata
def from_source_pkl(self, eventpath):
# if plt == 'Windows':
# pathlib.PosixPath = pathlib.WindowsPath
with open(eventpath, 'rb') as f:
ShoppingDict = pickle.load(f)
self.eventpath = ShoppingDict["eventPath"]
self.evtname = ShoppingDict["eventName"]
self.barcode = ShoppingDict["barcode"]
if len(ShoppingDict["one2n"]):
self.one2n = ShoppingDict["one2n"]
'''=========== path of image and video =========== '''
self.back_videopath = ShoppingDict["backCamera"]["videoPath"]
self.front_videopath = ShoppingDict["frontCamera"]["videoPath"]
self.back_imgpaths = ShoppingDict["backCamera"]["imagePaths"]
self.front_imgpaths = ShoppingDict["frontCamera"]["imagePaths"]
'''===========对应于 0/1_track.data ============================='''
backdata, back_outdata = self.kerndata(ShoppingDict, "backCamera")
frontdata, front_outdata = self.kerndata(ShoppingDict, "frontCamera")
self.back_yolobboxes = backdata[0]
self.back_yolofeats = backdata[1]
self.back_trackerboxes = backdata[2]
self.back_trackerfeats = [3]
self.back_trackingboxes = [4]
self.back_trackingfeats = [5]
self.front_yolobboxes = frontdata[0]
self.front_yolofeats = frontdata[1]
self.front_trackerboxes = frontdata[2]
self.front_trackerfeats = frontdata[3]
self.front_trackingboxes = frontdata[4]
self.front_trackingfeats = frontdata[5]
'''===========对应于 0/1_tracking_output.data ============================='''
self.back_boxes = back_outdata[0]
self.back_feats = back_outdata[1]
self.front_boxes = front_outdata[0]
self.front_feats = front_outdata[1]
def from_datafile(self, eventpath):
evtList = self.evtname.split('_')
if len(evtList)>=2 and len(evtList[-1])>=10 and evtList[-1].isdigit():
self.barcode = evtList[-1]
if len(evtList)==3 and evtList[-1]== evtList[-2]:
self.evtType = 'input'
else:
self.evtType = 'other'
'''================ path of image ============='''
frontImgs, frontFid = [], []
backImgs, backFid = [], []
for imgname in os.listdir(eventpath):
name, ext = os.path.splitext(imgname)
if ext not in IMG_FORMAT or name.find('frameId') < 0: continue
if len(name.split('_')) != 3 and not name.split('_')[3].isdigit(): continue
CamerType = name.split('_')[0]
frameId = int(name.split('_')[3])
imgpath = os.path.join(eventpath, imgname)
if CamerType == '0':
backImgs.append(imgpath)
backFid.append(frameId)
if CamerType == '1':
frontImgs.append(imgpath)
frontFid.append(frameId)
## 生成依据帧 ID 排序的前后摄图像地址列表
frontIdx = np.argsort(np.array(frontFid))
backIdx = np.argsort(np.array(backFid))
self.front_imgpaths = [frontImgs[i] for i in frontIdx]
self.back_imgpaths = [backImgs[i] for i in backIdx]
'''================ path of video ============='''
for vidname in os.listdir(eventpath):
name, ext = os.path.splitext(vidname)
if ext not in VID_FORMAT: continue
vidpath = os.path.join(eventpath, vidname)
CamerType = name.split('_')[0]
if CamerType == '0':
self.back_videopath = vidpath
if CamerType == '1':
self.front_videopath = vidpath
'''================ process.data ============='''
procpath = Path(eventpath).joinpath('process.data')
if procpath.is_file():
SimiDict = read_similar(procpath)
self.one2one = SimiDict['one2one']
self.one2n = SimiDict['one2n']
self.one2SN = SimiDict['one2SN']
'''=========== 0/1_track.data & 0/1_tracking_output.data ======='''
for dataname in os.listdir(eventpath):
datapath = os.path.join(eventpath, dataname)
if not os.path.isfile(datapath): continue
CamerType = dataname.split('_')[0]
'''========== 0/1_track.data =========='''
if dataname.find("_track.data")>0:
bboxes, ffeats, trackerboxes, trackerfeats, trackingboxes, trackingfeats = extract_data(datapath)
if CamerType == '0':
self.back_yolobboxes = bboxes
self.back_yolofeats = ffeats
self.back_trackerboxes = trackerboxes
self.back_trackerfeats = trackerfeats
self.back_trackingboxes = trackingboxes
self.back_trackingfeats = trackingfeats
if CamerType == '1':
self.front_yolobboxes = bboxes
self.front_yolofeats = ffeats
self.front_trackerboxes = trackerboxes
self.front_trackerfeats = trackerfeats
self.front_trackingboxes = trackingboxes
self.front_trackingfeats = trackingfeats
'''========== 0/1_tracking_output.data =========='''
if dataname.find("_tracking_output.data")>0:
tracking_output_boxes, tracking_output_feats = read_tracking_output(datapath)
if CamerType == '0':
self.back_boxes = tracking_output_boxes
self.back_feats = tracking_output_feats
elif CamerType == '1':
self.front_boxes = tracking_output_boxes
self.front_feats = tracking_output_feats
def from_realtime_datafile(self, eventpath):
evtList = self.evtname.split('_')
if len(evtList)>=2 and len(evtList[-1])>=10 and evtList[-1].isdigit():
self.barcode = evtList[-1]
if len(evtList)==3 and evtList[-1]== evtList[-2]:
self.evtType = 'input'
else:
self.evtType = 'other'
'''================ path of video ============='''
for vidname in os.listdir(eventpath):
name, ext = os.path.splitext(vidname)
if ext not in VID_FORMAT: continue
vidpath = os.path.join(eventpath, vidname)
CamerType = name.split('_')[0]
if CamerType == '0':
self.back_videopath = vidpath
if CamerType == '1':
self.front_videopath = vidpath
'''================ process.data ============='''
procpath = Path(eventpath).joinpath('process.data')
if procpath.is_file():
SimiDict = read_similar(procpath)
self.one2one = SimiDict['one2one']
self.one2n = SimiDict['one2n']
self.one2SN = SimiDict['one2SN']
'''=========== 0/1_track.data & 0/1_tracking_output.data ======='''
for dataname in os.listdir(eventpath):
datapath = os.path.join(eventpath, dataname)
if not os.path.isfile(datapath): continue
CamerType = dataname.split('_')[0]
'''========== 0/1_track.data =========='''
if dataname.find("_tracker.data")>0:
trackerboxes, trackerfeats = extract_data_realtime(datapath)
if CamerType == '0':
self.back_trackerboxes = trackerboxes
self.back_trackerfeats = trackerfeats
if CamerType == '1':
self.front_trackerboxes = trackerboxes
self.front_trackerfeats = trackerfeats
'''========== 0/1_tracking_output.data =========='''
if dataname.find("_tracking_output.data")>0:
trackingboxes, trackingfeats, tracking_outboxes, tracking_outfeats = read_tracking_output_realtime(datapath)
if CamerType == '0':
self.back_trackingboxes = trackingboxes
self.back_trackingfeats = trackingfeats
self.back_boxes = tracking_outboxes
self.back_feats = tracking_outfeats
elif CamerType == '1':
self.front_trackingboxes = trackingboxes
self.front_trackingfeats = trackingfeats
self.front_boxes = tracking_outboxes
self.front_feats = tracking_outfeats
def compose_feats(self):
'''事件的特征集成'''
feats_compose = np.empty((0, 256), dtype=np.float64)
if len(self.front_feats):
for feat in self.front_feats:
feats_compose = np.concatenate((feats_compose, feat), axis=0)
if len(self.back_feats):
for feat in self.back_feats:
feats_compose = np.concatenate((feats_compose, feat), axis=0)
self.feats_compose = feats_compose
def select_feats(self):
'''事件的特征选择'''
if len(self.front_feats):
self.feats_select = self.front_feats[0]
elif len(self.back_feats):
self.feats_select = self.back_feats[0]
def plot_save_image(self, savepath):
def array2list(bboxes):
'''[x1, y1, x2, y2, track_id, score, cls, frame_index, box_index]'''
frame_ids = bboxes[:, 7].astype(int)
fID = np.unique(bboxes[:, 7].astype(int))
fboxes = []
for f_id in fID:
idx = np.where(frame_ids==f_id)[0]
box = bboxes[idx, :]
fboxes.append((f_id, box))
return fboxes
imgpairs = []
cameras = ('front', 'back')
for camera in cameras:
if camera == 'front':
boxes = self.front_trackerboxes
imgpaths = self.front_imgpaths
else:
boxes = self.back_trackerboxes
imgpaths = self.back_imgpaths
fboxes = array2list(boxes)
for fid, fbox in fboxes:
imgpath = imgpaths[int(fid-1)]
image = cv2.imread(imgpath)
annotator = Annotator(image.copy(), line_width=2)
for i, box in enumerate(fbox):
x1, y1, x2, y2, tid, score, cls, fid, bid = box
label = f'{int(tid), int(cls)}'
if tid >=0 and cls==0:
color = colors(int(cls), True)
elif tid >=0 and cls!=0:
color = colors(int(tid), True)
else:
color = colors(19, True) # 19为调色板的最后一个元素
xyxy = (x1/2, y1/2, x2/2, y2/2)
annotator.box_label(xyxy, label, color=color)
im0 = annotator.result()
imgpairs.append((Path(imgpath).name, im0))
# spath = os.path.join(savepath, Path(imgpath).name)
# cv2.imwrite(spath, im0)
return imgpairs
def save_event_subimg(self, savepath):
'''
功能: 保存一次购物事件的轨迹子图
9 items: barcode, type, filepath, back_imgpaths, front_imgpaths,
back_boxes, front_boxes, back_feats, front_feats,
feats_compose, feats_select
子图保存次序:先前摄、后后摄,以 k 为编号,和 "feats_compose" 中次序相同
'''
imgpairs = []
cameras = ('front', 'back')
for camera in cameras:
boxes = np.empty((0, 9), dtype=np.float64) ##和类doTracks兼容
if camera == 'front':
for b in self.front_boxes:
boxes = np.concatenate((boxes, b), axis=0)
imgpaths = self.front_imgpaths
else:
for b in self.back_boxes:
boxes = np.concatenate((boxes, b), axis=0)
imgpaths = self.back_imgpaths
for i, box in enumerate(boxes):
x1, y1, x2, y2, tid, score, cls, fid, bid = box
imgpath = imgpaths[int(fid-1)]
image = cv2.imread(imgpath)
subimg = image[int(y1/2):int(y2/2), int(x1/2):int(x2/2), :]
camerType, timeTamp, _, frameID = os.path.basename(imgpath).split('.')[0].split('_')
subimgName = f"cam{camerType}_{i}_tid{int(tid)}_fid({int(fid)}, {frameID}).png"
imgpairs.append((subimgName, subimg))
# spath = os.path.join(savepath, subimgName)
# cv2.imwrite(spath, subimg)
return imgpairs
# basename = os.path.basename(event['filepath'])
print(f"Image saved: {os.path.basename(self.eventpath)}")
def draw_tracks(self):
front_edge = cv2.imread(r"D:\DetectTracking\tracking\shopcart\cart_tempt\board_ftmp_line.png")
back_edge = cv2.imread(r"D:\DetectTracking\tracking\shopcart\cart_tempt\edgeline.png")
front_trackerboxes = array2list(self.front_trackerboxes)
back_trackerboxes = array2list(self.back_trackerboxes)
# img1, img2 = edgeline.copy(), edgeline.copy()
img1 = drawTrack(front_trackerboxes, front_edge.copy())
img2 = drawTrack(self.front_trackingboxes, front_edge.copy())
img3 = drawTrack(back_trackerboxes, back_edge.copy())
img4 = drawTrack(self.back_trackingboxes, back_edge.copy())
imgcat1 = np.concatenate((img1, img2), axis = 1)
H, W = imgcat1.shape[:2]
cv2.line(imgcat1, (int(W/2), 0), (int(W/2), H), (128, 255, 128), 2)
imgcat2 = np.concatenate((img3, img4), axis = 1)
H, W = imgcat2.shape[:2]
cv2.line(imgcat2, (int(W/2), 0), (int(W/2), H), (128, 255, 128), 2)
illus = [imgcat1, imgcat2]
if len(illus):
img_cat = np.concatenate(illus, axis = 1)
if len(illus)==2:
H, W = img_cat.shape[:2]
cv2.line(img_cat, (int(W/2), 0), (int(W/2), int(H)), (128, 128, 255), 3)
return img_cat
def main():
# pklpath = r"D:\DetectTracking\evtresult\images2\ShoppingDict.pkl"
# evt = ShoppingEvent(pklpath, stype='source')
evtpath = r"\\192.168.1.28\share\测试视频数据以及日志\算法全流程测试\202412\images\20241209-160248-08edd5f6-1806-45ad-babf-7a4dd11cea60_6973226721445"
evt = ShoppingEvent(evtpath, stype='data')
img_cat = evt.draw_tracks()
cv2.imwrite("a.png", img_cat)
if __name__ == "__main__":
main()
# main1()