回传数据解析,兼容v5和v10

This commit is contained in:
jiajie555
2025-04-18 14:41:53 +08:00
commit 010f5c445a
888 changed files with 93632 additions and 0 deletions

View File

@ -0,0 +1,576 @@
# -*- coding: utf-8 -*-
"""
Created on Wed Sep 11 11:57:30 2024
contrast_pr:
直接利用测试数据中的 data 文件进行 1:1、1:SN、1:n 性能评估
test_compare:
永辉现场试验输出数据的 1:1 性能评估
适用于202410前数据保存版本的需调用 OneToOneCompare.txt
@author: ym
"""
import os
import numpy as np
from pathlib import Path
import matplotlib.pyplot as plt
import sys
FILE = Path(__file__).resolve()
ROOT = FILE.parents[1] # YOLOv5 root directory
if str(ROOT) not in sys.path:
sys.path.append(str(ROOT))
from tracking.utils.read_data import read_similar
def read_one2one_data(filepath):
simiList = []
with open(filepath, 'r', encoding='utf-8') as f:
lines = f.readlines()
split_flag = False
simi_dict = {}
for i, line in enumerate(lines):
line = line.strip()
if not line:
if len(simi_dict): simiList.append(simi_dict)
simi_dict = {}
continue
label = line.split(':')[0].strip()
value = line.split(':')[1].strip()
if label.find("SeqDir") >= 0:
simi_dict["SeqDir"] = value
if label.isdigit() and len(label) >= 8:
simi_max, simi_min = value.strip(',').split('.')
simi_dict["barcode"] = label
simi_dict["simi_max"] = float(simi_max) / 1000
simi_dict["simi_min"] = float(simi_min) / 1000
if len(simi_dict): simiList.append(simi_dict)
return simiList
def plot_pr_curve(matrix):
simimax, simimean = [], []
need_analysis = []
for simidict in matrix:
simimax.append(simidict["simi_max"])
simimean.append(simidict["simi_min"])
if simidict["simi_max"]>0.6:
need_analysis.append(simidict)
simimax = np.array(simimax)
simimean = np.array(simimean)
TPFN_max = len(simimax)
TPFN_mean = len(simimean)
fig, axs = plt.subplots(2, 1)
axs[0].hist(simimax, bins=60, edgecolor='black')
axs[0].set_xlim([-0.2, 1])
axs[0].set_title(f'Same Barcode, Num: {TPFN_max}')
axs[1].hist(simimean, bins=60, edgecolor='black')
axs[1].set_xlim([-0.2, 1])
axs[1].set_title(f'Cross Barcode, Num: {TPFN_mean}')
# plt.savefig(f'./result/{file}_hist.png') # svg, png, pdf
Recall_Neg = []
Thresh = np.linspace(-0.2, 1, 100)
for th in Thresh:
TN = np.sum(simimax < th)
Recall_Neg.append(TN/TPFN_max)
fig, ax = plt.subplots()
ax.plot(Thresh, Recall_Neg, 'b', label='Recall_Pos: TP/TPFN')
ax.set_xlim([0, 1])
ax.set_ylim([0, 1])
ax.grid(True)
ax.set_title('Positive recall')
ax.set_xlabel(f"Num: {TPFN_max}")
ax.legend()
plt.show()
# plt.savefig(f'./result/{file}_pr.png') # svg, png, pdf
print("Have done!")
pass
def test_compare():
filepaths = [r"\\192.168.1.28\share\测试_202406\0913_扫A放B\0913_1\OneToOneCompare.txt",
r"\\192.168.1.28\share\测试_202406\0913_扫A放B\0913_2\OneToOneCompare.txt",
r"\\192.168.1.28\share\测试_202406\0914_扫A放B\0914_1\OneToOneCompare.txt",
r"\\192.168.1.28\share\测试_202406\0914_扫A放B\0914_2\OneToOneCompare.txt"
]
simiList = []
for fp in filepaths:
slist = read_one2one_data(fp)
simiList.extend(slist)
plot_pr_curve(simiList)
def contrast_pr(evtPaths):
'''
1:1
'''
evtpaths = []
# date_ = ['2025-3-4_1', '2025-3-5_1', '2025-3-5_2']
# for dt in date_:
# paths = Path(evtPaths) / dt
abc = []
for p in Path(evtPaths).iterdir():
condt1 = p.is_dir()
condt2 = len(p.name.split('_'))>=2
condt3 = len(p.name.split('_')[-1])>=8
condt4 = p.name.split('_')[-1].isdigit()
if condt1 and condt2 and condt3 and condt4:
evtpaths.append(p)
elif p.is_dir():
abc.append(p.stem)
# evtpaths = [p for p in paths.iterdir() if p.is_dir() and len(p.name.split('_'))>=2 and len(p.name.split('_')[-1])>8]
# evtpaths = [p for p in paths.iterdir() if p.is_dir()]
alg_times = []
events, similars = [], []
##===================================== 扫A放A, 扫A放B场景()
one2oneAA, one2oneAB = [], []
one2SNAA, one2SNAB = [], []
##===================================== 应用于 11
_tp_events, _fn_events, _fp_events, _tn_events = [], [], [], []
_tp_simi, _fn_simi, _tn_simi, _fp_simi = [], [], [], []
##===================================== 应用于 1SN
tp_events, fn_events, fp_events, tn_events = [], [], [], []
tp_simi, fn_simi, tn_simi, fp_simi = [], [], [], []
##===================================== 应用于1:n
tpevents, fnevents, fpevents, tnevents = [], [], [], []
tpsimi, fnsimi, tnsimi, fpsimi = [], [], [], []
##===================================== barcodes总数、比对错误事件
bcdList = []
one2onePath, one2onePath1 = [], []
one2SNPath, one2SNPath1 = [], []
one2nPath = []
errorFile_one2one, errorFile_one2SN, errorFile_one2n = [], [], []
errorFile = []
for path in evtpaths:
barcode = path.stem.split('_')[-1]
datapath = path.joinpath('process.data')
if not barcode.isdigit() or len(barcode)<8: continue
if not datapath.is_file(): continue
bcdList.append(barcode)
try:
SimiDict = read_similar(datapath)
except Exception as e:
print(f"{path.stem}, Error: {e}")
'''放入为 1:1相似度取最大值取出时为 1:SN, 相似度取均值'''
one2one = SimiDict['one2one']
one2SN = SimiDict['one2SN']
one2n = SimiDict['one2n']
if len(one2one)+len(one2SN)+len(one2n) == 0:
errorFile.append(path.stem)
dtime = SimiDict["algroStartToEnd"]
if dtime >= 0:
alg_times.append((dtime, path.stem))
'''================== 0. 1:1 ==================='''
barcodes, similars = [], []
barcodes_ = []
for dt in one2one:
one2onePath.append((path.stem))
if dt['similar']==0:
one2onePath1.append((path.stem))
continue
barcodes.append(dt['barcode'])
similars.append(dt['similar'])
barcodes_.append(path.stem)
if len(barcodes)==len(similars) and len(barcodes)!=0:
## 扫A放A, 扫A放B场景
simAA = [similars[i] for i in range(len(barcodes)) if barcodes[i]==barcode]
simAB = [similars[i] for i in range(len(barcodes)) if barcodes[i]!=barcode]
one2oneAA.extend(simAA)
one2oneAB.extend(simAB)
## 相似度排序barcode相等且排名第一为TP适用于多的barcode相似度比较
max_idx = similars.index(max(similars))
max_sim = similars[max_idx]
# max_bcd = barcodes[max_idx]
for i in range(len(one2one)):
bcd, simi = barcodes[i], similars[i]
if bcd==barcode and simi==max_sim:
_tp_simi.append(simi)
_tp_events.append(path.stem)
elif bcd==barcode and simi!=max_sim:
_fn_simi.append(simi)
_fn_events.append(path.stem)
elif bcd!=barcode and simi!=max_sim:
_tn_simi.append(simi)
_tn_events.append(path.stem)
elif bcd!=barcode and simi==max_sim and barcode in barcodes:
_fp_simi.append(simi)
_fp_events.append(path.stem)
else:
errorFile_one2one.append(path.stem)
elif len(one2SN)+len(one2n) == 0:
errorFile_one2one.append(path.stem)
'''================== 2. 取出场景下的 1 : Small N ==================='''
barcodes, similars = [], []
for dt in one2SN:
barcodes.append(dt['barcode'])
similars.append(dt['similar'])
if len(barcodes)==len(similars) and len(barcodes)!=0:
## 扫A放A, 扫A放B场景
simAA = [similars[i] for i in range(len(barcodes)) if barcodes[i]==barcode]
simAB = [similars[i] for i in range(len(barcodes)) if barcodes[i]!=barcode]
one2SNAA.extend(simAA)
one2SNAB.extend(simAB)
one2SNPath.append(path.stem)
if len(simAA)==0:
errorFile_one2SN.append(path.stem)
## 相似度排序barcode相等且排名第一为TP适用于多的barcode相似度比较
max_idx = similars.index(max(similars))
max_sim = similars[max_idx]
# max_bcd = barcodes[max_idx]
for i in range(len(one2SN)):
bcd, simi = barcodes[i], similars[i]
if bcd==barcode and simi==max_sim:
tp_simi.append(simi)
tp_events.append(path.stem)
elif bcd==barcode and simi!=max_sim:
fn_simi.append(simi)
fn_events.append(path.stem)
elif bcd!=barcode and simi!=max_sim:
tn_simi.append(simi)
tn_events.append(path.stem)
elif bcd!=barcode and simi==max_sim and barcode in barcodes:
fp_simi.append(simi)
fp_events.append(path.stem)
else:
errorFile_one2SN.append(path.stem)
'''===================== 3. 取出场景下的 1:n ========================'''
events, evt_barcodes, evt_similars, evt_types = [], [], [], []
for dt in one2n:
events.append(dt["event"])
evt_barcodes.append(dt["barcode"])
evt_similars.append(dt["similar"])
evt_types.append(dt["type"])
if len(events)==len(evt_barcodes)==len(evt_similars)==len(evt_types) and len(events)>0:
if not barcode in evt_barcodes:
errorFile_one2n.append(path.stem)
continue
if len(barcodes_):
print("do")
one2nPath.append(path.stem)
maxsim = evt_similars[evt_similars.index(max(evt_similars))]
for i in range(len(one2n)):
bcd, simi = evt_barcodes[i], evt_similars[i]
if bcd==barcode and simi==maxsim:
tpsimi.append(simi)
tpevents.append(path.stem)
elif bcd==barcode and simi!=maxsim:
fnsimi.append(simi)
fnevents.append(path.stem)
elif bcd!=barcode and simi!=maxsim:
tnsimi.append(simi)
tnevents.append(path.stem)
elif bcd!=barcode and simi==maxsim and barcode in evt_barcodes:
fpsimi.append(simi)
fpevents.append(path.stem)
else:
errorFile_one2n.append(path.stem)
'''命名规则:
1:1 (max) 1:1 (max) 1:n 1:N
_TP TP_ TP TPX
_PPrecise PPrecise_ PPrecise PPreciseX
tpsimi tp_simi
'''
''' 1:1 数据存储, 相似度计算方式:最大值、均值'''
_PPrecise, _PRecall = [], []
_NPrecise, _NRecall = [], []
PPrecise_, PRecall_ = [], []
NPrecise_, NRecall_ = [], []
''' 1:SN 数据存储,需根据相似度排序'''
PPreciseX, PRecallX = [], []
NPreciseX, NRecallX = [], []
''' 1:n 数据存储,需根据相似度排序'''
PPrecise, PRecall = [], []
NPrecise, NRecall = [], []
Thresh = np.linspace(-0.2, 1, 100)
for th in Thresh:
'''(Precise, Recall) 计算方式, 若 1:1 与 1:SN 相似度选择方式相同,则可以合并'''
'''===================================== 1:1 最大值'''
_TP = sum(np.array(one2oneAA) >= th)
_FP = sum(np.array(one2oneAB) >= th)
_FN = sum(np.array(one2oneAA) < th)
_TN = sum(np.array(one2oneAB) < th)
_PPrecise.append(_TP/(_TP+_FP+1e-6))
_PRecall.append(_TP/(_TP+_FN+1e-6))
_NPrecise.append(_TN/(_TN+_FN+1e-6))
_NRecall.append(_TN/(_TN+_FP+1e-6))
'''===================================== 1:SN 均值'''
TP_ = sum(np.array(one2SNAA) >= th)
FP_ = sum(np.array(one2SNAB) >= th)
FN_ = sum(np.array(one2SNAA) < th)
TN_ = sum(np.array(one2SNAB) < th)
PPrecise_.append(TP_/(TP_+FP_+1e-6))
PRecall_.append(TP_/(len(one2SNAA)+1e-6))
NPrecise_.append(TN_/(TN_+FN_+1e-6))
NRecall_.append(TN_/(len(one2SNAB)+1e-6))
'''适用于 (Precise, Recall) 计算方式多个相似度计算并排序barcode相等且排名第一为 TP '''
'''===================================== 1:SN '''
TPX = sum(np.array(tp_simi) >= th)
FPX = sum(np.array(fp_simi) >= th)
FNX = sum(np.array(fn_simi) < th)
TNX = sum(np.array(tn_simi) < th)
PPreciseX.append(TPX/(TPX+FPX+1e-6))
PRecallX.append(TPX/(TPX+FNX+1e-6))
NPreciseX.append(TNX/(TNX+FNX+1e-6))
NRecallX.append(TNX/(TNX+FPX+1e-6))
'''===================================== 1:n'''
TP = sum(np.array(tpsimi) >= th)
FP = sum(np.array(fpsimi) >= th)
FN = sum(np.array(fnsimi) < th)
TN = sum(np.array(tnsimi) < th)
PPrecise.append(TP/(TP+FP+1e-6))
PRecall.append(TP/(TP+FN+1e-6))
NPrecise.append(TN/(TN+FN+1e-6))
NRecall.append(TN/(TN+FP+1e-6))
algtime = []
for tm, _ in alg_times:
algtime.append(tm)
fig, ax = plt.subplots()
ax.hist(np.array(algtime), bins=100, edgecolor='black')
ax.set_title('Algorthm Spend Time')
ax.set_xlabel(f"Event Num: {len(alg_times)}")
plt.show()
'''1. ============================= 1:1 最大值方案 曲线'''
fig, ax = plt.subplots()
ax.plot(Thresh, _PPrecise, 'r', label='Precise_Pos: TP/TPFP')
ax.plot(Thresh, _PRecall, 'b', label='Recall_Pos: TP/TPFN')
ax.plot(Thresh, _NPrecise, 'g', label='Precise_Neg: TN/TNFP')
ax.plot(Thresh, _NRecall, 'c', label='Recall_Neg: TN/TNFN')
ax.set_xlim([0, 1])
ax.set_ylim([0, 1])
ax.set_xticks(np.arange(0, 1, 0.1))
ax.set_yticks(np.arange(0, 1, 0.1))
ax.grid(True, linestyle='--')
ax.set_title('1:1 Precise & Recall')
ax.set_xlabel(f"Event Num: {len(one2oneAA)+len(one2oneAB)}")
ax.legend()
plt.show()
## ============================= 1:1 最大值方案 直方图'''
fig, axes = plt.subplots(2, 1)
axes[0].hist(np.array(one2oneAA), bins=60, edgecolor='black')
axes[0].set_xlim([-0.2, 1])
axes[0].set_title('AA')
axes[1].hist(np.array(one2oneAB), bins=60, edgecolor='black')
axes[1].set_xlim([-0.2, 1])
axes[1].set_title('BB')
plt.show()
'''2. ============================= 1:1 均值方案 曲线'''
# fig, ax = plt.subplots()
# ax.plot(Thresh, PPrecise_, 'r', label='Precise_Pos: TP/TPFP')
# ax.plot(Thresh, PRecall_, 'b', label='Recall_Pos: TP/TPFN')
# ax.plot(Thresh, NPrecise_, 'g', label='Precise_Neg: TN/TNFP')
# ax.plot(Thresh, NRecall_, 'c', label='Recall_Neg: TN/TNFN')
# ax.set_xlim([0, 1])
# ax.set_ylim([0, 1])
# ax.grid(True)
# ax.set_title('1:1 Precise & Recall')
# ax.set_xlabel(f"Event Num: {len(one2SNAA)}")
# ax.legend()
# plt.show()
# ## ============================= 1:1 均值方案 直方图'''
# fig, axes = plt.subplots(2, 1)
# axes[0].hist(np.array(one2SNAA), bins=60, edgecolor='black')
# axes[0].set_xlim([-0.2, 1])
# axes[0].set_title('AA')
# axes[0].set_xlabel(f"Event Num: {len(one2SNAA)}")
# axes[1].hist(np.array(one2SNAB), bins=60, edgecolor='black')
# axes[1].set_xlim([-0.2, 1])
# axes[1].set_title('BB')
# axes[1].set_xlabel(f"Event Num: {len(one2SNAB)}")
# plt.show()
''''3. ============================= 1:SN 曲线'''
fig, ax = plt.subplots()
ax.plot(Thresh, PPreciseX, 'r', label='Precise_Pos: TP/TPFP')
ax.plot(Thresh, PRecallX, 'b', label='Recall_Pos: TP/TPFN')
ax.plot(Thresh, NPreciseX, 'g', label='Precise_Neg: TN/TNFP')
ax.plot(Thresh, NRecallX, 'c', label='Recall_Neg: TN/TNFN')
ax.set_xlim([0, 1])
ax.set_ylim([0, 1])
ax.set_xticks(np.arange(0, 1, 0.1))
ax.set_yticks(np.arange(0, 1, 0.1))
ax.grid(True, linestyle='--')
ax.set_title('1:SN Precise & Recall')
ax.set_xlabel(f"Event Num: {len(one2SNAA)}")
ax.legend()
plt.show()
## ============================= 1:N 展厅 直方图'''
fig, axes = plt.subplots(2, 2)
axes[0, 0].hist(tp_simi, bins=60, edgecolor='black')
axes[0, 0].set_xlim([-0.2, 1])
axes[0, 0].set_title(f'TP({len(tp_simi)})')
axes[0, 1].hist(fp_simi, bins=60, edgecolor='black')
axes[0, 1].set_xlim([-0.2, 1])
axes[0, 1].set_title(f'FP({len(fp_simi)})')
axes[1, 0].hist(tn_simi, bins=60, edgecolor='black')
axes[1, 0].set_xlim([-0.2, 1])
axes[1, 0].set_title(f'TN({len(tn_simi)})')
axes[1, 1].hist(fn_simi, bins=60, edgecolor='black')
axes[1, 1].set_xlim([-0.2, 1])
axes[1, 1].set_title(f'FN({len(fn_simi)})')
plt.show()
'''4. ============================= 1:n 曲线,'''
fig, ax = plt.subplots()
ax.plot(Thresh, PPrecise, 'r', label='Precise_Pos: TP/TPFP')
ax.plot(Thresh, PRecall, 'b', label='Recall_Pos: TP/TPFN')
ax.plot(Thresh, NPrecise, 'g', label='Precise_Neg: TN/TNFP')
ax.plot(Thresh, NRecall, 'c', label='Recall_Neg: TN/TNFN')
ax.set_xlim([0, 1])
ax.set_ylim([0, 1])
ax.set_xticks(np.arange(0, 1, 0.1))
ax.set_yticks(np.arange(0, 1, 0.1))
ax.grid(True, linestyle='--')
ax.set_title('1:n Precise & Recall')
ax.set_xlabel(f"Event Num: {len(tpsimi)+len(fnsimi)}")
ax.legend()
plt.show()
## ============================= 1:n 直方图'''
fig, axes = plt.subplots(2, 2)
axes[0, 0].hist(tpsimi, bins=60, edgecolor='black')
axes[0, 0].set_xlim([-0.2, 1])
axes[0, 0].set_title(f'TP({len(tpsimi)})')
axes[0, 1].hist(fpsimi, bins=60, edgecolor='black')
axes[0, 1].set_xlim([-0.2, 1])
axes[0, 1].set_title(f'FP({len(fpsimi)})')
axes[1, 0].hist(tnsimi, bins=60, edgecolor='black')
axes[1, 0].set_xlim([-0.2, 1])
axes[1, 0].set_title(f'TN({len(tnsimi)})')
axes[1, 1].hist(fnsimi, bins=60, edgecolor='black')
axes[1, 1].set_xlim([-0.2, 1])
axes[1, 1].set_title(f'FN({len(fnsimi)})')
plt.show()
# fpsnErrFile = str(paths.joinpath("one2SN_Error.txt"))
# with open(fpsnErrFile, "w") as file:
# for item in fp_events:
# file.write(item + "\n")
# fpErrFile = str(paths.joinpath("one2n_Error.txt"))
# with open(fpErrFile, "w") as file:
# for item in fpevents:
# file.write(item + "\n")
# bcdSet = set(bcdList)
# one2nErrFile = os.path.join(evtPaths, "one_2_Small_n_Error.txt")
# with open(one2nErrFile, "w") as file:
# for item in fnevents:
# file.write(item + "\n")
# one2NErrFile = os.path.join(evtPaths, "one_2_Big_N_Error.txt")
# with open(one2NErrFile, "w") as file:
# for item in fn_events:
# file.write(item + "\n")
print('Done!')
if __name__ == "__main__":
evtpaths = r"/home/wqg/dataset/test_base_dataset/single_event/source"
contrast_pr(evtpaths)